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 Abstract— In this article, an adjustable frequency device based on curved beam theory is designed to control vertical 
stiffness of an instrumented vehicle that it can detect dynamic data when moving on a test beam for frequency 
measurement. The adjustable frequency device consists of a set of two-layer cantilever semi-circular thin-beams to 
support a lumped mass for vibrations, in which a rotatable U-frame is used to change its subtended angle for 
adjustment of the supporting stiffness and corresponding vertical frequencies of the vehicle. Based on curved beam 
theory, an analytical frequency equation of the single-degree-of-freedom test vehicle was derived and applied to 
mobile frequency measurement of a simple beam. To determine the sectional rigidity of the semi-circular thin-beams, 
both theoretical and experimental studies were be carried out in the ITAM laboratory of the Academy of Science in 
Czech. The analytical and experimental results indicated that the present semi-circular beam model with guided ends is 
applicable to prediction of natural frequencies of the test vehicle considering different supporting stiffness. 
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Fig. 1 An instrumented vehicle staying on a test beam. 

1. Introduction 

HE use of a moving test vehicle to measure the frequencies 
of a bridge has attracted a lot of attention from engineering 

researchers. Different from a large number of fixed-sensors 
being deployed on a bridge for structural healthy monitoring 
(SHM), the passing test vehicle over a bridge is regarded as a 
vibration message receiver to collect the dynamic data for 
bridge frequency measurement, as indicated in Fig. 1. Such an 
alternative monitoring approach for bridge structure health 
monitoring possesses the following competitions: (1) Mobility 
in sensor deployment; (2) Economy in sensor maintenance and 
monitoring workers; and (3)   Efficiency and portability through 
repetitive experiments by changing vehicle’s speeds [1, 2]. Such 
a monitoring approach through vehicle’s response to detect 

bridge frequencies is called vehicle-scanning method (VSM) 
[1]. However, the vibration frequency of the instrumented 
vehicle should be known before applying the VSM to bridge 
frequency measurement due to possible coupling phenomena of 
vehicle-bridge system [3]. To illustrate the applicability of the 
VSM to bridge SHM in laboratory, a single-degree-of-freedom 
(SDF) instrumented vehicle that its vertical frequencies is 
adjustable by changing the supporting stiffness of a set of 
curved thin-beam system was designed and fabricated to offer 
more feasible measurements of bridge frequencies. 
 

   
Fig. 2 Details of the supporting semi-circular thin-beam system 

 
As shown in Fig.2, the fabricated test vehicle consists of a 

double two-layer cantilever semi-circular beam system that 
its arc-spring stiffness (or vertical frequency) can be adjusted 
through the change of effective arc-length (or subtended 
angle) of the double curved beam unit. In this study, a 
theoretical frequency equation as well as experimental 
measurement of free vibration for the test vehicle will be 
carried out and verified. The results shows the present 
curved-beam based model with adjustable subtended angle is 
feasible to predict the natural frequencies of the test vehicle 
considering different supporting stiffness.   

T 
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Fig. 3  Schematics of a test vehicle with curved thin-beam 

carrying a lumped mass (M) 

2. Problem Formulation  

Figure 3 depicts a schematic representation of an SDF test 
vehicle model that can measure beam frequency using the 
vehicle-scanning method (VSM) [1]. The test vehicle consists 
of a set of semi-circular curved thin-beams to support the 
lumped mass M, in which a rotatable U-frame is designed to 
adjust the supporting stiffness for different vehicle’s 
frequencies. To investigate the dynamic properties of the SDF 
test vehicle, a theoretical model based on curved-beam theory 
will be presented in the following. 

2.1 Governing equations and basic assumptions 

With reference to Figs. 2 and 3, the following considerations 
are adopted: 
1. The semi-circular beam is regarded as a massless curved-thin 

beam of Bernoulli-Euler type; 
2. The U-frames equipped with the semi-circular beams 

supporting the lumped mass M are regarded as a rigid 
frame with mass m; 

3. The vertical displacements at the guided free ends of the U 
frames are identical; 

4. The guided free end is restraint in both torsional and bending 
rotations but free at vertical displacement. Please submit 
your manuscript electronically for review as e-mail 
attachments.  

With above consideration, the coupled equations of the curved 
thin-beam in out-of-plane reads [4] 
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Here (mb, Ib) represent the mass and polar inertia of moment of 
the thin-beam, and (u, x) the flexural and torsional 
deformations, respectively, (EI, GJ) as flexural and torsional 
rigidities on the section of the curved beam element, and (R, L) 
the radius and arc length of the curved beam element with 
subtend angle of  (= L/R) respectively. The coupled equations 
in (1a) and (1b) reveal the torsional and bending coupling nature 
of curved beams in out of plane. To simplify the stiffness matrix 
formulation of the supporting cantilever curved thin-beam 
system, their inertia would be neglected for its negligible mass 
much smaller than the lumped-mass M in the following 
theoretical formulation. 
 

 
Fig. 4 Guided curved-beam element with a subtended angle  

 

2.2 Guided curved-beam element 

As depicted in Fig. 4, a curved beam element with 
rotational-restraint guided ends, in which (u0, uL) represent the 
vertical displacements at x = 0 and L, respectively. Here, the 
boundary conditions of the curved beam element with rotational 
restraints can be expressed as 
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where (u0, uL) denote the nodal displacements of the guided 
curved-beam element. Let us consider the linear generalized 
strains relating to flexure and constant strain of torsional 
deformation in the out of plane of the curved beam element 
depicted in Fig. 4, that is, [4] 
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and the corresponding displacement and torsional functions are 
expressed as [4] 
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Here, b1~b6 are the undetermined coefficients. These 
coefficients can be determined by substituting the displacement 
and torsional expressions of (4) into the boundary conditions of 
guided ends, as given in (2) to yield the following shape 
functions for a guided curved-beam element, as shown in Fig. 4, 
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where the shape functions (fu, f) derived are written as 
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On the other hand, the out of plane strain energy U of a curved 
beam element with length L (= R) is equal to [4] 
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The bracketed terms in (7) represent the strain energy caused by 
the coupled flexural and torsional deformations of (u, x). By 
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substituting the shape functions of (5) into the strain energy 
equation of (7) and applying the variational principle, the virtual 
strain energy (U) can be expressed in terms of nodal 
displacements (u0, uL) as follows 
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where the stiffness coefficient of  k(L, ) is given as 
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Let us consider the degenerated case that the subtended angle  
is reduced to zero for a straight beam element. It is expected that 
the stiffness coefficient of k(L, )becomes EI/L of a 
guided straight beam element with two end-rotational restraints. 

3. Natural frequency 

As shown in Fig. 3, the SDF dynamic system supporting a 
lumped mass M is composed by two layers of cantilever 
semi-circular thin-beams with a rotatable U-frame. By 
assembling these curved beam elements, the structural matrix 
equation of the SDF supporting system carrying a lumped mass 
M can be expressed as 
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Here, m is the mass of the supporting U-frame guiding the 
cantilever semi-circular thin-beam unit. Since the vertical 
displacements of (uL, uR-L) at the guided ends are rigidly locked 
by the rotatable U-frame, they can be assumed to be identical, 
that is, uL = uR-L. Thus the governing equation in vertical 
vibration for the test vehicle equipped with the semi-circular 
thin-beam system to support the lumped mass M in (1) reads 
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Solving the eigenvalue problem of free vibration yields the 
following characteristic equation for natural frequency of the 
test vehicle as 
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By expressing the angular frequency as f, the 
characteristic equation of (12) can be rewritten as 
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The analytical expression of (13) provides an exact relationship 
between the subtended angle (= L/R) and the vertical 
frequency (f), from which we can identify the sectional rigidities 
of (EI, GJ) of the supporting semi-circular thin-beam systems 
through a series of experimental measurements.  

For simplicity to illustrate (13), let us adopt the following 
symbols for mathematical curve-fitting using the least square 
method [5]. 
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Here the section properties of J = wt3/3 and I = wt3/12 for a thin 
rectangular section (w x t) are used in (14c). So the 
characteristic equation of free vibration shown in (13) can be 
rewritten in an alternative linear equation as 
  Y = a + bX                  (15) 
Then one can determine the coefficients of (a, b) by measuring 
the vertical frequency f incorporating with the subtend angle  
through a series of frequency measurements of free vibration 
test by changing the subtended angle. 
 

 
Fig. 5 A Brüel-Kjaer piezoelectric accelerometer mounted on 

the lumped mass for response measurement. 

4. Experimental setup 

As described in the previous sections, the test vehicle has the 
feature of adjustable frequencies by rotating the U-frame of the 
double semi-circular curved beam system to control the vertical 
stiffness. To measure the vertical free vibration of the test 
vehicle, a piezoelectric accelerometer, Brüel-Kjaer, type 4374 
with sampling rate of 1000 Hz, is mounted on the lumped mass 
M of the instrumented test vehicle, as shown in Fig. 5. The 
vibration signals recorded from accelerometers were 
transmitted via charge amplifiers into a computer DEWE–43. 

5. Experimental results 

The material and geometrical properties of the semi-circular 
thin-beam are listed in the following Table 1. The materials used 
for the curved thin-beam is of steel and the rotatable U-frame of 
aluminum. By changing the subtended angle , one can measure 
the corresponding vertical frequencies of the test vehicle 
through free vibration test. Table 2 lists the theoretical and 
experimental results through a series of vibration tests by 
considering different subtended angles. As indicated, they exist 
some difference from the measured frequencies with respect to 
different subtended angles. 
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Table 1 Properties of the supporting curved-beam system 
E 

(kN/mm2) 
 t 

(mm) 
w 

(mm) 
R 

(mm) 
M 

(kg) 
m 

(kg) 
I0 

(mm4) 
J0 

(mm4) 
2.0E5 0.3 6 12.8 56.4 1.0 0.057 230 918 

 
Table 2 Theoretical and Measured frequencies 

 (deg.) 75  90  105 120 135 
f0 (Hz) Analyt. 

Measured 
11.0 

(11.2)* 
8.5 7.3 6.7 6.1  

(5.5)* 
f (Hz) Fitted 11.1 8.9 7.4 6.3 5.5 
 

As mention previously, by using least square method [5], the 
coefficients of (a, b) in the linear equation of Eq. (15) are fitted 
from the measure data shown in Table 2 and listed in Table 3. 
Fig. 6 plotted the fitting relationship of the measured 
frequencies (f) with respect to the subtended angle (). Then the 
corresponding flexural (EI) and torsional (GJ) rigidities can be 
calculated from the fitted equation. According to the fitted curve 
plotted in Fig. 6, the relationship between the subtended angle  
and the measured frequency f is of nonlinearity even (15) is a 
linear equation in terms of X (= f 2). However, the analytical 
expression of (15) helps us extract the key parameters of the 
adjustable frequency device based on curved beam theory. 

 
Table 3 Fitted sectional parameters of the curved thin-beam 

Y  a b EI0=Ewt3/12 
(kN-m2) 

EI 
fitted 

GJ0=Gwt3/3 
(kN-m2) 

GJ 
fitted 

a+bX -1.57 0.043 45.9 48.9 70.6 76.8 
(I0, J0) are obtained from the definition of bending and torsional constants. 
 

 
Fig. 6 Frequency fitting method 

6. Conclusion 

The present work is in part of structural health monitoring of 
bridge structures using a passing vehicle. The natural frequency 
of the test vehicle should be known before using a passing 
vehicle to collect the dynamic data of a bridge for frequency 
measurement. For this, an SDF test vehicle that its vertical 
frequency can be adjusted by changing the supporting stiffness 
of the semi-circular thin-beam system was designed and 
fabricated to offer more feasible frequency measurements in 
laboratory.  
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