
Music is one of the interesting phenomenons of the nature
for everybody. Different persons like deferent types of the
music and they have deferent perception of them. There
are some people that like to analyze music with different
point of view, like as, Mathematically, probabilistic, algebraic,
wavelets, physical and etc (see [4], [7], [8], [9], [13], [14],
[15], [16]). Temperley is one of the popular persons that has
very interesting idea in music theory and has published a
lot of papers in this subject. Also he has introduced a new
probabilistic point of view in his book [13]. He has proposed
a new Bayesian method to musical modeling, although he
was not the first one (see [10], [11], [12], [17]). Namely he
has a general study of probabilistic modeling of the music is
his book. More extensive treatments can be found elsewhere.
Coverage of basic probability and Bayes rule can be found in
probability texts such as Safran et al. (1999) and Ross (2000).

In this study we try to look at music with topological point
of view that has not been seen before.

The rest of this paper constructed as follows. In section 2
we see some useful preliminaries. Section 3, reviews some
geometric topics such as Lie group and Lie Algebra. Section
4, includes logarithmic representation of music. And section
5 is related with music and Lie algebra.

We are able to hear noises that their frequency are between
C note 16 hertz (one octave flater than the flattest C note in
the piano) and the flat E note (near 2000 hertz)(see [9], [12]).
Now we review some basic definitions in theory of music, for
details you can look [9], [12].

Definition 2.1: Interval in the Music is difference of sharp
and flat or ordering ratio between two sounds. Interval of the
two successive notes is called connected and others is called
detached. Some of connected intervals, that are closer to each
other are said half tone and others are called major tone.

Definition 2.2: Frequency ratio between C note and subse-
quent C note is 1

2 . This ratio is called Octave.
Example 2.3: C3 = 264 (C note in the third octave) and

C4 = 522 (C note in the fourth octave)

Definition 2.4: Two notes that haven’t same name and their
between interval is half tone, will be called diatonic half tone.
Two notes that have same name and their between interval is
half tone, will be called chromatic half tone.

Definition 2.5: Scale is the sounds or notes that lay continu-
ously between octave. In the other means, scale is the regular
rows of sounds.

Definition 2.6: Diatonic scale is composed with diatonic
tones and diatonic half tones. Chromatic scale is composed
from 12 half tones (7 diatonic half tones and 5 chromatic half
tones).

As electronic musicians, we deal with all sorts of numbers
whose resolution changes drastically from low to high. Con-
sider, for example, the relatively simple and familiar concept
of musical octaves. Because an increase in pitch of one octave
corresponds to a doubling of the fundamental frequency, an
octave above 20 Hz is 40 Hz, whereas an octave above 1,000
Hz is 2,000 Hz. Between 20 and 40 Hz, a variation of 1 Hz
represents 5 percent (1/20) of the octave — between 1,000
and 2,000 Hz, it represents only 0.1 percent (1/1,000) of the
octave.

To put this doubling in mathematical terms, as the octave
increases, frequency increases by a power of two: the fre-
quency n octaves above a pitch P is P × 2n. Because n
is literally the exponent of 2, this is called an exponential
relationship. If pitch rises at a steady rate, as when a musician
plays an ascending chromatic scale, frequency rises at an
increasing rate. The distance in terms of frequency between
each subsequent pair of notes is greater than the distance
between the previous pair of notes, yet musically each is a
semitone (half step).

A logarithm is the power to which a certain base b must
be raised to equal a particular number x. In other words, if
bn = x, then logb(x) = n. Logarithms solve two problems.
First, they allow us to make meaningful comparisons of
things, such as musical intervals, when the underlying numeric
relationships vary according to range. An octave is still an
octave whether it spans 20 Hz or 1,000 Hz. Second, logarithms
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enable us to describe very large and very small numbers with
relatively simple numbers, as you’ll see.

Our ears can detect the sound of an insect’s wings at arm’s
length, and our ears can be instantly damaged by a train horn
at the same distance. In between are all the useful volumes.
The ratio between the sound pressure of these two sounds
is about a million to one. Imagine a manufacturer describing
the signal-to-noise ratio of a new preamble in those terms.
Of course, this is why we use decibels (see [5], [6], [8], [9],
[12], [18]. Decibels define the ratio between two powers, so
we can make meaningful comparisons between two numbers
regardless of whether we’re talking pascals or micropascals.
They also narrow that million-to-one span to a range of 120
dB. A bel is the power to which 10 must be raised to equal the
ratio in question — by definition, it’s a logarithm. A decibel
is simply a tenth of a bel. If sound A is 100 times louder than
sound B, the ratio of their intensities is 100:1, or 100. Because
100 = 102, the ratio is 2 bels, or 20 decibels.

Mathematically, d = 10log10(IA/IB), with d representing
the number of decibels and IA and IB representing the
intensities of sounds A and B, respectively. The decibel,
being a logarithm, allows us to describe the relative power
of two signals regardless of whether their absolute powers
are very small numbers or very large numbers. The num-
bers tend to get a bit squirrelly when decibels are used to
describe different things. If you double the power of a signal,
it increases by 3 dB: because 100.3 = 2 (approximately),
10log10(2/1) = 10×0.3 = 3. However, since power increases
by the square of the voltage, doubling the voltage yields
an increase of 6 dB. The math for this depends on the
simple fact that squaring a number multiplies its logarithm
by 2. We therefore use 20log10(2/1) = 20 × 0.3 = 6. To
double the subjective loudness of a sound requires about ten
times the power, so “twice as loud” means 10 dB higher:
10log10(10/1) = 10 × 1 = 10. If all the math just makes
you reach for the aspirin, just remember that a decibel is a
logarithmic unit that enables us to cover a million-to-one scale
with ease and clarity.

In this section we review some geometric topics such as Lie
group and Lie Algebra, for details you can see [2], [3]. We
assume that reader is familiar with geometry.

Definition 3.1: A analytic manifold G is a Lie group, if G
be a group and φ be analytic map:

φ : G×G −→ G
(x, y) −→ x.y−1 (1)

Example 3.2: R∗ = R− {0} is a Lie group.
Now we review a theorem that will be useful for our aim in
the next section. For proof and details of this theorem you can
see [3].

Theorem 3.3: Let G be a Lie group and H be a closed
subgroup of G then H is a sub Lie group of G.

We shall say that a vector space ḡ over R is a (real) Lie
algebra if (in addition to its vector space structure) it possesses
a product, that is a map

Φ : ḡ × ḡ −→ ḡ
(x, y) −→ [x, y]

(2)

which has the following properties:
1) It is bilinear over R,

[ax1 + bx2, y] = a[x1, y] + b[x2, y]
x, ay1 + by2] = a[x, y1] + b[x, y2]

(3)

2) It is skew commutative,

[x, y] = −[y, x] (4)

3) It satisfies the Jacobi identity,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (5)

Theorem 3.4: There are open neighborhoods u0 of 0 in ḡ
and ve of e in G such that the following exponential map is
a diffeomorphism.

exp : u0 −→ ve (6)

See [3].
Proposition 3.5: Let G = Rn then we will have

TxRn = {x} × Rn = Rn (7)

by defining la(x) = a+ x we have

dla : {x} ×Rn −→ {a+ x} ×Rn

(x, u) −→ (x+ a, u)
(8)

for A ∈ T0Rn we consider vector field Ā in Rn that is created
with translation, Ā(x) = dlx(A). If

A =
∑

ai(
∂

∂xi
) (9)

we have,

Ā(x) =
∑

ai(
∂

∂xi
)x (10)

therefore Ā is a vector field with constant coefficient, now if
Ā, B̄ be vector fields, then [Ā, B̄] = 0 and Lie algebra of ḡ
will be Rn.

Corollary 3.6: For all a ∈ R∗, we have TaR∗ = R.

In fact degrees of the middle chromatic scales is related
with logarithm (base 2). Assume that C note, in the lowest
octave -that we say zero octave- do n oscillation per second.
Hence C note in the first octave will do 2n oscillation and in
octave m, it will do n× 2m oscillation and so on.

Let P be all chromatic notes, we assume that the main tone
C in any octave is zero, therefore for example G tone will be
the seventh and A tone will be the ninth and so on, the twelve
tone again will be C with higher octave. In every middle
chromatic scales, every tone oscillation is equal to number
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of previous oscillation tone (multiplication with 12
√
2). Hence

for every tone oscillation we have

Npm = n× 2m( 12
√
2)p

logNpm = log n+m log 2 + P log 2
12

logNpm = log n+ (m+ p
12 ) log 2

(11)

if we assume that, the oscillation of the lowest C note is
1, (n = 1) and logarithm base is 2 then

log2 Npm = m+
p

12
(12)

that shows piano key numbers are the logarithm of the oscilla-
tion of related sounds (multiplication 12), and octave number
is the characteristic of the logarithm and also sound number in
the related octave (divide 12) is the logarithm mantissa. For
example tone of C note, in the third octave is 3+7/12, that
3 describes the oscillation number and 7/12 (=0.583) is the
mantissa, therefore oscillation will be 23.583 = 11.98 times
the oscillation of the C note in the first octave.(see also [1],
[5], [12], [18].

We know that pitching of the musical instrument, changes
frequencies and oscillation of C note in the first octave (and
therefore other notes), hence oscillations will be in the interval
[1, a], (a is constant). Now without loss of generality, we
assume that oscillations are in the interval Ω = (0, a].

Lemma 5.1: By defining an action for all x, y ∈ Ω = (0, a],
Ω can be an abelian group.

Definition 5.2: Let R be the real number set, and let τ =
{(r,+∞)|r ∈ R}

⋃
{R, ∅} then τ is a topology for R. τ will

be called right radius topology.
Lemma 5.3: Ω is closed in R∗.
It is enough to consider R∗ with right radius topology.
Corollary 5.4: Theorem 3.3 and lemma 5.3 show that Ω is

a sub Lie group of R∗, since for all a ∈ R∗, TaR∗ = R. Also
lnx =

logx
2

loge
2

and music notes are related with logarithm base
2, therefore we obtain the Lie Algebra of the music interval
with multiplication loge2 to any vector in TΩ (Lie algebra of
Ω).
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