ISSN: 2766-9823

Volume 1, 2019

Using AOP In Discrete Event Simulation: A Case
Study with JAPROSIM

Meriem Chibani
Department of Mathematics
and Computer Science
University of Oum El Bouaghi
Oum El Bouaghi, 4000, Algeria
Email: c.meriem@univ-oeb.dz

Abstract—Japrosim is a discrete event simulation (DES) frame-
work that has been developed for academic and industrial
purposes based on object oriented paradigm. It contains several
crosscutting concerns such as animation, steady state detection,
keeping track of a simulation’s state and graphical user interface
(GUI). These concerns cross its modules and tend to decrease its
modularity, understandability, maintainability, reusability, and
testability properties. One of the latest offerings of software
engineering domain is the aspect-oriented (AO) paradigm, which
provides the ability to break free of object-oriented (OO) decom-
position, and describe design with a greater degree of separation
of concerns. In this paper, we identify Japrosim crosscutting
concerns and propose practical AO solutions by means of the
de facto AspectlJ.

Keywords—Crosscutting concerns, aspect oriented program-
ming, discrete event simulation, Japrosim, Aspect].

I. INTRODUCTION

Simulation is “the process of describing a real system
and using this model for experimentation, with the goal of
understanding the system’s behavior or to explore alternative
strategies for its operation” [1]. The use of simulation im-
proves understanding of systems behavior and the effects of
interactions among their components.

Java PRocess Oriented SIMulation (JAPROSIM) is an open
source and a free software simulation framework distributed
under GNU Lesser General Public License (LGPLv3) since
2008. It is currently available under 1.4.1 version and is
used for developing discrete event simulation models using
a coroutine mechanism implementation. It is divided into
eight main packages conceived and implemented for specific
purposes: kernel, random, random.distributions, statistics, gui,
utilities, animation and statistics.steady. It has been designed
with object oriented approach and the Java language has been
used for its implementation.

This library has been improved by adding several capabili-
ties like graphical animation and steady state detection when
others are under consideration like graphical modeling and
explanation. On other hand, the evolution is an intrinsic prop-
erty of software systems. As Japrosim is enhanced, modified
and adapted to new requirements, the code becomes more and
more complex and drifts away from its original design where
different concerns could not be cleanly separated from its

Brahim Belattar
Department of Computer Science
University of Batna
Batna, 5000, Algeria
Email: brahim.belattar@univ-batna.dz

1"

Abdelhabib Bourouis
Department of Mathematics
and Computer Science
University of Oum El Bouaghi
Oum EIl Bouaghi, 4000, Algeria
Email: a.bourouis@univ-oeb.dz

functional code. In the end, concerns are being intertwined in
the library, which decreases its modularity and maintainability.

The aspect-oriented programming paradigm has emerged
as the latest release of software engineering to offering the
greatest degree of modularity, namely the separation of con-
cerns through the modularization of crosscutting concerns.
It could coexist with other approaches including the object
oriented and several programming languages for AO systems
has been developed as Aspect] (java extension), AspectXML
(XML extension), AspectC++ (C++ extension), AspectC (C
extension) [2]. Our work is focused on Aspect], since it is
the first practical AOP implementation based on Java, the
most mature and the widely used in research area. An AOP
system with an Aspect] implementation includes join points
that are the places where the crosscutting actions take effect,
while pointcuts select join points and collect context at those
locations. The Aspect is the central unit in Aspect], in the same
way as a class is the central unit in Java. It could contain data,
methods, and nested class members, like a normal Java class.
The Advice is the code executed at a join point selected by
a pointcut. An Advice can execute before, after, or around
a join point. The body of the advice is much like a method
body. It encapsulates the logic to be executed upon reaching
a join point. Furthermore, the inter-type declaration (ITD) is
a static crosscutting construct that alters the static structure of
classes, interfaces, and aspects in the system. The weave-time
declaration is another static crosscutting construct that adds
weave-time warnings and errors when detecting certain usage
patterns. Furthermore, one of the main elements of AOP is
the “weaving” mechanism, which weaves together classes and
aspects so that advice gets executed, inter-type declarations
affect the static structure and weave-time declarations produce
warnings and errors. Aspect] offers three weaving models:
source weaving, binary weaving and load-time weaving [3].
The weaving may be static as implemented in Aspect] or
dynamic e.g. AspectS implementation [4]. In this paper, we
argue that some general and domain specific concerns of
Japrosim are crosscutting over multiple modules. Therefore,
this increases the complexity and reduces the maintainability.
The use of the AOP, in this case, is justified by the fact that
the domain requirements for simulation software are fairly

ISSN: 2766-9823

complex and the object oriented paradigm is not capable
enough to deal with such complexity.

The remainder of the paper is organized as follows. Section
2 outlines the major related work. Section 3 identifies the
Japrosim crosscutting concerns and gives the AOP solutions.
Finally a conclusion is given in Section 4.

II. RELATED WORKS

The use of the AO paradigm in DES depends on several con-
siderations: (1) The level of the AO application (specification,
design, or implementation phase); (2) The host methodology
(multi-agent, components, or object oriented); (3) The aspect
oriented language used (e.g. AspecJ, AspectS, or MAML); (4)
The kind of the separated crosscutting concerns, that could
be specific for simulation modeling domain, as steady state
detection, or generic and found in any application as exception
handling.

In the literature there are two DES frameworks that support
AQO paradigm. The first is Simkit, which is an open source
tool based on the OO paradigm and event graph formalism
for modeling. The authors in [5] proposed the AO solutions in
terms of Aspect] for separating crosscutting concerns namely,
the simulation termination rules, restoring a simulation run,
and resource pooling. However, they lack to separate all cross-
cutting concerns, especially those which could be found in any
mature framework as steady state detection and graphical user
interface. The second is the component-based instrumentation
framework OSIF [6] that uses the AOP paradigm to separate its
DES models from the experimental frame to enable software
reuse and evolution. The AOP has been used in the develop-
ment of the Open Simulation Architecture (OSA) [7] for the
same purpose as in OSIF. It allows better reuse of components
in both sides, reuse of a given model with various scenarios or
reuse of a given scenario with various models in order to save
time, money and human effort. A simple use case of network
security study has been used to illustrate the benefits of the
previous technique.

For multi-agent simulation, the system discussed in [8]
consists of two types of agents, a set for describing the
simulation model and another for observational mechanisms.
This collection of independent agents is interacting by discrete
events where every agent has a schedule that generates its
plan of activities. The system is executed on a framework
that uses the OO paradigm to define its agent models and
web technology to interact with the modelling and simulation
environment. The kernel of this framework is the programming
language MAML (Multi-Agent Modelling Language) which
has the capacity of the dissociation between the model and
the observational mechanisms, thanks to the aspect oriented
paradigm, from the design phases until the implementation
phase thereby increasing the maintainability of the system and
decrease its complexity. MAML has the xmc compiler which
generates Objective-C code from the MAML source code after
weaving the model object and the observation object. Despite
the richness of MAML syntax to support AOP, it remains in
its infancy when compared to Aspect].

12

Volume 1, 2019

In [9], the AO paradigm has been used to develop a multi-
agent system dedicated to simulate physical phenomena. The
MAFES system (Multi Agent Finite Environment System)
consists of an environment in the form of a node matrix and
a set of agents operating on these nodes. Aspects are used
to assign tasks to agents by adding appropriate functionality
to perform their task. In addition, these aspects weave the
appropriate resources and attributes to the environments nodes.
MAFES contains three other types of aspects for control, visu-
alization and storing simulation results. The implementation of
MAEFES is based on Aspect] and makes the system generic to
build versions for specific requirements (it is enough to weave
appropriate aspects). The authors experiment their system with
two phenomena. The first is heat exchange and a motion
phenomenon. The second is heat exchange and crystallization.

AOQP has been used for developing large simulation software
systems. These simulation systems are based on the separation
of concerns principle which increases their understandability
and maintainability and keeping its performance and clarity.
Among the proposed systems, we mention the disaster pre-
vention simulation system and the conduit simulator.

In [10] a new aspect-oriented approach for disaster pre-
vention simulation system (ABR) has been addressed. The
proposed approach separates the core functionality of the
simulation application from simulation crosscutting concerns
thanks to horizontal decomposition (HD) method which relies
on the AOP paradigm. The approach is implemented on
AoSiF (Aspect-oriented Simulation Framework) which is an
extension of distributed simulation framework (DiSiF) [11].
It uses the resource paradigm, actor based workflow mod-
elling, web services and Grid computing as implementation
technology and Java Annotations for declarative programming
in addition to Aspect] for the aspect-oriented implementation.
To demonstrate the applicability of the approach, two cross-
cutting concerns, namely distribution and tool integration are
implemented. Unfortunately, concerns are not specific to the
simulation modelling domain.

In [12] the authors implemented a conduit simulator system
which uses the AOP paradigm at the code level. Considered
crosscutting concerns as synchronization and order of execu-
tion, user interface (UIl) and logging, are written in different
aspect-specific languages (ASLs). The simulator has a mod-
ular aspect-weaver mechanism that offers the generality of a
general-purpose aspect language without losing the ability and
advantages of defining aspects in aspect-specific languages.
Furthermore, the conduit simulator crosscutting concerns are
not specific to the simulation modelling domain.

The exploitation of the AOP is not limited for discrete event
simulation. It affects many informatics domains as security and
software engineering approaches, we could mention:

In [13], an Automated data Collection approach for Usabil-
ity Evaluation in Early Stages of Application Development is
discussed. This approach is based on AOP and uses aspects
for collecting usability data in an adaptive and self-contained
fashion without having to instrument the target application or
its platform.

ISSN: 2766-9823

In [14], authors investigate the general aspect-oriented soft-
ware security development process, and propose an Eclipse-
based software security aspect development tool. This tool
provides reusability of software security aspects, and improves
security developer’s productivity.

III. OBJECT ORIENTED JAPROSIM DESIGN

A large research effort has been devoted to enrich main-
stream languages as C, C++, Java, Python with simulation
capabilities. The most common choice is to provide the
additional simulation functionality through a software library.
Independently of the architectural level at which they are
provided (application, library, language), the simulation ca-
pabilities embody a world view for their users. The world
view is essentially the set of concepts that constitute the
basic elements available to the modeler to compose and to
specify the simulation. The diverse world views are function-
ally equivalent, but differ in expressive power and in terms
of computational efficiency. The idea of building process-
oriented simulations using a general purpose object-oriented
programming language is not original and several tools were
developed in this way. For example, both of CSIM++ and
YANSL are based on C++, while PsimJ , JSIM are based
on Java. Discrete Event Simulation tools written in Java, like
PsimJ and SSJ are well designed and freeware libraries but
not open source [15].

JAPROSIM is an object-oriented simulation library, free
and open source that adopts the popular process- interaction
worldview. The library is implemented in Java programming
language allowing deep access to its powerful features. The
library is divided into packages to organize the collection of
classes into important functional areas. The library is divided
into eight main packages:

kernel: a set of classes dealing with active entities,
scheduler, queues and resources.

random: contains classes for uniform random stream
generation.

random.distributions: contains a rich set of classes for
useful probability distributions.

statistics: contains classes representing intelligent statis-
tical variables.

gui: a set of graphical user interface classes to use
for project parameterization, trace and simulation results
presentation.

Utilities: a set of useful classes for express model devel-
opment.

statistics.steady: useful to detect the steady state.
animation: a set of classes used to provide a real time
animation of simulation models.

The kernel package is at the heart of JAPROSIM. It is made up
of classes dealing with active entities, scheduler, queues and
resources as shown in figure 1. The coroutine like mechanism
is implemented through SimProcess, Scheduler, StaticEntity
and Entity classes. A coroutine program is a collection of
coroutines which run in quasi-parallel with one another. Each
coroutine is an object with its own execution state, so that

13

Volume 1, 2019

SimProcess Entity Queue
~eventList: LinkedList<StaticEntty> #BarListeners: LinkedList<StatObserver> +FIFO: int
~passiveList: LinkedL_ i tyResk YSerie: XYSeries | | +LFO: nt
SFFO: int +globaEnttyResidenceTimeXYSerie1: XYSeries| [+RANDOM: int
+LFO: int +globaEnttyNumberXY Serie: XY Series +PRL: int
+RANDOM: int +globaEntityNumberXYSerie1: XYSeries +PS: int
+PRE int ~tBar: DoubleStatvar +RR: int
5 int ~nbrCreatedEntiies: int ~queuesList: Vector<Queue>
+RR: int ~nbSys: TimelntStatVar -nbQs: int
st Vector L nbWat: TimelniStatvar {#eveniListeners: LinkedList<EventObservers.
“timelntStatvarList: Vector<TimelntStatvar> | | +usedQueues: HashMap<Siring Double> +qwatingTime: DoubleStatvar
+time: double +arrivalTime: double +disciplines: int]
~startingTime: double +enthame: String +prq: PriorityQueue<Entty>
~expDuration: double +pri int +capacty. int
~nbReplications: double +entityResidenceTimeXY Serie: XY Series -bound: boolean
#processhumber nt +Entity() .'0"90:_ it
#currentReplcation: int +un() name: String
-mainLock Object +onqueue) ¢lengt.h: TimelntStatVar
+sched: Scheduler +dequeus) +wattingTime: DoubleStatVar
-version: String +reset() +Queue()
+traceWind: TraceFrame +addStatChangeListener() +Queve()
+statWind: P rame hangeListener() +Queve()
+graphPanel JTabbedPane +sefTBar() +Queue()
+resPanel: JTabbedPane +insert()
+globalPanel: JTabbedPane StaticEntity +verifylnsert()
:::::’:::;"’:::'J‘;'m ~enttiesLit HashMap<Class<? Veclor<?>> ::z::g
+resXYPanet JPanel PO sgetLength()
+globaResidenceTimeXYPanet JPanel #eventListeners: LinkedList<EventObserver> sgelCapaciy()
+globalEnttyNumberXYPanet JPanel +StaticEntity() +getWBar()
+dataset!: XYDataset +un() +getGWBar()
+dataset2: XYDataset +beginAfter() +isBound()
+graphWind: GraphicFrame +hold() +resel()
~fois: int +passivate() +resetSteady()
+fw: FileWriter +release() +getQueD()
+resourcesXMLFile: File +seize() +addEventListener()
#ResourcesWrier: PrintWriter +body() +removeeventListener()
#TraceXHLFie: Fie +addEveniListener()
#TraceWriter: PrintWriter +removeEventListener() Scheduler
~createdEntties: int -rvg: RandomStream
~sa: SimAnim Rswcs -simState: int
~jsp: JScrolPane ~resourcesList: Vector<Resource> -steady: boolean
ite: String -AbRs: int +animation: boolean
~xAxisLabet: String #eventListeners: LinkedList<EventObserver> steadyDetected: bookean
~yAxisLabel: String -resiD: int -sa: SimApplet
#lock Object ~capacky: int -mf: MainFrame
“SimProcess() ourceXY Serie: XYSeries -SteadyTechnique: String
LsorocessResumel ouvahb?y: TimelntStatVar _ L.instance: Scheduler N
#mainResume() ;""A‘{'; double #steadyTech: SteadyStateTechnique
#dspose) e T -Scheduer)
+body) esourceOccupationXY Serie: XY Series “ntes)
#ick() +Resource() +getCurrentTime()
#schedule() +Resource())
~getStatistics() +Resource() +body)
+addTrace() +getCapacty() +run()
~formatString() +getAvailabiity() resetStat()
+getVersion() +seize() -resetSteady()
#setStartingTime() +release() +getSimState()
+getStartingTime() +reset() ssetSinState()
-getResourceStat() +resetSteady() +setSteadyTechnique()
|-getQueveStat() getResD() +getSteadyTechnique()
#setCurrentReplication() +addEventListener() ssetSteady()
#setExpDuration() +removeeventListener() jsSteadySet()
#getNbReplications() +getRv
#sethbRepications() EntityCompare .33;«:3
-serialVersionUID: long +isSteadyDetected()
+EnttyCompare() +setSteadyDetected()
+compare()

Fig. 1. The Kernel class diagram.

it may be suspended and resumed. JAPROSIM was putting a
great emphasis into following the semantic of SIMULA but the
design itself is not close to it. The advantage of this approach
is that design is simpler without explicit coroutine class
support and the semantics of facilities that are well-known
and thoroughly tested through many years use of SIMULA
are completely supported. Native support for multithreaded
execution is a fundamental aspect to the implementation of
a natural process-oriented modeling capability in Java. Every
active entity’s life cycle is executed in a single separate thread
[16].

ISSN: 2766-9823

Volume 1, 2019

1P visualiser 23 4@ »@EW‘ %W v o og
Visualiser - Aspect] Provider (fit to view)
- -
B — =
8: | Visualiser Menu 32 ﬂ
E
@ ¥ animation
ﬂ I ExceptionHandling
E I GraphicalUserInterface
ﬂ W simulationTrace
E I SingletonConcern
ﬂ W steadystateDetection
ﬂ v Synchronization
Kl
Fig. 2. The AO Japrosim aspects affect in crosscutting concerns separation.
IV. THE AO JAPROSIM VERSION B. Graphical Animation
))) The SimAnim class is part of the animation package used
The AO Japrosim is enhanced with the crosscut- (o provide a real time animation. It recuperates useful data by

ting.concerns package which consists of seven aspects imple-
mented to deal specific crosscutting concerns: SingletonCon-
cern, Animation, ExceptionHandling, GraphicalUserInterface,
SimulationTrace, SteadyStateDetection and Synchronization.
Every aspect gives a solution to separate one of the main
Japrosim crosscutting concerns which pollute the framework,
as shown in figure 2.

A. Singleton Concern

In classical OO, the Scheduler class uses the “Singleton”
pattern to prevent multiple instances and ensure that the event
list management is done exclusively by a unique thread.
Japrosim ensures that by declaring its constructor as private,
providing a public method namely, getlnstance() to return the
single existing instance, and saving the single existing instance
as static member variable. The SingletonConcern aspect is the
proposed solution which includes an around advice that applies
at the moment of the constructor call that has the similar
role of getlnstance() method without the need to declare the
singleton constructor as private. Furthermore, the Scheduler
instance is saved in a static member introduction variable
declared inside the aspect.

14

means of the “EventObserver” interface. Moreover, each of
the “Queue”, “Resource” and “StaticEntity” classes register
listeners of “EventObserver ” type to inform them in case of
event occurrence. This mechanism is ensured by the observer
pattern. The Animation aspect is proposed as a solution as
shown in figure 3 where a snipped code is given. It sepa-
rates these elements by providing the link between subject
and observer using inter-type declaration (ITD) in the form
of “EventObserver” interface declaration inside the aspect,
member introduction, and type-hierarchy modification which
are infected subjects and SimAnim class respectively.

C. Steady State detection

The output data collected during the warming-up period
of a simulation can be misleading and bias the estimated
response measure. Thus, the removal of initialization bias
is important for obtaining accurate performance estimators.
There are five categories of methods for steady state detec-
tion, graphical, heuristic, statistical, initialization bias tests,
and hybrid methods [17]. Japrosim classic version offers
two methods that are Conway and Crossing the Means by
means of factory and observer design patterns for steady state
detection. The observer elements are tangled in the Entity,

ISSN: 2766-9823

public static void Resource.addEventlListener(EventObserver listener) {
Resource,eventlisteners.add(listener);

public static boolean Resource.removeEventlListener(EventObserver listener) {
return Resource.eventlisteners.remove(listener);

public static void Queue.addEventListener(EventObserver listener) {
Queue.eventListeners.add(listener);

public static boolean Queue.removeEventlistener(EventObserver listener) {
return Queue.eventlListeners.remove(listener);

pointcut ResourcePointcut(Resource r, String s, int cap) :
execution (public Resource.new(String , int))
8& (this(r) && args(s,cap));
pointcut SEntityPl(StaticEntity se, Resource res, int units) :
(execution(public void StaticEntity.release(Resource,
int)) && this(se)) && args(res, units);
pointcut SEntityP2(StaticEntity se, Resource res, int units) :
(execution(public void StaticEntity.seize(Resource,
int)) 8& this(se)) && args(res, units);
pointcut spointcut(StaticEntity se) :
(call(protected void dispose()) && target(se))
&& withincode(public void run());
pointcut Epl(Queve q) : execution(public void Entity.enqueue(Queue))
& args(q);
execution(public void Entity.dequeue(Queue))
& args(q);
execution(public * Queue.*nsert(Entity))
& args(e);
pointcut Qp2(Entity e) : execution(public void remove(Entity))
8% args(e);
after(EventObserver sim) : (execution(public SimAnim.new())

8& this(sim)) {
StaticEntity.addEventListener(sim);
Resource.addEventListener(sim);

Queue.addEventListener(sim);

pointcut Ep2(Queue q) :

pointcut Qpl(Entity e) :

}

Fig. 3. Animation aspect snipped code.

SteadyStateTechnique, Conway and CrossingTheMean classes
as shown in figure 4 where highlighted elements contain the
necessary code to implement this instance of the observer
pattern. The SteadyStateDetection aspect is proposed to solve
the problem.

D. Synchronization of Simulation Processes

Japrosim implements the coroutine mechanism through
SimProcess, Scheduler, StaticEntity and Entity classes. A col-
lection of threads are run in quasi-parallel under the Scheduler
thread supervision. Each coroutine is an object with its own
execution state, so that it may be suspended and resumed. At
any instance of real time only one coroutine is active. The
method processResume(Entity e) is called by the scheduler to
reactivate a simulation process and mainResume() is called
by a simulation process to reactivate the scheduler. Each
simulation process has its own lock object. The scheduler
has the mainLock object. Locks are used in combination
with wait() and notify() to synchronize the implementation
threads. A thread which calls any of the previous methods
will block on its own lock after notifying the appropriate
one. At the end of its life cycle, a simulation process calls
automatically the dispose() method to reactivate the scheduler
without blocking itself. So the corresponding thread could be

15

Volume 1, 2019

<<lava Interface==

0 StatObserver
uoeb japrosim, statistics steady

<<Java Classs»
@ Emiy
uoeb. japrosim kemel
osg\ubaIEnt'gResidenceﬂmeXYSerie: X¥S...
Osg\ubaIEnt'gResidenceﬁmeXYSerie1‘ XY
osg\uhaIEnt'mgNumher)(YSerie: XYSeries

osg\uhaIEnt'gNumher)(YSerie1 XSeries
o¥tBar. DoubleStatvar

o nbrCreatedEntiies: int

& bSys: TimelntStatVar

S nbWait TmelntStatVar

© usedQueues: Hashiap<String Double>
o arrivallime: double

© entName; String

@ update(String,double, double, String) void

#Barl isteners

«<Java Class=»
(& SteadyStateTechnique
ueeb. japrosim.statistics. steady
4 {BarSS: DoubleStatVar
< minima: double

< maxima: double
© date: double
© value: double

o pricint < oldV: double
© entityResidenceTimeXYSerie: XYSeries d:steadystateTechnique()
Fenity) $reseigmid
@ run{):void
@ enqueue(Queue)void
@ dequeue(Queue)void <<Java Class>>
& reset(jvoid (9 CrossingTheMean <<lava Class>>
@ addStatChangeListener(StatObserver)v... Uoeb japrosim statistics. steady (3 Conway
esremuvestatChangeLmener[StatObserveu. o’ nbCross: int uoeb japrosim. statistics steady
@ sefTBar(double):void d:C.mssingTheMean(] d:Cunway(}
© update(Siring,double double, . ||| @ update(String,double,double,Stri. |
@ reset():void @ reset():void

Fig. 4. The Steady State detection based on the Observer pattern.

terminated [16]. Elements that ensure the coroutine mechanism
are the processResume(Entity e), mainResume() and dispose()
methods in addition to the mainLock and lock objects. These
elements are respectively separated in a single Synchronization
aspect that clears the design and increases understandability.

E. Keeping Simulation Track

To save simulation trace, Japrosim generates three files. One
is in text format (trace.txt) and the two others are conforming
to XML format (trace.xml and Resource.xml). Each event
executed during the simulation implies updating these files
which makes this concern crossing the Japrosim functional
modules. As an example, the public void remove(Entity)
method removes the specified entity from the queue then calls
the addTrace(String) method and the TraceWriter to save this
event in both trace.txt and trace.xml files as illustrated in figure
5. The SimulationTrace aspect provides the solution illustrated
by the after advice as shown in figure 6.

E. Graphical user interface (GUI)

The Japrosim gui package includes a set of classes (Trace-
Frame, PresentationFrame, MainFrame, and GraphicFrame)
to use for project parameterization, for instance number of
replications, experiment duration, trace and simulation results
presentation. Despite the benefits and flexibility provided by
the GUI concern, its crosscutting nature leads to code pol-
lution. It decreases the cohesion, specifically inside Japrosim
kernel classes. As an AOP solution, the GraphicalUserInterface
aspect is proposed.

ISSN: 2766-9823

public wvoid remove(Entity e) {
if (this.prq.remove(e)) {
this.waitingTime.update(SimProcess.time
- e.usedQueues.get(this.toString()).doubleValue());
Queue.gwaitingTime .update(SimProcess. time
- e.usedQueues.get(this.toString()).doubleValue());
Entity.nbigit.decrement();
length.decresent();
SimProcess.addTrace(” “+e.getName()+” leaves queue
+ this.namse + “\n");
SimProcess.TraceWriter.printin({“<Event "+~ Date = \™"
+SimProcess. times™\" Subject = \""+e.getName()
+"\" Identifier = \""se.getId()+"\" Action = \"~
+"leaves™+"\" Object = \""+this.name + ~\"/>7);
if (Scheduler.animation) {
int p = Integer.parselnt(e.getName().substring(
e.getlame().lastIndexOf(™ ") + 1));
ListIterator<EventObserver>it-eventlisteners.listiterator();
while (it.hasNext()) {
it.next().update(e.getClass().getSimpleName(), p,
this.getQuelD(), @, 2, SimProcess.time);

-

Fig. 5. The remove() method with the simulation track crosscutting concern
highlighted.

after(Queue q, Entity e) : (this(q)

&& get (public TimeIntStatVar length))

&& (cflowbelow(p22(e))

&& withincode(public veoid remove(Entity))) {

addTrace(" " + e.gethame() + " leaves queue " + q.name + "\n");

TraceWriter.println(“<Event * + " Date = \"" + SimProcess.time
+ "\" Subject = \"" + e.getName() + "\" Identifier = \""
+ e.getld() + "\" Action = \"" + "leaves” + "\" Object = \""
+ q.name + "\"/>7);

Fig. 6. The remove() advice inside the SimulationTrace aspect.

G. Simple Synchronization

Mutual exclusion synchronization restricts concurrent ac-
tivities in critical sections to protect them against data in-
consistency due to simultaneous access for writing. In Java,
the synchronization is implemented by using the synchronized
modifier at the method level or the synchronized(Object)
construct at the instruction or block level. In an object oriented
multithread programming, an object could be accessed by
many threads simultaneously. In consequence, data conflicts
could occur if applications are not prepared to deal with
concurrency [18]. Thus, OO Japrosim methods which have a
critical property are enhanced with the synchronized keyword
as the getlnstance() method in Scheduler class. This tends to
pollute the Japrosim functional code. In order to overcome this
problem, an around advice inside the synchronization aspect
is developed to ensure methods synchronization, as shown in
figure 7 by using a shared aspect lock.

H. Exception Handling

The initial solution is proposed in [19]. Currently, after sev-
eral significant improvements, the ExceptionHandling aspect
contains five pointcuts and five advices that deal all catch
blocks in Japrosim library as illustrated by the snipped code
in Figure 8.

16

Volume 1, 2019

Object around() :

(execution(protected static void SimProcess.schedule(StaticEntity))
|| execution(protected static StaticEntity SimProcess.pick()))
|| (((execution(* *.add*Listener(..))
|| execution(* *.remove*Listener(..)))
|| (call (public Scheduler.new())

&& !within(SingletonConcern)))) {

synchronized (this) {
return proceed();

¥

H
Fig. 7. The synchronization aspect snipped code for methods synchronization.

pointcut pointcutS(Exception e) : (handler(Exceptiont) 88 args(e))
8% (!(pointcutd(Exception))
&& !pointcut3(UnsupportedEncedingException))
8% (!(pointcut2(Exception))
&8 !(pointcutl(FileNotFoundException)));
before(FileNotFoundException faf) : pointcutl(fnf) {
System.err.println("Resources XML File couldn't be created”);
System.err.println(fnf);
System.exit(1);

before(Exception ex) : pointcut2(ex) {
System.err.println("Cannot install " + MainFrame.PREFERRED_LOOK_AND_FEEL
+ " on this platform:" + ex.getMessage());

before(UnsupportedEncedingException uee) : pointcut3(uee) {
System.err.println("utf-8 not recognized nor suported !");
System.err.println(uee);
System.exit(1);

before(Exception ie) : pointcutd(ie) {
System.err.println("Error closing file.");
ie.printStackTrace();

}

before(Exception e) : pointcutS(e) {
e.printStackTrace();

}

Fig. 8. The ExceptionHandling aspect snipped code.

V. CONCLUSION

In this paper, we have proposed the solutions for separating
Japrosim crosscutting concerns using the aspect oriented pro-
gramming paradigm, specifically Aspect] language. The AO
version grew out from the exploitation of the aspect oriented
programming paradigm in the simulation modeling field which
is considered as a promising research area that provides many
benefits in term of design quality improvement. In future work
we plan to:

o Compare the classic Japrosim version with the proposed
one in order to count the main improvements after the
aspect oriented paradigm implementation.

o Spread the use of the AOP at the earlier development
phase as modeling level using aspect oriented software
development (AOSD) techniques.

REFERENCES

[1] R. E. Shannon, Systems simulation the art and science, Prentice Hall,
Englewood Cliffs. 1975.

[2] A. Kumar, “Analyse and design of metrics for aspect oriented systems”.
Doctorate Thesis. School of Mathematics and Computer Application,
Thapar University, Patiala-147 004 (Punjab), India. 2010.

[3] R. Laddad, “Aspect] in action: enterprise AOP with Spring applications”.
Second Edition, Manning Publications, Greenwich, USA (2009).

ISSN: 2766-9823

[4] R. Hirschfeld, “Aspect-Oriented Programming with AspectS”, in: Lecture
Notes in Computer Science: Objects, Components, Architectures, Ser-
vices, and Applications for a NetworkedWorld: International Conference
NetObjectDays, NODe 2002, Erfurt, Germany.

[5]1 A. U. Aksu, F. Belet and B. Ozdemir, “Developing aspects for a dis-
crete event simulation system”. In: Proc. Third Turkish Aspect-Oriented
Software Development Workshop, pp. 84-93, Bilkent University, Ankara,
Turkey (2008).

[6] J. Ribault, O. Dalle, D. Conan and S. Leriche, “OSIF: A framework to
instrument, validate, and analyze simulations”. In: Proc. L. Felipe Perrone,
Giovanni Stea, Jason Liu, Adelinde Uhrmacher, Manuel Villn-Altamirano.
(eds.) 3rd International Conference on Simulation Tools and Techniques,
SIMUTools ’10, pp. 56-56, Malaga, Spain (2010).

[7] J. Ribault and O. Dalle, “Enabling advanced simulation scenarios with
new software engineering techniques”. In: 20th European Modeling and
Simulation Symposium (EMSS 2008), Briatico, Italy (2008).

[8] L. Gulyas and T. Kozsik, “The use of aspect-oriented programming in sci-
entific simulations”. In: Jaan Penjam, editor, Software Technology, Fenno-
Ugric Symposium (FUSST’99), pp. 17-28, Tallinn, Estonia (1999).

[9] S. Bieniasz, S. Ciszewski and B. SnieZyéki, “Multi-agent simulation
of physical phenomena by means of aspect programming”. In: Proc.
The 6th international conference on Computational Science. Vassil N.
Alexandrov (eds.) ICCS 2006. LNCS, vol. 3993, pp. 759-766, Springer-
Verlag, Heidelberg (2006).

[10] T. B. Ionescu, A. Piater, W. Scheuermann and E. Laurien, “An aspect-
oriented approach for the development of complex simulation software”.
Journal of Object Technology, Vol. 9, no. 1 (January 2010), pp. 161-181,
doi:10.5381/j0t.2010.9.1.a4. (2010).

[11] A. Piater, T. B. Tonescu and W. Scheuermann, “A distributed simulation
framework for mission critical systems in nuclear engineering and radio-
logical protection”. International Journal of Computers Communications
& Control, ISSN 1841-9836, vol. 3, no. 1, pp. 448-453. (2008).

[12] J. Brichau, K. Mens and K. D. Volder, “Building composable aspect-
specific languages with logic metaprogramming”. In: Proc. The 1st
ACM SIGPLAN/SIGSOFT conference on Generative Programming
and Component Engineering GPCE’02, Vol. 2487, pp. 110—127,
Springer—Verlag, London (2002).

[13] Y. Tao. “Automated Data Collection for Usability Evaluation in Early
Stages of Application Development”. Proceedings of the 7th WSEAS
Int. Conf. on APPLIED COMPUTER & APPLIED COMPUTATIONAL
SCIENCE (ACACOS ’08), pp. 532-540, Hangzhou, China, 2008.

[14] C. Wang, M. Huang. “AOSecBuilder: An Aspect-Oriented Security
Component Development Toolkit”. Proceedings of the 6th WSEAS In-
ternational Conference on Applied Informatics and Communications,pp.
470-473, Elounda, Greece, 2006.

[15] B. Belattar and A. Bourouis, “Ascertaining Important Features of the
JAPROSIM Simulation Library”, Proceedings of the 2013 EUROPMENT
International Conference on Systems, Control, Signal Processing and
Informatics, Rhodes Island, Greece, 2013.

[16] A. Bourouis and B. Belattar, “JAPROSIM: A Java Framework for
Discrete Event Simulation”. Journal of Object Technology, vol. 7, no.
1, pp. 103-119.(2008).

[17] K. Hoad, S. Robinson and R.Davies, “Automating Warm-Up length
estimation”, Proceedings of the 2008 Winter Simulation Conference ,
pp. 532-540, 2008.

[18] C. A. S. D. Cunha, “Reusable Aspect-Oriented Implementations of
Concurrency Patterns and Mechanisms”, MSc. Thesis. University of
Minho, Braga. 2006.

[19] M. Chibani, B. Belattar and A. Bourouis, “Toward an aspect-oriented
simulation”. International Journal of New Computer Architectures and
their Applications (IINCAA), Vol. 3(1), pp.1-10, 2013.

17

Volume 1, 2019

