

Abstract:

Multidimensional trie hashing (MTH) access method is

an extension of the trie hashing for dynamic multi-key

files (or databases). Its formulation consists in

maintaining in main memory (d) separate tries, every one

indexes an attribute. The data file represents an array of

dimension (d), in an orderly, linear way on the disk. The

correspondence between the physical addresses and

indexes resulting of the application of the tries is achieved

through the mapping function. In average, a record may

be found in one disk access, which places the method

among the most efficient known. Yet MTH has the double

disadvantage of a low occupancy of file buckets (40-50%)

and a greater memory space in relation to the file size

(tries in memory).

 We propose a refinement of MTH on two levels. First,

by using the compact representations of tries suggested in

[23], then by applying the phenomenon of delayed

splitting (partial expansion) as introduced in the first

methods of dynamic hashing and as used in [25]. The

analysis of performances of this new scheme, mainly by

simulation, shows on the one hand a high load factor (70-

80%) with an access time practically equal to one disk

access and on the other hand an increase in the file size

with a factor of two with the same space used by MTH.

Keywords : Data structure, BigData , hashing ,
Multidimensional data, data storage

1. Introduction

The first multidimensional access methods used the
inverted lists technique which associates a secondary index
to each attribute. It is clear that this type of methods is
limited to static low-volume files. This is mainly due to the
memory space consumed by the index tables. In order to
respond to the requirements of new applications that
require innovative solutions to storage and access
problems, several multidimensional access methods have
been developed. These methods are usually based on B-
trees [2] or dynamic hashing. [5,9,10,11,12,13]. On
dynamic hashing, we can take as example grid files [26]
and the MTH [19], where the main idea is that the records
are represented in multidimensional space . Furthermore,
the relationship between the points of this space and file
buckets, is achieved by a projection function that makes

each point corresponds to a specific bucket address on disk.
While other methods are considered such as interpolation
hashing [24] or the EXCEL method [22] by a unique
search key, consisting of the combination of all the
attributes. Among the multidimensional access methods
based on the B-trees structure we can cite K-D-tree [1], K-
D-B-trees [20], multidimensional B-trees MBT [27, 28], R-
trees [6], R+tree [21], HB-tree [4, 15].

 In this paper, we suggest a new multidimensional access
scheme called Multidimensional Compact Trie Hashing,
with partial Expansions (MCTHE), which certainly,
represents an improved version of multidimensional trie
hashing.

The paper is organized as follows: we begin with
recalling the multidimensional concepts in section 2.
Section 3 recalls the principle of trie hashing, then the one
of multidimensional trie hashing, the basis of our work. In
section 4, we introduce the new version of MTH, with the
refinements mentioned beforehand. We will develop all the
related algorithms after introducing the compact
representation and recalling the principle of partial
expansion. Section 5 is devoted to the study of the
performances of the proposed scheme, mainly by
simulation. Section 6 compares MCTHE with MTH at all
levels. Finally, Section 7 contains conclusion based on the
results of our research.

2. Concepts of multidimensional

The new applications such as those proposed for
meteorological, astronomical and design database for CAD
and VLSI systems, process more and more complex data. It
often happens that such data processing is based on several
attributes (multikey queries). The new access methods are
responsible for such kinds of data allowing thus a
multidimensional access to data in order to facilitate the
insertion, deletion and different query operations.

Possible strategies for the developing of the
multidimensional access are [3]:
 The “use of multiple (k) single-attribute”: It consists

in using for each key attribute a data structure (B-tree
or hashing) independently of other attributes
(ABMD[27,28],MDM[19])

 The “mapping multiple attributes to one”: It consists
in projecting the d-dimensional space formed by the
attributes on one-dimensional space. Interpolation
hashing [24], EXCEL [22],Z-ordonning [16].

 Aridj Mohamed
University Hassiba benbouli Chlef Algeria

Multidimensional Data Indexing in BIG DATA

ISSN: 2766-9823 Volume 2, 2020

12

 2

 The “use of explicitly multi-attribute indexes”: The
third approach consists in developing methods
specially for multidimensional data such as the
K-D-B-trees[20], R-trees [6], R+tree [21], HB-tree
[4,15], grid files[26].

Let us recall the following definitions corresponding to

requests on multidimensional files:
 an exact match query :determines all the keys which

fulfill the conditions
 (A1=K1) and (A2=K2) and.....and (An=Kn) where Ki

is a value of attribute Ai and n is the dimension.
 a partial match query :is one which specifies values

for only some of the indexed attributes.
 a region query :is one in which a lower and upper

bound is specified for each one of the attributes.
(L1A1U1) and (LA2U2) ... and (LnAnUn)

3. Multidimensional Trie Hashing (MTH)

3.1 Trie hashing (TH)[13]
 For trie hashing, the file is a set of records identified

by primary keys. A key is a sequence of digits of a given
alphabet. The records are stored in the buckets on the disk.
Each bucket is referred to by a unique address and holds a
fixed or variable number of records.

 The file is addressed through dynamic hashing function
that generates a particular binary tree called binary trie or
Litwin's tree. The trie consists of two kinds of nodes:

1. The internal nodes are represented by couples (d,i),
where d is a digit of a given alphabet and i the position of
this digit in the searched key.

2. The external nodes or leaves represent the addresses of
file buckets containing the data file.

In the original paper of Litwin[13], trie hashing is
represented in its standard form where all the links are
explicit. Therefore, each internal node consists of 4 fields.
UP: Upper (Right) pointer, LP: Lower (left) Pointer, DV:
digit value and DN: digit number. In trie hashing, searching
is made by the traversal of the trie down to leaves, which
contain the record addresses. At most, one access disk is
necessary to have the record.[13,14]] Record insertion may
involve a file extension while record deleting involves a
file contraction. The load factor is about 70 % for random
insertions and about 60% - 70% for sorted insertions.

3.2 Multidimensional trie hashing (MTH) [19]
MTH [19] is an extension of trie hashing for the

multidimensional access. Its formulation consists in
maintaining in main memory d separates tries (Tj) j: 1...d,
indexing the various values of the d key attributes of data
file respectively (fig.1). Conceptually, the buckets of the
data file are represented in d-dimensional space where the
(d) axes are defined by the d attributes of the data file. So, a
space point with coordinates <I1, I2 ...Id> represents the
bucket returned by the mapping function applied to d-tuple
<I1,I2,.....Id>. The mapping function uses the technique of
extensible arrays [17]. It may be implemented by using (d)
two-dimensional vectors, or a single three-dimensional
array, extensible in only one direction and called index

array. These are useful for storing the addresses of each
block beginning of added buckets, and the multiplicity
factors allowing computing the offsets to add to the base
address in order to locate a multidimensional array item.

More formally, the d index arrays are of the form :

Bj[0..Uj,1..d], with Uj : maximal Index of the trie Tj. or
the equivalent index array IXA : [0..X,1..d,1..d], where
X=max{uj} j...d. the mapping function is given by the
following algorithm :

Algorithm f(j1,j2, jd) :

1. Choose t=m such as Bm[jm,m]=max{Br[jr,r]} r=1..d

;

2. adr=Bt[jt,t]+ ? Bt[jt,r]*jr with r =1 .. d et r<>t ;

3. Return (adr)

The insertion mechanism is as follows: At the beginning,

an exact match query is made to find the bucket that must
contain the record to be inserted. Two cases are possible.
The bucket is not full and then we simply add the record. A
splitting operation is necessary involving then an extension
of the multidimensional array (file).

An exact match query is achieved through applying to
each value Vi to the trie (Ti) associated to attribute Ai. We
obtain then a d tuples <I1,I2,.....Id> on which we apply a
mapping function to retrieve the bucket address which
must contain the records verifying the query condition

A Partial match query of the form (Ai1=V1) and
(Ai2=V2)Aiq=Vq) with 1q<d.

 We apply on each specified attribute Aij in the query by
its value Vj the corresponding trie Tij. We obtain then a d-
tuples of the form <*,...I1,....,*,....Id,...,*> where (*)
denotes the values of indexes of non specified attributes in
the query. The potential bucket addresses to contain the
records satisfying the query are obtained by applying the
mapping function to the d_tuples <*,...I1,....,*,....Id,...,*>
where the (*) are replaced by all possible values of the

 Trie1 . Trie d

Fig 1 Principle of MTH

0 2

1

0 4

3

1 2

Mapping Function

bucket
1

Cbuck
et 2

Bucket
3

bucket n
.
 .

Data
file

Adresse

ISSN: 2766-9823 Volume 2, 2020

13

 3

corresponding attribute (These values can be retrieved by
traversing the binary trie).

A Region query consists in sweeping all the attributes Aj
between the specified intervals in the query.

The analyses of performance made on MTH in [7, 18,19]
have shown that the bucket load factor is about 40 % or
less for random insertion and about 20 % for sorted
insertions. This is the major inconvenient of MTH. On the
other hand, the access cost of MTM places the method
among the fastest ones known for the multidimensional
access. Indeed, searching a record (exact match query) is
accomplished in one disk access in average, while inserting
is made in two-disk access in average.

4. The proposed scheme: MCTHE.
MCTHE -which we suggest- is a variant of MTH, where

the tries are stored in a special form on the one hand and
the splitting is processed by the partial expansion principle
on the other hand. (fig.2). The principle of MCTHE is
similar to the one of MTH, except for the two following
reasons: Firstly the trie are stored in memory in a compact
form, secondly, we delay the bucket splitting in order to
improve the load factor of the file. So, we recall below, the
PP-LR representation suggested in [23] with the
corresponding algorithms, then the partial expansion
technique.

4.1 PP-LR representation [23]
 Amongst the characteristics that constitutes the

originality of MCTHE is that the tries are stored in main
memory in a compact form where the links are implicit.

The basic principle of this kind of representation consists in
placing the internal nodes in a predefined order. Thus, we
have no need of pointers. The representation that we have
used in MCTHE is the one called the PP-LR (Path by Path,
Then Left to Right). For the interested reader, other
representations are presented in [23].

In this representation, the trie is a sequence of external
and internal nodes. An internal node is a digit; an external
node is a pointer to a bucket. The internal nodes are stored
by paths. We first represent the internal nodes of the most
left path, from top to bottom. Then those of the path
immediately to the right in the same order, and so forth.
The external nodes follow the internal ones associated with
a path. As we represent the internal nodes from top to
bottom in a path, their level is shown implicitly in the path.
So, in the path b0b1....bn, i is the level of digit b. Then the
digits (or internal nodes) are such that b0 < b1...< bn.
Usually, there are common nodes to many paths. In this
way, they are not duplicated.

As described previously, at each new collision, we make
the following operations: Let m be the bucket undergoing
the split, M the next bucket to allocate, K and I correspond
to the usual parameters. We first search the path of the trie
containing the first I digits. Let c'0c'1...c'i be this path.
Then, we insert the sequence c'i+1 c'i+2....c'k such as c'i+1
would be a son of c'i, c'i+2 a son of c'i+1, and so forth. To
respect the order of nodes at each level, the son must be
inserted at its appropriate position among his brothers.
Then, we replace the old bucket m by M. Finally, we
generate (K-I-1) nil nodes. On the average, an internal node
and an external one are created by collision, as shown
earlier.

Key search is performed as follows: we start by the most
left path. Then we go over all the internal nodes, i.e., until
an external node is encountered. The maximal key of this
bucket is thus d1d2...dn::..: where d1, d2, ...dn are the
nodes of the path. Either the searched key C is less or equal
to the maximal key and the concerned bucket is found, or
the encountered bucket is not the right one. In the latter
case, we take the following external node and the maximal
key becomes d1d2...dn-1::..:. Then, we repeat the same
steps. If there are no external nodes and the relevant bucket
is not found, we go to the path immediately to the right,
and so forth. The traversal is stopped when the bucket is
found.

Sequential search is easily performed. It consist in
reading the pointers respectively in the linear
representation.

The PP-LR representations are about twice as compact.
The same buffer in core holds then files almost twice as
large. However, the algorithms are more complex and
need more processing time.

4.2 Partial expansion principle (PE)
In the basic access methods (B-tree, hashing), the

overloading bucket is immediately split in two buckets
implying a local reorganization. This may involve a
substantial deterioration of the load factor. In order to
avoid this, several proposals have been made. We can cite
for example, virtual hashing [11,12] in which a splitting is

J1

 2

 1

 0

1
4

1
3

1
2

1
1

1
0

0
9

 0 1 2

3 4 5

 6 7 8 1 6

1 3

1 0

 2

 1

 1

 1

 0

 1

 12

 1

 9

 1

 0 1 2 3 4 j2

 0 2 1

 T1 : trie relative to
axes j1

 0 4 3

 T2 : trie relative to
axes j2

 1 2

 B1

Index arrays

 B2

 Fig 2: The MCTHE Principle

In this example, the data file is composed by 15 buckets, which are
clustered in 15 segments. The number of partial expansions r=3.
The keys dimension d=2.
 The address computation of an element F[j1,j2] (example F[1,3])
is achieved as follows:
1. Find a segment that may contain the bucket’s record. Its base

address is given by: Max (B1 [j1,1],B2[j2,2]).
2. Compute the exact address of the elements. For our example

f(1,3)=B2[3,2]+B2[3,1]*j1=9+1*1=10

ISSN: 2766-9823 Volume 2, 2020

14

 4

made in case the load factor attains a predefined threshold
(a) This allows to control the load factor of the file and
then to keep a good loading [11]. In B-trees, we can cite
The B*-trees proposed by Knuth [8] where a bucket is split
only when the brother buckets are full. In this situation,
there is a splitting of two buckets into three ones. This
warrants a minimal load factor of 66% and in average, it is
about 81% [8]. These proposals have been generalized by
the end of 1980’s and have introduced a new concept
called: partial expansion (PE). PE consists in gradually
increasing the size of the overloading bucket instead of
splitting it immediately. The splitting is made when the
maximum size is reached. Each expansion is called a
partial expansion. The process, which allows a bucket to
grow from its minimal size until its splitting (maximal
size), is called a full expansion. We call a growth sequence
of a bucket the sequence s0,s1,... sr-1 of r (r :number of
steps or expansions) of different bucket sizes with
s0<s1<... <sr-1. A growth sequence is valid if 2s0>sr-1.in
practice, we choose the sequence: rb,(r+1)b,.... (2r-1)b, r
being the number of expansions and b the bucket size.

An analysis of performances on B+-trees with the partial
expansion (be) [25] has shown that:

- With 2 partial expansions we have a load factor of
81%, improving thus of 10 % the one of B+-trees. The cost
of the insertion is practically the same for the B+-trees and
BE-trees.

- The BE-trees with 2 partial expansions performs
practically the same load factor than the one of B*-trees [8]
but with an access time significantly lower down.

4.3 Algorithm of MCTHE
Insertion
When inserting a new key K=(k1,k2..kj...Kd), we search

first the bucket C which must contain K. We have two
cases Case 1: bucket C is not full; the record is inserted in
C. Case 2: bucket C is full. Let tc=ib (i :1..2r-1), the
size of bucket C. We have two situations:

1. i<2r-1 : we carry out a partial expansion as follows:
the bucket size is increased by one unit, i.e. it passes from
ib to (i+1)b, the record is inserted

2. i=2r-1 : the expansion is full, bucket C is split
implying an extension of the file as follows :

We choose an axis j (cyclically by example), on which
the multidimensional array (the file) extends. The leave
node Ij, the result of the application of the attribute value kj
on trie Tj, is split in two nodes Ij et mj. Then, we must
rehash the keys of all the buckets that have Ij as value to jth
coordinate (this group of buckets forms the segment Ij) in
order to know the buckets which will stay in the segment
(Ij) and the ones which will be reloaded in the new segment
(mj). If during the rehashing of a key, we reach on a nil
node (newly generated'), this will be replaced by the next
free index in the axis J(mj+1 ,...) and a new segment is
added at the end of the file.

Searching
The exact match query is very simple. For each value vj,

we apply trie Tj (hashing function) to obtain the index ij. If
one of the indexes is NIL, the searching algorithm is
stopped with failure. Otherwise, the bucket, which could

contain the record, is given through the application of the
projection mapping on the d-tuples of indexes.

In order to respond to a partial match query, we proceed
as follows:

1. We apply on each specified value Vj(j=1..q) the
corresponding trie Tj to obtain a d-tuples of the form
<*,...,i1,*...iq,..*> (1), where (*) denotes an index related to
a non-specified attribute in the query.

2. We compute the addresses of buckets that are likely to
contain the searched records by applying the projection
function on the d-tuples (1), where (*) is replaced by the
values, results of traversals of tries associated to the
unknown attributes.

In a region query we specify for each key attribute kj a
whole interval outline by two values: Infj and Supj. In
order to respond to this query we proceed as follows:

1. To each attribute kj, we apply the corresponding trie
Tj (mapping function) on the two values

Infj and Supj.
2. Sweep each attribute kj between Infj and Supj.
Notice here that the traversal of tries is very simple

because the nodes are stored in inorder.
Deletion
Deleting a record with key K consists in retrieving first

the bucket, which could contain it by the search algorithm,
then delete it from this bucket, if it is present. This
operation can involve a deterioration of load factor and the
creation of holes. In order to avoid these two problems we
can proceed in some situations to merging two blocs of
bucket into one. (File contraction)

5. Performances
The study of performance on the proposed scheme

mainly concerns the load factor, the access cost of
insertion, deletion and query operations. It is based mainly
on the simulation. So, several parameters are considered:
bucket capacity (b), the number of partial expansions (R),
the dimension (d) etc. We have observed the behavior of
the method through random insertions.

5.1 Load Factor
It is about observing the changes in the behavior of the

load factor in relation to the maximal number of keys of a
bucket (b), the dimension of keys (d) and the number of
partial expansions, let r. The test of the figure (fig 3) is
performed by the insertion of 400,000 records in a file with
the following parameters maximal size of a bucket b=75;
number of partial expansion r= 3; the dimension of keys is
d=2.

The main results obtained are:

HDMCE b=75,r=3,d=2

0

0,2

0,4

0,6

0,8

1

5
0
0

2
1
0
0
0

4
1
5
0
0

6
2
0
0
0

8
2
5
0
0

1
0
3
0
0

1
2
3
5
0

1
4
4
0
0

1
6
4
5
0

1
8
5
0
0

2
0
5
5
0

2
2
6
0
0

2
4
6
5
0

2
6
7
0
0

2
8
7
5
0

3
0
8
0
0

3
2
8
5
0

3
4
9
0
0

3
6
9
5
0

3
9
0
0
0

number of insertions

lo
ad

 fa
ct

or

Fig 3: Variations of the load factor

ISSN: 2766-9823 Volume 2, 2020

15

 5

1. The application of the partial expansion principle
broadly involves the load factor. It easily reaches 70 %

2. The bucket size (b) does not have a great influence on
the behavior of the load factor.

3. The load factor for MCTHE is less sensitive when the
dimension increases.

4. For the sorted insertions the load factor of the file data
is weaker compared to random insertions.

5.2 Operations
Insertion
The tests we have carried out allow us to establish the

following results:
1. The access cost of an insertion operation is known in

advance. It is practically stable and about 2 when the
partial expansions principle is not applied, otherwise it is
between 3 and 4.

2. The access cost does not depend on the number of
insertions.

3. The application of the partial expansion principle does
not have a great impact on the access cost of insertions.

 Searching
The access cost of an exact match query (Fig.5-A) is the

number of disk accesses necessary to find one or several
records satisfying a condition. It is practically equal to 1
if the we do not apply the partial expansion principle. It is
otherwise near of (r/2) (r being the number of partial
expansion applied. Note finally that this cost is influenced
neither by the dimension d nor by the number of record
present in the file.

 Fig 5.A: Variations of the access cost of an exact

match query

The cost in access number of a partial match query

(Fig.5-B) in which we specify q attribute values on the d
indexes is in average r/2 access to obtain the first bucket
verifying the query. The other buckets are obtained
between 1 and r disk accesses.

 Fig 5.B: Variations of the access cost of partial match
query

The access cost of query (Fig.5-C) is accordingly related

to the number of buckets verifying the query. It is between
1 and r disk access for each bucket visited.

 Fig 5.C: Variations of the access cost of a region
query

Deletion
A deletion may cost between 2 and 3 disk accesses when

the merge process of blocks is not applied. Otherwise, it
depends on the number of buckets contained in the merged
blocks. The access cost is high enough compared to one of
the insertion operation (Fig 5-D)

 Fig 5.D: Variations of the access suppression

6. Comparison with MTH
In this section, we compare the performances of MCTHE

with those of MTH [19]. We make this essentially by
simulation.

Load factor
It is certain that the application of the partial expansion

principle involves the performances of the load factor. [25].
In order to verify this, we have inserted 80 000 records in a
file with bucket size equal to b=75 records by using MTH,
then MCTHE for the following various values of

Fig 4: Variations of The access cost of an insertion

MCTHE b=75,r=3,d=2

2,8

3

3,2

5
,E

+
0
2

2
,E

+
0
4

4
,E

+
0
4

6
,E

+
0
4

8
,E

+
0
4

1
,E

+
0
5

1
,E

+
0
5

1
,E

+
0
5

2
,E

+
0
5

2
,E

+
0
5

2
,E

+
0
5

2
,E

+
0
5

2
,E

+
0
5

3
,E

+
0
5

3
,E

+
0
5

3
,E

+
0
5

3
,E

+
0
5

3
,E

+
0
5

4
,E

+
0
5

4
,E

+
0
5

number of articles

ac
ce

s
co

st

0

0,5

1

1,5

2

5
,E

+
0

1

6
,E

+
0

3

1
,E

+
0

4

2
,E

+
0

4

2
,E

+
0

4

3
,E

+
0

4

3
,E

+
0

4

4
,E

+
0

4

4
,E

+
0

4

5
,E

+
0

4

6
,E

+
0

4

6
,E

+
0

4

7
,E

+
0

4

7
,E

+
0

4

8
,E

+
0

4

0

5

10

15

20

25

1
,E

+
0

3

4
,E

+
0

3

7
,E

+
0

3

1
,E

+
0

4

1
,E

+
0

4

2
,E

+
0

4

2
,E

+
0

4

2
,E

+
0

4

3
,E

+
0

4

3
,E

+
0

4

3
,E

+
0

4

3
,E

+
0

4

4
,E

+
0

4

4
,E

+
0

4

4
,E

+
0

4

5
,E

+
0

4

5
,E

+
0

4

5
,E

+
0

4

6
,E

+
0

4

6
,E

+
0

4

6
,E

+
0

4

6
,E

+
0

4

7
,E

+
0

4

7
,E

+
0

4

7
,E

+
0

4

8
,E

+
0

4

8
,E

+
0

4

0

5

10

15

5,
E+02

6,
E+03

1,
E+04

2,
E+04

2,
E+04

3,
E+04

3,
E+04

4,
E+04

4,
E+04

5,
E+04

6,
E+04

6,
E+04

7,
E+04

7,
E+04

8,
E+04

0
10
20
30
40

1,
E

+0
3

7,
E

+0
3

1,
E

+0
4

2,
E

+0
4

3,
E

+0
4

3,
E

+0
4

4,
E

+0
4

4,
E

+0
4

5,
E

+0
4

6,
E

+0
4

6,
E

+0
4

7,
E

+0
4

7,
E

+0
4

8,
E

+0
4

ISSN: 2766-9823 Volume 2, 2020

16

 6

r=1,r=2,r=3. The following figure summarizes this
experience.(Fig 6)

Notice also that:
1. the performances in load factor for MCTHE with r=1

are practically equal to those of MTH 40 % for both
methods. This is due to the fact that both methods use the
same technique to solve the collisions

2. the application of the partial expansion principle
broadly involves the performances in load factor.
Moreover, we can reach 70 % while it is under 38% for
MTH.

Insertion
For MTH an insertion may cost 2 disk accesses if this

does not involve a splitting. Otherwise, the larger the size
of the blocks is; the more the access cost increases. The
tests we have carried out show that the access cost of an
insertion is in average equal to 2. (See Fig 7)

For MCTHE, the insertion cost is equal to 2 disk

accesses if no expansion (partial or full) is made. It is of 3
disk accesses when a partial expansion is accomplished,
while it matches the added block size in the case of full
expansion The simulation tests carried out show that the
number of disk access needed for an insertion operation is
close to 3 in average (Fig 7). Notice that both MTH and
MCTHE offer promising access performances for the
insertion operation

Searching

 One of the advantages of hashing access methods is that

it offers very good access performances for the search
operations much better than any other kind of methods.

Notes:
. for an exact match query : in average less than one disk

access is necessary for a record search in a MTH file or
MCTHE file without expansion , however, for MCTHE
the average access cost of search operation is close to r/2
(r being the number of partial expansion applied,
generally r<4)

-partial and region query: the simulation tests show that
the two methods (MTH, MCTHE) offer practically the
same access performances.

Memory space
In MTH, tries are implemented by using the standard

representation where each trie is a list of internal nodes
(Fig 1.d). At each collision, one of the (d) tries is extended
by one internal node in average. We may use 6 bytes to
represent an internal node (2 bytes for UP, 2 bytes for LP,
1 for DV and 1 for DN). If M denotes the number of
extensions made on an axis Ai and F the number of internal
NIL in trie Ti then the size TAi of trie Ti is given by : TAi
=6(M+F).

Thus for the d tries we have

Size of occupied memory =).(6.TAi
1

FMd
d

i




In MCTHE, we have used the PP-LR representation PP-
LR to implement the tries. In this representation, a trie is a
sequence of internal and external nodes. An internal node
takes up 1 byte while an external one two bytes. At each
collision in average, an internal node and an external one
are added to the trie. With the same suppositions, the size
TAi of a trie Ti is TAi =3(M+F). For the D tries we have

 Size of occupied memory =).(3.
1
TAi FMd

d

i




We may notice for MCTHE the increase in the file size
by a 2-factor with the same memory space used in MTH.

Time of tries traversal
 MTH: With the supposition that the tries are balanced,

which is the case when the records insertion are random,
searching is in O (Log2 N), (N being the number of nodes
in the trie). Thus, the traversal of d tries is in d(O(Log2 N)

MCTHE: the traversal of trie in PP-LR representation is
made path by path. Therefore, to reach an external node,
we visit in average N/2 nodes ((N being the number of
nodes in the trie).). Th search algorithm is then in O(N),
and the traversal of the d tries is in d(O(N)).

To sum up, we can see that the time consumed by the
traversal of the trie achieved by MTH is better than the one
achieved by MCTHE. This does not have much influence
because the tries are present in memory.

0
0,2
0,4
0,6
0,8

1

5
,E

+
0

1

3
,E

+
0

3

5
,E

+
0

3

8
,E

+
0

3

1
,E

+
0

4

2
,E

+
0

4

2
,E

+
0

4

3
,E

+
0

4

3
,E

+
0

4

4
,E

+
0

4

4
,E

+
0

4

5
,E

+
0

4

5
,E

+
0

4

6
,E

+
0

4

6
,E

+
0

4

7
,E

+
0

4

7
,E

+
0

4

8
,E

+
0

4

1: MTH/MCTHE r=1 2: MCTHE r=2
3: MCTHE r=3 4: MCTHE r=4

Fig 6: The load factor comparison (MTH / MCTHE)

 1 2 3 4

0

1

2

3

4

5
,E

+
0

1

4
,E

+
0

3

8
,E

+
0

3

1
,E

+
0

4

2
,E

+
0

4

2
,E

+
0

4

2
,E

+
0

4

3
,E

+
0

4

3
,E

+
0

4

3
,E

+
0

4

4
,E

+
0

4

4
,E

+
0

4

5
,E

+
0

4

5
,E

+
0

4

 MTH/MCTHE r=1 MCTHE r>1

Fig 7: comparison of the insertion cost. (MTH/MCTHE)

ISSN: 2766-9823 Volume 2, 2020

17

 7

8. Conclusion
MCTHE is a new scheme of file structures intended to

multidimensional dynamic files. It consists in keeping in
RAM d tries under their compact form and delaying the
buckets splitting by using the partial expansion principle.
The performance analyses of MCTHE show that:

1. The tries compact form allows doubling the file size

for the same memory space used by MTH.
2. The load factor is between 70-80 %, which is broadly

better than the one of MTH and even than the most
concurrent methods such as ABMD structure.

3. The insertion access cost varies between 3 and 4 disk
accesses.

4. The exact match query access cost varies between 0
and r accesses r being the number of partial expansions.

All this place the methods among the most efficient
known until now. Nevertheless, we think that we may
involve this new scheme by controlling the load factor as
the one proposed in [LRLW91], or through balancing tries
as madein [19], or yet by envisaging an extension to
distributed environment.

9. References
 [1] : J.L.benthty. « Multidimensional binary search trees

in database applications ».IEEE Trans on software
engineering SE5(4) :333-340, July 1979.

 [2] :R.Bayer, E. McCreigth. « Organization and
maintenance of large ordered indexes »

acta informatica 1(3) :173-189,1972
[3] Georgios Evangelidis «The hB-tree a concurrent and

recoverable Multiattribute index structure » . PHD
thesis presented to faculty of Graduate school of the
college of computer science of Northeastern
university.1994.

[4] :G.Evangelidis, B.Salzberg. «using Holey Brick tree
for spatial data in general purpose DBMSs ». IEEE
database Engineering Bulletin 16(3) : 34-39, Sep 1993.

[5]:R.Fagin, J.Nievergett,N.Pippenger,H.Rstrong
«Extendible hashing- a fast method for dynamic files »
ACM-TODS,4,3 (Sep 1979), 315-344.

[6]:A.Guttman. « R-trees:dynamic index structures for
spatial searching»in proceedings of ACM-SIGMOD
annual conf on management of data pp47-57 Boston
June 1984.

[7] : W.K.Hidouci - D.E Zegour «Comparisons of B-trees
and trie hashing for multidimensional access »
4TH. Maghrebian Conf. On Software Engineering and
artificial intelligence. Algiers'96.

[8] D.E Knuth «The Art of Computer Programming »
Vol3 : Sorting and searching, Addison-Wesley,1993.

[9]. : P.Larson «Dynamic Hashing » BIT 18 (1978),
[10] : P..Larson «Dynamic Hash Tables »

Communications of ACM 4-1988 volume 31.
[11]: W.Litwin « Virtual hashing a dynamically changing

hashing » VLDB 80, ACM, Sep 1978 , 517-523
[12] : W.Litwin «Hachage Virtuel » thèse se de doctorat

d'état, Paris VI,1979.
[13] : W.Litwin «Trie Hashing » SIGMOD 81, ACM,

may 1981, 19-29.

[14] W.Litwin «Trie hashing : Further Properties and
Performances » Int.Conf. on Foundation of Data
Organization. Kyoto, May 1985, Plenum press.

[15] : D.Lomet, B.Salzberg. «hB-tree a multiattribute
indexing method with good guaranteed performance »
ACM Trans on database systems 15(4) : 625-58,Dec
1990.

 [16] : J.A.Orenstein, T.Merrett « a class of data structures
for associative searching » . in proceedings of SIGART-
SIGMOD 3rd symposium on principles of database
systems PP 181-190 Waterloo Canada 1984

[17] : E.J. otoo , T.H Merrett. «A storage scheme for
extensible arrays » . computing, 31 (1983) 1-9.

[18]: E.J. otoo: «A multidimensional digital hashing
scheme for files with composite keys »

 SIGMOD vol 14,4(Dec 1985)
[19] E.J. otoo: « Multikey trie for scientific and statistical

databases » CODATA (North Holland)1987
[20] :J.T.Robinson «the K-D-B-trees : a search structure

for large multidimensional dynamic indexes »
In proceedings of ACM-SIGMOD annual conf on
management of data, pp 10-18 New York, April 1981

 [21] :T.Sellis,N.Roussopoulus,C.Faloutos « The R+-tree
:dynamic index for multidimensional objects » . In
international conf on very large database page 1-24,
Brighten, England,1987

 [22] : M. Tamminen «The EXELL method for efficient
geometric access to data » Acta polytechnica
SCANDINAVIA , Mathematics and Computing
Science series N 34, Helsinki 1981.

 [23] : D.Zegour «Extensions du hachage digital : hachage
multiniveaux hachage digital avec repr'sentation
séquentielles » thèse de doctorat, université' de Paris
IX Dauphine 1988

[24] : W. Bukhard : « interpolation –based index
Maintenance ». ACM Trans On knowledege and data
engineering Vol 3 1983.

[25] : A.Ricardo,Baeza-Yates,P.Larson « Performance of
B+-trees with partial expansion » IEEE Tran. On
knowledege and data engineering Vol 1 No 2 june 89

[26]:Nievergelt,Hinterberger,Sevci « the grid file : an
adaptable symmetric multikey file structure »
ACM Trans data base sys 9 (1) : 38-71 march 1984.

[27]: M.Ouksel, P.Scheuermann «Multidimensional
B-tree: analysis of dynamic behavior» BIT21 401-418,
1981

[28] : M.Ouksel, P.Scheuermann « Multidimensional B-
tree for associalive searching in data base systems »
INFORM systems Vol 7,2 1982

ISSN: 2766-9823 Volume 2, 2020

18

