
Discrete Event Simulations and Digital Twins

Dmitry Namiot

Lomonosov Moscow State University

Moscow, Russia

dnamiot@gmail.com

Oleg Pokusaev

Russian University of Transport (MIIT)

Moscow, Russia

o.pokusaev@rut.digital

Abstract— This article is about development tools for digital

twins. Digital twins are getting more and more attention. At the

same time, one cannot fail to note the fact that most of the

publications consider the use of digital twins. How these twins

were built (designed) is out of the question. Meanwhile, it is

obvious that it is the questions of the development (creation) of

twins that are primary, especially if we consider this issue from

the standpoint of the university. It is universities that should, first

of all, teach exactly the creation (design) of twins. The paper

deals with the relationship between systems for the development

of discrete simulation models and digital twins.

I. INTRODUCTION

Discrete-event simulation (DES) is one of the oldest and
most widely used approaches to simulation. In the discrete-
event approach, the system model (description of its
functioning) is represented as a sequence of events in time.
Each event (or events in multithreaded systems) occurs at a
certain point in time and fixes some change in the state of the
system [1].

The states of the system are determined by the values of the
variables that are part of the model. The initialization (change
of values) of variables occurs in accordance with logical rules
that determine the reaction to an event (or events).
Accordingly, such logical rules are also part of the system.
Another part of any such system is a synchronizer - a
mechanism (algorithm) that synchronizes state changes
(realizing the "occurrence" of events).

The constructed models can be single-threaded, that is, they
have only one event, or multi-threaded, which can have several
current events.

The events themselves are instant and interval. By the
nature of the occurrence of events, discrete-event models are
divided into deterministic and stochastic, depending on how the
events are generated [2].

The condition for the completion of the model can be:

 Occurrence of a given event

 Reaching a certain state

 Expiry of the specified time according to the clock
of the simulation system

 Passing a given number of cycles by the clock of
the simulation system

The result of modeling is the statistical characteristics of the
system variables, accumulated (measured) during the operation
of the model.

This is one of the oldest (long-used) approaches to
modeling systems, which has accumulated extensive practice
over the years of use and, most importantly, led to the
emergence of popular tools (libraries, frameworks, problem-
oriented programming languages).

A digital twin, according to the classical definition, is a
digital copy of a living or artificial physical object [3]. The
term digital twin refers to a digital copy of potential and real
physical assets (physical twin), processes, people, places,
systems and devices that can be used for a variety of purposes.
Digital twins are designed to facilitate the control,
understanding and optimization of the functions of all physical
assets, ensuring the smooth transfer of data between the
physical and virtual world [4].

Accordingly, the digital twin, by definition, includes a
simulation model. Hence, it is natural to assume that the tools
for developing simulation models can be used to create digital
twins. Since most of these systems were built in the “pre-twin”
era, they do not have everything that digital twins require.
Therefore, the correct question is what should (possibly) be
added to the toolkit for creating discrete-event models so that it
can be used for digital twins.

Digital twin technology plays a critical role in Industry 4.0,
providing a unified view of the real and virtual worlds.

The remainder of the article is structured as follows.
Section II compares discrete event models and digital twins, in
which a digital replica can be represented as a set of states.
Section III discusses extensions for software systems for
constructing discrete-event models.

II. DISCRETE EVENT MODELS AND DIGITAL REPLICA

Most of the publications devoted to digital twins (typical

examples are [5], [6]) are devoted to exploitation. The topic of

this article is development. How something was built, the

exploitation of which is nicely described in most articles.

Virtual models in the digital twin must be exact copies of

physical objects. This means, generally speaking, the exact

reproduction of physical geometry, properties, behavior and

rules of functioning [7]. For example, 3D geometric models

can describe a physical object in terms of its shape, size, etc.

Based on physical characteristics (properties), for example,

speed and force, the physical model should reflect such

phenomena as deformation, destruction, etc. It should be noted

here that discrete-event models are usually not very suitable

for describing just physical models in the above sense. This is

not their disadvantage in terms of their use for designing

ISSN: 2766-9823 Volume 2, 2020

64

digital twins, it is just a limitation in terms of applicability. For

physical models, there are simply other development tools.

Behavior models, as the name suggests, describe behavior

and response mechanisms to changes in the external

environment. The description of behavior in the form of

transitions between states is exactly what is the basis of

discrete-event modeling.

Rules are closely related to patterns of behavior and model

decision making, assessments, etc. Rules can be created based

on historical data (if any and available) or set by experts. This

component corresponds to the logic module in discrete event

simulation.

The next element that is essential for digital twins is, of

course, data. All digital twins potentially deal with

heterogeneous and multidimensional data coming from

different sources. Simulation systems most often accept

simplified data models. For example, for a variety of discrete-

event modeling models, it is typical to model the occurrence of

events in accordance with some statistical distribution. For

digital twins, simplifications are not possible (otherwise it will

not be a digital twin). The model can receive this data directly

from physical objects, while the data can be both static and

dynamic, the data can be generated by the model itself, or

come from various services that process both measurement

data and external (in relation to the physical object) data ...

Note also that data can also be generated as a result of data

fusion.

Naturally, in this case, this data does not come by itself,

and the digital twin must be characterized by support for

multiple connections. This is necessary to receive data from a

physical object, as well as from external services. These

connections are shown in Figure 1.

Fig. 1. Connections in a digital twin [8].

The main difference between the digital twin and the

simulation model can be formulated as follows. Modeling is

the analysis of “what will be if ...”, while the digital twin is

“what is happening now and what will be if ...”. Key

differences also include the following points.

 The digital twin is a real-time simulation. Traditional

simulations are performed in virtual environments, which can

represent physical environments, but do not combine data in

real time. The regular (continuous) transmission of

information between the digital twin and the associated

physical environment makes real-time simulation possible.

This improves the accuracy of predictive analytical models, as

well as the quality of management and monitoring.

 More variables. Collecting all the data allows you to

expand the number of possible variables available to the

model. Naturally, such an analysis requires support in the

descriptions of behavior models or in the rules of the model,

but at least it becomes possible in principle. Accordingly, it

becomes fundamentally possible to expand the use of

simulation results. In other words, the digital twin should (can)

get more results than just a simulation model.

The accumulation of large datasets in a digital twin

increases its value over a simulation model. The digital twin

becomes an integral part of the process of operating a physical

object, which is used for predictive analytics, maintenance,

etc. As a result, the digital twin affects the physical object, for

example, provides data for its improvement, process

optimization, etc. Examples include, for example, the digital

twins of Tesla cars. Every Tesla car in production today has a

digital twin that collects large data sets produced by each car.

The collected data is used to optimize designs, predictive

analytics, improve maintenance, etc. [9]. Another example is

digital twins in BIM used in the operation of buildings and

structures [6, 10]. Purely simulation models are usually used

only at the design stage.

III. DISCRETE EVENT SIMULATION SOFTWARE TOOLS AND

DIGITAL TWINS

In this section, we would like to focus on development

tools for discrete-event models. Naturally, we proceed from

the assumption that for our system the discrete-event approach

will be suitable for representing a digital replica. In some

cases, this will not be the case, and it will be necessary to use

other tools. For example, in [11], discrete but dynamical

systems are also described, etc.

Discrete Event Simulation (DES), as noted above, is a

form of computer simulation of a system using a discrete

sequence of events. The term "discrete" describes the fact that

events develop forward in time at intervals determined in the

model. The actual simulation is designed to track the evolution

of the system over time. This is achieved using the so-called

system (simulation) clock, which changes depending on the

occurrence of events.

In the classic work [12], the schemes for using imitation

clocks (model time) are divided into two types:

1) Determining the time of the next event (NETA - Next Event

Time Advances). NETA is a mechanism that determines the

timing of future events based on a list. In this typical approach,

the model time is set to zero and then updated as events occur.

Moreover, between successive events, under no circumstances

should there be any changes in the system. All state changes

are tied only to events.

ISSN: 2766-9823 Volume 2, 2020

65

2) Increasing the time using some fixed increment (FITA -

Fixed Increment Time Advances). This alternative approach

simply advances the system clock by some value. After

changing the system time, events that have occurred during

this time (time elapsed since the last increment) are

determined. Internal variables (states) are updated according to

the events. Then time advances again. As noted in the

literature, in general, NETA is more widely used in modeling

than FITA, due to its lower complexity [13].

The scopes of the discrete-event approach are quite wide.

This is due to the simplicity and rather high efficiency of

describing systems in the form of a set of states. Classic

applications are everything that can be represented as a

queuing system: service companies, transport systems,

logistics and warehouse operations.

If we move from a discrete-event model to a digital twin,

the digital replica of which is built on the basis of a discrete-

event approach, then it is obvious that the model time, due to

the requirement for data transmission in real time, must

correspond to real time. Thus, for example, the zero count is

simply the start time of the digital twin. The time of the next

event is the real time of the occurrence of the event, the time

increment is a new mark in which the occurred events are

checked after the last check.

What and how should be changed in development tools can

be represented by the example of the Simula language [14].

This language was one of the first to propose a practical

implementation of a discrete-event modeling system based on

coroutines [15]. The mechanisms proposed here are still the

basis for discrete-event modeling tools.

Below is a classic example of a simple queuing system,

taken directly from [16]. This program simulates the work of a

certain fitting room (for simplicity, the only one), which

visitors (Person) use in an exclusive manner. The visitor

spends some time in the store (Hold (Normal (12, 4, u)) - a

random value with a normal distribution), requests the use of

the fitting room, waits in the queue (Wait.door), if the fitting

room is occupied by another, then spends some then the time

in the fitting room (Normal (3, 1, u) is a random value with a

normal distribution), after which it leaves the system

(fittingroom1.leave), promoting the next in line. The classical

model of competition for a critical (single) resource.

Simulation Begin

 Class FittingRoom; Begin

 Ref (Head) door;

 Boolean inUse;

 Procedure request; Begin

 If inUse Then Begin

 Wait (door);

 door.First.Out;

 End;

 inUse:= True;

 End;

 Procedure leave; Begin

 inUse:= False;

 Activate door.First;

 End;

 door:- New Head;

 End;

 Procedure report (message); Text

message; Begin

 OutFix (Time, 2, 0); OutText (": "

& message); OutImage;

 End;

 Process Class Person (pname); Text

pname; Begin

 While True Do Begin

 Hold (Normal (12, 4, u));

 report (pname & " is

requesting the fitting room");

 fittingroom1.request;

 report (pname & " has entered

the fitting room");

 Hold (Normal (3, 1, u));

 fittingroom1.leave;

 report (pname & " has left the

fitting room");

 End;

 End;

 Integer u;

 Ref (FittingRoom) fittingRoom1;

 fittingRoom1:- New FittingRoom;

 Activate New Person ("Sam");

 Activate New Person ("Sally");

 Activate New Person ("Andy");

 Hold (100);

End;

Note that the model (program) program creates all objects

and activates all objects (Person) to place them in the event

queue. The main program runs for 100 minutes in model time

(Hold (100)).

Fragments that are to be replaced in the digital twin are

highlighted in bold and underlined in the program.

First, there will be no runtime for the digital twin.

Accordingly, the Hold (100) statement should simply be

removed.

Next comes the creation of objects - New Person ("Sam"),

etc. Obviously, the creation of objects should correspond to

the actual appearance of users. Then it is not a static operator,

but a process within the framework of the model that scans

some sensors of a real system (opening a door, video analytics,

issuing a number for a fitting room, etc.) and creates a new

visitor based on information from these sensors - one or more.

And the most important thing is working with the Hold ()

model time. In this case, the model follows the NETA scheme

and plays a random time when the next event occurs - how

long the user is in the system before deciding to use the fitting

room, and how long he will be in the chosen fitting room.

ISSN: 2766-9823 Volume 2, 2020

66

These statements (calls) should also be replaced by processes

that poll the sensor data to determine the occurrence of the

corresponding events.

It can be noted that the very scheme of a digital replica will

change depending on what is actually possible to measure in

specific conditions. For example, it is practically easy to

organize the determination of the time of the fitting room

occupation (presence sensor, badge for entry, which is

returned upon exit, etc.). But it is not at all so easy to organize

individual monitoring of being in the hall. It is possible, for

example, that the arrival of a visitor will be recorded in the

digital twin, and instead of the time spent in the hall,

conversion will be measured - the number of visits to fitting

rooms depending on the number of visitors. In other words,

the digital replica (its structure) will depend on the data

availability of the physical object. At the same time,

accessibility should be understood as both the technical

possibility of obtaining them and the economic feasibility of

collecting them.

How can you provide access to measurement data for a

discrete event model? The easiest way to achieve this is to

introduce some bus (Kafka or similar products), where, on the

one hand, the measurement data will be published, and on the

other hand, there will be subscribers (the publish-subscribe

model) who will read this data. Then, for example, instead of

playing a random delay when simulating a fitting room

occupation, there will be a subscription to a seizure signal and

waiting for a release signal. The time difference between these

two events (already real events) will be taken into account in

statistics as the time for a particular visitor.

IV. CONSLUSION

This article briefly discusses the possibilities of using

discrete-event modeling tools to design digital twins. A

comparative analysis of classical discrete-event models and

digital replicas in twins using the discrete-event approach is

carried out. A set of extensions for systems for developing

discrete-event models is presented, which are necessary for

using such development tools when creating digital twins.

ACKNOWLEDGMENT

We would like to thank the reviewers for the early versions of

this article for criticism and comments that have contributed to

the improvement of this work.

REFERENCES

[1] Varga, András. "Discrete event simulation system." Proc. of the

European Simulation Multiconference (ESM’2001). 2001.
[2] Fishman, George S. Discrete-event simulation: modeling,

programming, and analysis. Springer Science & Business Media,

2013.
[3] El Saddik, Abdulmotaleb. "Digital twins: The convergence of

multimedia technologies." IEEE multimedia 25.2 (2018): 87-92.

[4] Khajavi, Siavash H., et al. "Digital twin: vision, benefits, boundaries,
and creation for buildings." IEEE Access 7 (2019): 147406-147419.

[5] Kurganova, Nadеzhda, et al. "Digital twins’ introduction as one of

the major directions of industrial digitalization." International Journal
of Open Information Technologies 7.5 (2019): 105-115.

[6] Kupriyanovsky, Vasily, et al. "Digital twins based on the

development of BIM technologies, related ontologies, 5G, IoT, and
mixed reality for use in infrastructure projects and IFRABIM."

International Journal of Open Information Technologies 8.3 (2020):

55-74.
[7] Qi, Qinglin, et al. "Enabling technologies and tools for digital twin."

Journal of Manufacturing Systems (2019).

[8] Tao, Fei, et al. "Digital twin driven prognostics and health
management for complex equipment." Cirp Annals 67.1 (2018): 169-

172.

[9] Tharma, Rajeeth, Roland Winter, and Martin Eigner. "An approach
for the implementation of the digital twin in the automotive wiring

harness field." DS 92: Proceedings of the DESIGN 2018 15th

International Design Conference. 2018.
[10] Kupriyanovsky, Vasily, et al. "BIM Technologies for Tunnels Used

in Subways, Railways, Highways, and Hyperloop-IFC-Driven Real-

Time Systems and Disruptive Innovation." International Journal of
Open Information Technologies 8.9 (2020): 70-93.

[11] Ganguli, R., and S. Adhikari. "The digital twin of discrete dynamic

systems: Initial approaches and future challenges." Applied
Mathematical Modelling 77 (2020): 1110-1128.

[12] Law, Averill M., W. David Kelton, and W. David Kelton. Simulation
modeling and analysis. Vol. 3. New York: McGraw-Hill, 2000.

[13] Tang, Jiangjun, George Leu, and Hussein A. Abbass. Simulation and

Computational Red Teaming for Problem Solving. John Wiley &
Sons, 2019.

[14] Nance, Richard E. "A history of discrete event simulation

programming languages." History of programming languages---II.
1996. 369-427.

[15] Moura, Ana Lúcia De, and Roberto Ierusalimschy. "Revisiting

coroutines." ACM Transactions on Programming Languages and
Systems (TOPLAS) 31.2 (2009): 1-31.

[16] Simula https://en.wikipedia.org/wiki/Simula Retrieved: Jan, 2021.

ISSN: 2766-9823 Volume 2, 2020

67

