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Abstract— This article is about development tools for digital 

twins. Digital twins are getting more and more attention. At the 

same time, one cannot fail to note the fact that most of the 

publications consider the use of digital twins. How these twins 

were built (designed) is out of the question. Meanwhile, it is 

obvious that it is the questions of the development (creation) of 

twins that are primary, especially if we consider this issue from 

the standpoint of the university. It is universities that should, first 

of all, teach exactly the creation (design) of twins. The paper 

deals with the relationship between systems for the development 

of discrete simulation models and digital twins. 

I. INTRODUCTION 

Discrete-event simulation (DES) is one of the oldest and 
most widely used approaches to simulation. In the discrete-
event approach, the system model (description of its 
functioning) is represented as a sequence of events in time. 
Each event (or events in multithreaded systems) occurs at a 
certain point in time and fixes some change in the state of the 
system [1]. 

The states of the system are determined by the values of the 
variables that are part of the model. The initialization (change 
of values) of variables occurs in accordance with logical rules 
that determine the reaction to an event (or events). 
Accordingly, such logical rules are also part of the system. 
Another part of any such system is a synchronizer - a 
mechanism (algorithm) that synchronizes state changes 
(realizing the "occurrence" of events).     

The constructed models can be single-threaded, that is, they 
have only one event, or multi-threaded, which can have several 
current events. 

The events themselves are instant and interval. By the 
nature of the occurrence of events, discrete-event models are 
divided into deterministic and stochastic, depending on how the 
events are generated [2]. 

The condition for the completion of the model can be: 

 Occurrence of a given event 

 Reaching a certain state 

 Expiry of the specified time according to the clock 
of the simulation system 

 Passing a given number of cycles by the clock of 
the simulation system 

The result of modeling is the statistical characteristics of the 
system variables, accumulated (measured) during the operation 
of the model. 

This is one of the oldest (long-used) approaches to 
modeling systems, which has accumulated extensive practice 
over the years of use and, most importantly, led to the 
emergence of popular tools (libraries, frameworks, problem-
oriented programming languages). 

A digital twin, according to the classical definition, is a 
digital copy of a living or artificial physical object [3]. The 
term digital twin refers to a digital copy of potential and real 
physical assets (physical twin), processes, people, places, 
systems and devices that can be used for a variety of purposes. 
Digital twins are designed to facilitate the control, 
understanding and optimization of the functions of all physical 
assets, ensuring the smooth transfer of data between the 
physical and virtual world [4]. 

Accordingly, the digital twin, by definition, includes a 
simulation model. Hence, it is natural to assume that the tools 
for developing simulation models can be used to create digital 
twins. Since most of these systems were built in the “pre-twin” 
era, they do not have everything that digital twins require. 
Therefore, the correct question is what should (possibly) be 
added to the toolkit for creating discrete-event models so that it 
can be used for digital twins. 

Digital twin technology plays a critical role in Industry 4.0, 
providing a unified view of the real and virtual worlds. 

The remainder of the article is structured as follows. 
Section II compares discrete event models and digital twins, in 
which a digital replica can be represented as a set of states. 
Section III discusses extensions for software systems for 
constructing discrete-event models. 

II. DISCRETE EVENT MODELS AND DIGITAL REPLICA 

Most of the publications devoted to digital twins (typical 

examples are [5], [6]) are devoted to exploitation. The topic of 

this article is development. How something was built, the 

exploitation of which is nicely described in most articles. 

Virtual models in the digital twin must be exact copies of 

physical objects. This means, generally speaking, the exact 

reproduction of physical geometry, properties, behavior and 

rules of functioning [7]. For example, 3D geometric models 

can describe a physical object in terms of its shape, size, etc. 

Based on physical characteristics (properties), for example, 

speed and force, the physical model should reflect such 

phenomena as deformation, destruction, etc. It should be noted 

here that discrete-event models are usually not very suitable 

for describing just physical models in the above sense. This is 

not their disadvantage in terms of their use for designing 
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digital twins, it is just a limitation in terms of applicability. For 

physical models, there are simply other development tools. 

Behavior models, as the name suggests, describe behavior 

and response mechanisms to changes in the external 

environment. The description of behavior in the form of 

transitions between states is exactly what is the basis of 

discrete-event modeling. 

Rules are closely related to patterns of behavior and model 

decision making, assessments, etc. Rules can be created based 

on historical data (if any and available) or set by experts. This 

component corresponds to the logic module in discrete event 

simulation. 

The next element that is essential for digital twins is, of 

course, data. All digital twins potentially deal with 

heterogeneous and multidimensional data coming from 

different sources. Simulation systems most often accept 

simplified data models. For example, for a variety of discrete-

event modeling models, it is typical to model the occurrence of 

events in accordance with some statistical distribution. For 

digital twins, simplifications are not possible (otherwise it will 

not be a digital twin). The model can receive this data directly 

from physical objects, while the data can be both static and 

dynamic, the data can be generated by the model itself, or 

come from various services that process both measurement 

data and external (in relation to the physical object) data ... 

Note also that data can also be generated as a result of data 

fusion. 

Naturally, in this case, this data does not come by itself, 

and the digital twin must be characterized by support for 

multiple connections. This is necessary to receive data from a 

physical object, as well as from external services. These 

connections are shown in Figure 1. 

  

Fig. 1. Connections in a digital twin [8].  

The main difference between the digital twin and the 

simulation model can be formulated as follows. Modeling is 

the analysis of “what will be if ...”, while the digital twin is 

“what is happening now and what will be if ...”. Key 

differences also include the following points. 

     The digital twin is a real-time simulation. Traditional 

simulations are performed in virtual environments, which can 

represent physical environments, but do not combine data in 

real time. The regular (continuous) transmission of 

information between the digital twin and the associated 

physical environment makes real-time simulation possible. 

This improves the accuracy of predictive analytical models, as 

well as the quality of management and monitoring. 

     More variables. Collecting all the data allows you to 

expand the number of possible variables available to the 

model. Naturally, such an analysis requires support in the 

descriptions of behavior models or in the rules of the model, 

but at least it becomes possible in principle. Accordingly, it 

becomes fundamentally possible to expand the use of 

simulation results. In other words, the digital twin should (can) 

get more results than just a simulation model. 

The accumulation of large datasets in a digital twin 

increases its value over a simulation model. The digital twin 

becomes an integral part of the process of operating a physical 

object, which is used for predictive analytics, maintenance, 

etc. As a result, the digital twin affects the physical object, for 

example, provides data for its improvement, process 

optimization, etc. Examples include, for example, the digital 

twins of Tesla cars. Every Tesla car in production today has a 

digital twin that collects large data sets produced by each car. 

The collected data is used to optimize designs, predictive 

analytics, improve maintenance, etc. [9]. Another example is 

digital twins in BIM used in the operation of buildings and 

structures [6, 10]. Purely simulation models are usually used 

only at the design stage. 

III. DISCRETE EVENT SIMULATION SOFTWARE TOOLS AND 

DIGITAL TWINS 

In this section, we would like to focus on development 

tools for discrete-event models. Naturally, we proceed from 

the assumption that for our system the discrete-event approach 

will be suitable for representing a digital replica. In some 

cases, this will not be the case, and it will be necessary to use 

other tools. For example, in [11], discrete but dynamical 

systems are also described, etc. 

Discrete Event Simulation (DES), as noted above, is a 

form of computer simulation of a system using a discrete 

sequence of events. The term "discrete" describes the fact that 

events develop forward in time at intervals determined in the 

model. The actual simulation is designed to track the evolution 

of the system over time. This is achieved using the so-called 

system (simulation) clock, which changes depending on the 

occurrence of events. 

In the classic work [12], the schemes for using imitation 

clocks (model time) are divided into two types: 

1) Determining the time of the next event (NETA - Next Event 

Time Advances). NETA is a mechanism that determines the 

timing of future events based on a list. In this typical approach, 

the model time is set to zero and then updated as events occur. 

Moreover, between successive events, under no circumstances 

should there be any changes in the system. All state changes 

are tied only to events. 
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2) Increasing the time using some fixed increment (FITA - 

Fixed Increment Time Advances). This alternative approach 

simply advances the system clock by some value. After 

changing the system time, events that have occurred during 

this time (time elapsed since the last increment) are 

determined. Internal variables (states) are updated according to 

the events. Then time advances again. As noted in the 

literature, in general, NETA is more widely used in modeling 

than FITA, due to its lower complexity [13]. 

The scopes of the discrete-event approach are quite wide. 

This is due to the simplicity and rather high efficiency of 

describing systems in the form of a set of states. Classic 

applications are everything that can be represented as a 

queuing system: service companies, transport systems, 

logistics and warehouse operations. 

If we move from a discrete-event model to a digital twin, 

the digital replica of which is built on the basis of a discrete-

event approach, then it is obvious that the model time, due to 

the requirement for data transmission in real time, must 

correspond to real time. Thus, for example, the zero count is 

simply the start time of the digital twin. The time of the next 

event is the real time of the occurrence of the event, the time 

increment is a new mark in which the occurred events are 

checked after the last check. 

What and how should be changed in development tools can 

be represented by the example of the Simula language [14]. 

This language was one of the first to propose a practical 

implementation of a discrete-event modeling system based on 

coroutines [15]. The mechanisms proposed here are still the 

basis for discrete-event modeling tools. 

Below is a classic example of a simple queuing system, 

taken directly from [16]. This program simulates the work of a 

certain fitting room (for simplicity, the only one), which 

visitors (Person) use in an exclusive manner. The visitor 

spends some time in the store (Hold (Normal (12, 4, u)) - a 

random value with a normal distribution), requests the use of 

the fitting room, waits in the queue (Wait.door), if the fitting 

room is occupied by another, then spends some then the time 

in the fitting room (Normal (3, 1, u) is a random value with a 

normal distribution), after which it leaves the system 

(fittingroom1.leave), promoting the next in line. The classical 

model of competition for a critical (single) resource. 

Simulation Begin 

   Class FittingRoom; Begin 

      Ref (Head) door; 

      Boolean inUse; 

      Procedure request; Begin 

         If inUse Then Begin 

             Wait (door); 

             door.First.Out; 

         End; 

         inUse:= True; 

      End; 

      Procedure leave; Begin 

         inUse:= False; 

         Activate door.First; 

      End; 

      door:- New Head; 

   End; 

    

   Procedure report (message); Text 

message; Begin 

      OutFix (Time, 2, 0); OutText (": " 

& message); OutImage; 

   End; 

    

   Process Class Person (pname); Text 

pname; Begin 

      While True Do Begin 

         Hold (Normal (12, 4, u)); 

         report  (pname & " is 

requesting the fitting room"); 

         fittingroom1.request; 

         report (pname & " has entered 

the fitting room"); 

         Hold (Normal (3, 1, u)); 

         fittingroom1.leave; 

         report (pname & " has left the 

fitting room"); 

      End; 

   End; 

    

   Integer u; 

   Ref (FittingRoom) fittingRoom1; 

    

   fittingRoom1:- New FittingRoom; 

   Activate New Person ("Sam"); 

   Activate New Person ("Sally"); 

   Activate New Person ("Andy"); 

   Hold (100); 

End; 

 

Note that the model (program) program creates all objects 

and activates all objects (Person) to place them in the event 

queue. The main program runs for 100 minutes in model time 

(Hold (100)). 

Fragments that are to be replaced in the digital twin are 

highlighted in bold and underlined in the program. 

First, there will be no runtime for the digital twin. 

Accordingly, the Hold (100) statement should simply be 

removed. 

Next comes the creation of objects - New Person ("Sam"), 

etc. Obviously, the creation of objects should correspond to 

the actual appearance of users. Then it is not a static operator, 

but a process within the framework of the model that scans 

some sensors of a real system (opening a door, video analytics, 

issuing a number for a fitting room, etc.) and creates a new 

visitor based on information from these sensors - one or more. 

And the most important thing is working with the Hold () 

model time. In this case, the model follows the NETA scheme 

and plays a random time when the next event occurs - how 

long the user is in the system before deciding to use the fitting 

room, and how long he will be in the chosen fitting room. 
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These statements (calls) should also be replaced by processes 

that poll the sensor data to determine the occurrence of the 

corresponding events. 

It can be noted that the very scheme of a digital replica will 

change depending on what is actually possible to measure in 

specific conditions. For example, it is practically easy to 

organize the determination of the time of the fitting room 

occupation (presence sensor, badge for entry, which is 

returned upon exit, etc.). But it is not at all so easy to organize 

individual monitoring of being in the hall. It is possible, for 

example, that the arrival of a visitor will be recorded in the 

digital twin, and instead of the time spent in the hall, 

conversion will be measured - the number of visits to fitting 

rooms depending on the number of visitors. In other words, 

the digital replica (its structure) will depend on the data 

availability of the physical object. At the same time, 

accessibility should be understood as both the technical 

possibility of obtaining them and the economic feasibility of 

collecting them. 

How can you provide access to measurement data for a 

discrete event model? The easiest way to achieve this is to 

introduce some bus (Kafka or similar products), where, on the 

one hand, the measurement data will be published, and on the 

other hand, there will be subscribers (the publish-subscribe 

model) who will read this data. Then, for example, instead of 

playing a random delay when simulating a fitting room 

occupation, there will be a subscription to a seizure signal and 

waiting for a release signal. The time difference between these 

two events (already real events) will be taken into account in 

statistics as the time for a particular visitor. 

IV. CONSLUSION 

This article briefly discusses the possibilities of using 

discrete-event modeling tools to design digital twins. A 

comparative analysis of classical discrete-event models and 

digital replicas in twins using the discrete-event approach is 

carried out. A set of extensions for systems for developing 

discrete-event models is presented, which are necessary for 

using such development tools when creating digital twins. 
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