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Abstract—In this paper, we propose the poles otimization of
the linear MIMO ARX-laguerre model using genetic algorithm.
This model is obtained by decompsing the MIMO ARX model
on orthonormal and independent Laguerre bases allowing the
filtering of the inputs and outputs of the system using the
orthonormal functions of Laguerre. The resulting model, called
MIMO ARX-Laguerre, ensures a reduction in the parametric
complexity with respect to the number of parameters with a
simple recursive vector representation. However, this reduction
is conditioned by an optimal choice of the Laguerre pole

characterizing each base. To do this, we propose to optimize, by

exploiting the genetic algorithm, the Laguerre poles of the MIMO
ARX-laguerre model. The optimization of the Laguerre poles is
validated by a numerical simulation to the CSTR Benchmark.
Index Terms—MIMO ARX-laguerre model, laguerre poles,
optimization, genetic algorithm, CSTR Benchmark

I. INTRODUCTION

University of Sousse
Erriadh city BP 247, 4023 Sousse, Tunisia
chakib.bennjima@gmail.com

number of parameters thanks to an optimal identification of
the pole or poles characterizing the considered orthogonal
base. The orthogonal basis of Laguerre is considered as a
particular case of that of Kautz and also of the generalized
orthogonal base. Although the modeling on this base requires
more filters than that developed on the Kautz base at the
BOG base especially for the representation of oscillating
systems or with several regimes, the orthogonal functions of
Laguerre have the advantage of being calculated in a simpler
recursive way and especially that they depend exclusively on
a single real parameter called pole of Lagudge< 1. As

a result, the Laguerre modelling is more adequate for the
representation of strongly damped systems having a dominant
dynamic. In addition, optimal pole identification guarantees
a good description of the system with a smaller number of
parameters. Thanks to these properties, the Laguerre base

Recently, we have seen an increase in the availability ahds been applied to the identification and control of linear
accuracy of experimental data in many areas of engineerisgstems. The major drawback of using the Laguerre base
This increase in data has spawned a large number of complies in its incompatibility with complex systems. Indeed, the
mathematical models that have been developed to expla#guerre model, characterized by the filtering of the input,

the mechanisms responsible for these observations. Thesgresenting these types of systems requires a very high
models comprising an increasing number of parameters a@nber of parameters. To work around this problem Bouzrara
characterized by a high order which complicates and makeisal. [5] proposed to use Laguerre’s orthonormal functions for
tedious and expensive the analysis, synthesis and simulatioput and output filtering of the ARX model. This proposal
of the concerned system. is used by Garna et al. [6] for the parametric reduction of
In this regard, solutions have been brought to the represéime bilinear model. The obtained results of this procedure
tation of complex systems to develop reduced models repcé- modelling are of great and encouraging interest for the
senting the dynamic behavior of these systems. In this contegpresentation of complex linear MIMO systems.
several works exploit the orthonormal bases such as the bask this case, the use of the orthogonal functions of Laguerre
of Laguerre [1, 2], the base of Kautz [3] and the generalizdths been proposed [7] for the filtering of the inputs and outputs
orthogonal base (BOG) [4] to reduce the complexity of thef the MIMO ARX model and the obtained model is called
model and subsequently lighten the procedure of control. TMEMO ARX-Laguerre. The latter is characterized by a reduced
obtained model has several advantages such as insensitimitynber of parameters compared to that of the MIMO ARX
to the choice of the sampling period, the no-need for a priariodel if the Laguerre poles are identified in an optimal way.
knowledge of the delay of the system, the linearity with respeleor this reason, we propose in this paper the optimization of
to the Fourier coefficients and especially the reduction of tltee Laguerre poles of the MIMO ARX-Laguerre model using
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the genetialgorithm[8, 9, 10, 11]. The latter has been widely In this case the outpug; (k) of the i** MISO subsystem
adopted in recent years and presents a very powerful meatan be represented by the MISO ARX model as follows [20]:
heuristic of research inspired by Charles Darwin’s theory of -
natural evolution. These algorithms reflect the process of nat k) — i . P W (i i
ural selection where the most suitable individuals are selec%é ) ;; air (1) yr (k= ) + ;; bue () ue (K = )
for reproduction in order to produce the offspring or the next

. . L . our;
generation. Unlike other optimization algorithms, the procegs 1)
of identification using genetic algorithms is based on guided
random search. This search can lead to an optimal solution Qe u,(k) andy, (k) are thet** input and thert output

startipg from a random initial gost functi_on anq the_n searchirg_g the system respectivelyi,, (j) andhy,, () are the coeffi-
only in the cheapest space (in the guided direction). This ifnts of the model: and, andn, are the orders of the model.
suitable when working with large and complex data sets. |5 the following, we present the decomposition of the coef-
The paper is organized as follows: in section 2 we leticientsh,, () andh,, (j) on orthonormal and independent
present the MIMO ARX-Laguerre model. This model is obtaguerre bases. Thus, the development of the linear MIMO

tained by breaking down the MIMO ARX model into MISOARX-Laguerre model results from this decomposition of each
ARX subsystems and by developing the coefficients of thgiIsSO ARX model.

latter on two independent Laguerre bases. In this context, we
present a recursive representation of the MIMO ARX-Laguerge Principle of decomposition

model. Section 3 presents the identification of the Fourier di h bil giti ithin th .
coefficients of the model studied. In section 4 we propose arf‘ccording to the stability condition within the meaning

optimization algorithm of Laguerre poles by exploiting th&' the BIBO (Bounded Input Bounded Output) criterion, the
genetic algorithm. Finally, section 4 evaluates, through t@€fficientsha,, (j) and o, () of the MISO ARX model (1)
application to a CSTR Benchmark, the performances of tHES absolutely summable:

proposed algorithm. )
Y lhan ()] < o0
Jj=1

II. MIMO ARX-L AGUERREMODEL 2)

Z ‘hbzt(])| <0

In this section, we present a recent alternative for the =t
modeling of linear MIMO systems [7]. This alternative con- The coefficientsh,,, (j) andh,,, (j) therefore belong to the
sists in extending each linear MIMO ARX model on a sdtebesgue spacé [0, +oo) and they can be decomposed on
of orthonormal and independent Laguerre bases by filterisgthonormal and independent Laguerre bases as follows:
the inputs and outputs of the process using Laguerre or-
thonormal functions. The resulting model, called the MIMO ) NaZ1 s
ARX-Laguerre model, ensures the reduction in the number ha, (7) = Z Inai bn'"(3,8ai)s T=1,...,m
of parameters compared to the classic MIMO ARX model Ntiol 3)
with a recursive and simple vector representation. However, h () = Z (g, ), t=1
this reduction strongly depends on the optimal choice of the| " J — Iy bie D> Sbae) veob
Laguerre pole characterizing each base. "

Generally, the problem of identifying a linear MIMO systenfvhereN, and N, are the truncation order§,,. and¢,,, are
can be divided into several problems of identifying systenig€ Laguerre poles anif (j, 4, ) and(,2 (j, &y, ) represent
with multiple inputs and single output (MISO). Indeed, dhe orthonormal and independgnt func.tions of the_ Laguerre
MIMO system havingp inputs andm outputs can be rep- bases [5]. So the decomposition (3) is characterized by a
resented by a collection ofi MISO subsystems depicted bynumber of Laguerre poles equal #g:
Fig. 1.

np=m+p (4)
y,(K) The coefficientsg,, ,,. and g, ., of the decomposition
u,(K) v,(k) u, (k) are the Fourier coefficients which can be defined by these
i lities:
: Linear MIMO H = : equal '
u, (k) system v, (K) u, (k)
—_— — —

L s assrsen n 228 G0 =Dl () 627 (G, €a)

T 5)

. ) . np

Fig. 1. Representatioof a linear MIMO system by a set of MISO subsystems N b -

b = O P (3) L0 (5, €b)
Jj=0
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By substitutingthe relation (3) in each MISO ARX model

given by the equation (1), the resulting model, entitled MISO

ARX-Laguerre is written [7, 12]:

Volume 2, 2020

. A;/ and A;t are square matrices of dimensiong,
and N,, respectively whose componermsgr(h,q) and
Al (h,q) are defined as follows:

uy

yi(k) = In,air Ty, (k) + Inbie Ty, (F) : e _
r=1 n=0 Y t=1 n=0 ®) A;,,,.(f% q) = (—fam)h e 1(1— 2(1“) sih>q
0 i h
with : for A ) N sth<q
o . is the output of then + 1) filter associated with orhg=2.- N (14)
the r*" output:
o0 .
; .y . €, sih=q
zh o, () => 08 éa ) urk—3) () . o
=1 Al (hg)=Q (~&,)" N1 &) sih>q
. z!,, isthe output of thgn + 1) filter associated with 0 sih<q
the t** input: forh,g=1,...,Np
(15)
wh o, (k) =00 (5, &n,,) un(k — ) (8) + b andb’, are vectors of dimensiond, and Ny,
j=0 respectively:
We note that the resulting model (6) is characterized by a 1
number of Fourier coefficients equal 1Q: (—€a..)
ne=mN, +pNy 9 b, =./1-¢&, (—€a.)” e jNa
Moreover, the model (6) is linear with respect to the Fourier ;
coefficientsg,, ,,. andg, », therefore classical linear identi- (—§a”)N"’_1
fication methods can be applied. However, it is nonlinear with 1 (16)
respect to the Laguerre polgs,, and¢,,,, which requires the (=€)
. . . . . pe . ] it 2
application of appropriate identification approaches. bi - m (—€4.,) c
B. Recursive representation of the MISO ARX-Laguerre model :
According to [12], the MISO ARX-Laguerre model admits (—§b't)er

this recursive vector representation:
Xi(k+1)=A! X! (k)+ bl y.(k)
X, (k+1) = A}, X, (k) + b, w(k)  (10)
vi(k) = C{ X' (k)

where fori, r=1,...,mett=1,...,pona:

From the relation (10), each MISO ARX-Laguerre model

can be described by this compact vector representation:

« X} and X} are vectors containing the output ofith:

Laguerre filters:

{X@(k) -
X, (k)=

ICEE
€ jie
(11)

[.’L‘ ,y,.(k) T x?\fufl,y,.(k)

o
[ 6,0, (B) - @, 1,0, ()
« X (k) is a vector consisting oX; andX;t:
. T .
(x5, 0" (X (k)

(X, )" (X, ()]

« C; is a vector containing the Fourier coefficiemts ,,,.
and gy, s, characterizing (6) :

}T

T

T (12)
e R"

Ci =190,a1 """ INa—1, 011 " 90, aim =" INa—1, aim

Tenne
(13)

90,b;1 """ 9INy—1,b;1 """ 90, b " 'ngfl,bip}

80

{ X'(k+1)=A'X'(k)+ Bju(k)+ Bly(k) an
yi(k) = C X' (k)
A" =bloc_diag { A}, AL AL, AL L e
(18)
B; OmNa p
Blz €§Rnc><m’ B;: v emncXp
Opr,m Elu
(19)
B = bloc_diag {b} ,...,b} } e RmNexm
Yy Yy y (20)

B! = bloc_diag {bf“,...,bzp} c RPNoxp

y (k)= [y (k). ..ym (B)]"
(21)

w (k) = [us (k) -..up ()] 5

where0; ; of dimensioni x j.
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C. Recusiverepresentation of the MIMO ARX-Laguerre lin- 1ll. | DENTIFICATION OF THE FOURIER COEFFICIENTS OF

ear model

THE ARX-LAGUERREMIMO MODEL

Since the MIMO ARX-Laguerre model can be decomposed From the representation (22) the MIMO ARX-Laguerre
into a set of MISO ARX-Laguerre models, the resultingnodel is represented by a set of MISO ARX-Laguerre rep-
MIMO ARX Laguerre model can therefore be formulated froniesentations given by (17), the proposed method of recursive
the relation (17) by this compact recursive vector representglentification of the Fourier coefficients constitutidg asso-

tion [12]:
X(k+1) = AX (k) + B,u(k)+ B,y (k)
{ y (k) = C"X (k) 22
where:
X (k) = (X' (k). (X" (k)T e R (23)

andA, B, B, andC are matrices of dimensions (X N.),
(Ne x p), (N x m) and (V. x m), respectively, with:

N.=mn.=m(mN, +pNy) (24)
Al Onmnc 0"@77%
Onr e A? Onr,np
A— - 2y Toe c §RNC X N
Oncﬂu Onmnc 11m
B! B,
B2 By
Bu: . e§RNC><p7 By: . E%NCXTH
B By
(25)
Ch Qnu an
an CZ an
c=| . . : € RNexm (26)
0 0 Cn

Ne

such that0,, is the null column vector of dimension..

We note that the MIMO ARX-Laguerre model defined

by (22) is characterized by, Fourier coefficients anadv,
Laguerre poles defining the vectgy, , as follows:

Emp = Earrr > €apr Ebras 1 by s
for the 1% output . 27)
Eamir > Eamps Ebmisr -+ Ebmm) € NP
for the mth output
avec :
N, =mny,=m(m + p) (28)

wheren,, is defined by (4).
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ciated with thei*" outputy; (k) of the MIMO ARX-Laguerre
model, consists in minimizing the following criterion:

h
Ji = Z (yo,i(k) -

k=1

cr x?

K3

1,... (29)

= s m

(k)"
wherey, ;(7) is the measured” output of the system. As each
MISO ARX-Laguerre model is linear and the criterioh is
guadratic with respect t@;, respectively, its minimization
provides a global minimum. Therefore, standard parameter
estimation methods such as least mean square (LMS) or
recursive least squares (RLS) methods can be used to calculate
the estimated parameter vectdrs.

IV. OPTIMIZATION OF THE LAGUERRE POLES OF THE
ARX-LAGUERREMIMO MODEL

The MIMO ARX-Laguerre model is a set of ARX-Laguerre
MISO models given by (10), each characterizechbyouurier
cooefficients andq, Laguerre poles. As shown by Bouzrara
et al. [5], we obtain a significant reduction in the number
of parameters when each Laguerre base is characterized by
an optimal value of the Laguerre pole. Thus, we propose the
optimization of the Laguerre poles using the genetic algorithm.

A. Genetic algorithm

The first step of the genetic algorithm is fixing the expres-
sion of the objective or evaluation function to optimize.Then,
probabilistic steps are involved to create an initial popula-
tion of N;,4 individuals. The initial population will undergo
genetic operations (evaluation, mutation and crossover ...) to
converge towards the optimal solution of the problem which
minimizes the objective function [13]. The optimization based
on the genetic algorithm is summarized in these steps:

- Initiation

The process begins with a collection of individuals called

initial population. Each individual is a solution to the

problem to be solved. This step is generally random.

Evaluation

This step consists in evaluating the performance (fithess)
of each individual of the initial population vis--vis the
objective function. This step assigns each individual a
score where the highest is assigned to the individual who
minimizes the objective function. Based on these scores,
a new population of potential solutions is created using
simple evolutionary operators: selection, crossover and
mutation.

Selection
The idea is to select the most suitable individuals and to



ISSN: 2766-9823 Volume 2, 2020
let thempasson their genes to the next generation [14neaningé,, , € R2™ thus forming the vector of population
15, 16]. of individuals Ind :

Crossover
The step of genetic crossover creates new individuals. Foid = ¢, , = Eal, &bt sy Eams Ebm
each pair of parents, a crossover point is chosen randomly for tmmput for mﬁput
in the genes. The offspring are created by exchanging o T (31)

the genes of the parents with each other until they reachThe performances of the individuals formitgd are eval-

the crossover point. The new offspring is added to thgated using the criterio®®QM N as an evaluation function.
population and this step only affects a limited numberhe individuals with the highest performances are selected to
of individuals established by the crossover rdte (< undergo different genetic operations (crossover, mutation and
100%). selection). After a defined number of iterations, the genetic
Mutation algorithm converges towards the optimal values. The strategy
The mutation consists in bringing a small disturbance 8" identifying the Fourier coefficients and optimizing the
a number of individuals established by the mutation ratétguerre poles of the MIMO ARX-Laguerre model using the
Pm (< 100%). This operation has the effect of coungenetic algorithm is summarized in algorithm 1.

teracting the attraction exerted by the best individuals,

c §R2m

Algorithm 1: Identification of the parameters of the

which makes it possible to explore other areas of tlﬁ

search space.

- Termination

The algorithm ends if the population has converged and2)
does not produce offspring significantly different from 3)

the previous generation.

B. Optimization of the Laguerre poles

In this case, the Laguerre filters depend essentially on the 1,...
Laguerre poles expressed in a non-linear way (unlike theb)
Fourier coefficients). Consequently, in order to better locate the
dynamics of the system and to allow an optimal and adequate
choice of the poles for a significant parametric reduction
of the MIMO ARX-Laguerre model (22), we propose the

optimization of these poles using the genetic algorithm.
In this regard, the optimal pole values of the MIMO ARX-

Laguerre multimodel are identified by minimizing the normal-

ized mean squared error (EQM)NThe latter is chosen as an

objective function and consists in calculating the cumulative

error between the measured outputs veag(k) and the
outputs vector of the MIMO ARX-Laguerre moddimy(k)
on a measurement window :

m H .
pu = 18— yl* & Eml (fi(@ (k)
o) £ & o

(30)
After fixing the objective function, we generate an initial
population of individuals/nd containing the Laguerre poles
of the MIMO ARX-Laguerre model.

In what follows, in order not to complicate and reduce the
calculation time of the genetic algorithm, we propose to reduce

IMO ARX-Laguerre model
1) Suppose we haveH

input/output  observations
(u(k), yo(k)).

Fix the truncation ordersV, and N,.

Fix the size of the populationV;,; as well as the
crossover and mutation rateBc and Pm, respectively

and the number of iteration§’,,, ..

4) Initialization: Generate randomly an initial population

of N;,q vectors of parameterdnd® = € =

, Ning and acounter =1

While counter < Gqz do :

5.1 Evaluation : For each individual estimate the

Fourier coefficients then evaluate the objective

function EQM N given by (30)

Selection: ChooséV;,,q x Pc individuals of the

current population according to the evaluation of

the values of the evaluation function.

Crossover and mutation: Apply the crossover to the

chosen individuals then apply the mutation with

a probability Pm to generate newV,,,; possible

solutions.

Evaluation : For each new solution, estimate the

Fourier coefficients then evaluate the objective

function EQM N.

Termination of the genetic algorithm when the

number of iterationscompteur = Gpqz IS

reached. If not:
5.6 compteur = compteur + 1 and return to step 5.

6) The individual of the last populatiodnd® such that
EQMN,,;, = e—1mizr\}- (EQMN¢€) corresponds to
the optimal Laguerre plS‘Iles of the MIMO ARX-Laguerre
model.

5.2

5.3

5.5

V. APPLICATION TO THECSTR BENCHMARK

the number of Laguerere poles to be optimized by taking equalTo validate algorithm 1 of the identification of the pa-

the polesé,,. = £, and&,,, = &, fori, r =1,...,m et
t=1,...
&, defined by (27) is equal t@ m and notm (m + p)

82

rameters of the MIMO ARX-Laguerre model, the application
,p. In this case, the dimension of the poles vectdo the CSTR Benchmark is proposed. The studied reactor
involves two reactant$31 and B2 with concentrations'z
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andCg, and flov ratesw; andw,, respectively. These flows

are controlled by using the two control valv€$’1 andCV2 0.7 , , , ,

respectively. The main use of the system is the chemical

reaction between the two reactan®sl and B2 at a level

h of the liquid in the reactor at a concentrati@r. The

mathematical model of the nonlinear CSTR is given by Beale

et al. [17]: s ‘ ‘ ‘ ‘
dh(t) 0 200 400 600 800 1000

L = wy () + wa(t) — 0.21/h(t) Time (5)
dgfg(t) wy () ) % ' '
= (Cp1 — Cp(1))

dt h(t)
kch (t)
(1+ k2Cp(1))

1

wy (L min™")

0.6 [

0.5

21

-3
Cy (kmol m™)

(32)

wherek; andk, arethe constants associated with the rate of . ; . .
consumption of the chemical reaction. In what follows, the 0 200 400 600 800 1000
reactor is assumed to be a MIMO process with two inpuits fime ()

andCpg; which are the flow rate and the concentration of the o ) ) .
reactant31 and two outputs which are the heighof the fluid Fig. 2. Identificationphase input signals applied to the CSTR Benchmark
in the reactor and its concentrati@rs. In this case, we fix
the feed raté;, k5 and the ratev, and the concentratiof’z,

of the reactantB2. These parameters are defined in TABLE
|_ 15

o

E 10
TABLE | =
FIXED PARAMETERS OF THECSTR BENCHMARK 5]
[ Fixed parameter§ ~ Values | 0 ) : ) :
0 200 400 600 800 1000
w2 0.3 L min T Time (s)
Cpa 5 kmol m =3 20
k1, k2 1

[
(%]
T

) )

CE (kmol m™)
=
o

For the identification phase, the value of the sampling
period is set tdl, = 0.5s and the inputsv; and Cp; are
two pseudo-random sequences with amplitudes varying in the 0 ! ! ' !
. . . . 0 200 400 600 800 1000
intervals[0.35, 0.7] and [0, 30] as illustrated in Fig. 2. The Time(s)
output signalsh andC'z are shown in Fig. 3.

The truncation orders are taken equal for all the sub-models Fig. 3. Identificationphase output signals of the CSTR Benchmark
in order to reduce the parametric complexity:

N,=Ny,=1 (33) 14

(&)

By applying algorithm 1, we proceed to the identification
of the MIMO ARX-Laguerre model. To do this, we consider
an initial population of sizeV;,; = 60 while fixing G4 = 1f
1000 generations and the values of the crossover and mutation
rates atPc = 0.9 and Pm = 0.033 respectively.

In Fig. 4 we present the evolution of the evaluation function =1
EQMN defined by (30) calculated for each iteration of
algorithm 1. Moreover, we also present in Fig. 5 the evolution 04|
of the Laguerre poles and in Fig. 6 the evolution of the Fourier

0.8

EOMN

0.2

coefficients characterizing the MIMO ARX-Laguerre model S
for N, = N, = 1. o . . . —
Thus for the last population corresponding to the number of ° 200 Nowwber of iteraion 800 1000

iterations equal ta 000, meaning when we haveounter =
1000, the optimal Laguerre poles are identified. These aray. 4. Application to the CSTR Benchmark: Evolution of the evaluation
summarized in TABLE Il and moreover the optimal values dfnction EQM N
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TABLE Il

ir IDENTIFIED FOURIER COEFFICIENTS OF THRARX-LAGUERREMIMO

0.8 90,a11 9d0,a1o 90,b11 90,b12

o5 0.5660 | 0.0088 | 10.6/32| 0.0014

) 90,a21 | 90,a25 | 90,bo; 90,b25

0.4 -0.3534 | 0.5059 | 71.7500| 0.0797

02 If —Za,

0 {bl

o > betweenthe outputsof the Benchmark s, C) and those of
e b the MIMO ARX-Laguerre modely;, y2).
-0.4
-0.6

A |l ] lj'—l_lr_'_,_ﬁ 201
-0.8
po——
-1 : : ‘ 15
0 200 400 600 800 1000

Number of iteration

£10

Fig. 5. Applicationto the CSTR Benchmark: Evolution of the Laguerre poles h
of the MIMO ARX-Laguerre model st _._._ output y, of the model
O 1 1 1 1 1
0 500 1000 1500 2000 2500
200 1 90 .
" Time (s)
go,a
” 30
9op CB
150 "
9% === output y,, of the model
goam AQE 207
100 go.agg §
~2
%, = 10
50 ' gO,bzz
O 1 1 1 1 1
0 500 1000 1500 2000 2500
=== A A ) Time (s)
Fig. 7. Evolution of the benchmark outputs and the MIMO ARX-Laguerre
model outputs

50 L L L L |
400 600

Number of iteration

0 200 800 1000

VI. CONCLUSION

Fig. 6. Application to the CSTR Benchmark: Evolution of the Fourier

cosfficients of the MIMO ARX.Laguerre model In this paper, we have proposed an algorithm for the use

of the genetic algorithm to optimize the Lagurre poles of
the MIMO ARX-Laguerre model. This model is obtained
the Fourier coefficients of the MIMO ARX-Laguerre modePy decomposing the MIMO ARX model on the Laguerre
are presented in TABLE IIl. orthonormal. The resulting model guarantees a significant
reduction in the number of parameters with a simple recursive
representation. Parametric reduction is guaranteed if the opti-

TABLE I
IDENTIFIED LAGUERRE POLES OF THEMIMO ARX-L AcUERRE MoDEL  mal values of the Laguerre poles are selected. The proposed
e & . & algorithm is validated through a numerical simulation to the
al bl a2 b2
0.7573 | -0.8823 | 0.0950 | 0.0956 CSTR Benchmark.
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