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Abstract—In this paper, we propose the poles otimization of
the linear MIMO ARX-laguerre model using genetic algorithm.
This model is obtained by decompsing the MIMO ARX model
on orthonormal and independent Laguerre bases allowing the
filtering of the inputs and outputs of the system using the
orthonormal functions of Laguerre. The resulting model, called
MIMO ARX-Laguerre, ensures a reduction in the parametric
complexity with respect to the number of parameters with a
simple recursive vector representation. However, this reduction
is conditioned by an optimal choice of the Laguerre pole
characterizing each base. To do this, we propose to optimize, by
exploiting the genetic algorithm, the Laguerre poles of the MIMO
ARX-laguerre model. The optimization of the Laguerre poles is
validated by a numerical simulation to the CSTR Benchmark.

Index Terms—MIMO ARX-laguerre model, laguerre poles,
optimization, genetic algorithm, CSTR Benchmark

I. I NTRODUCTION

Recently, we have seen an increase in the availability and
accuracy of experimental data in many areas of engineering.
This increase in data has spawned a large number of complex
mathematical models that have been developed to explain
the mechanisms responsible for these observations. These
models comprising an increasing number of parameters are
characterized by a high order which complicates and makes
tedious and expensive the analysis, synthesis and simulation
of the concerned system.

In this regard, solutions have been brought to the represen-
tation of complex systems to develop reduced models repre-
senting the dynamic behavior of these systems. In this context,
several works exploit the orthonormal bases such as the base
of Laguerre [1, 2], the base of Kautz [3] and the generalized
orthogonal base (BOG) [4] to reduce the complexity of the
model and subsequently lighten the procedure of control. The
obtained model has several advantages such as insensitivity
to the choice of the sampling period, the no-need for a priori
knowledge of the delay of the system, the linearity with respect
to the Fourier coefficients and especially the reduction of the

number of parameters thanks to an optimal identification of
the pole or poles characterizing the considered orthogonal
base. The orthogonal basis of Laguerre is considered as a
particular case of that of Kautz and also of the generalized
orthogonal base. Although the modeling on this base requires
more filters than that developed on the Kautz base at the
BOG base especially for the representation of oscillating
systems or with several regimes, the orthogonal functions of
Laguerre have the advantage of being calculated in a simpler
recursive way and especially that they depend exclusively on
a single real parameter called pole of Laguerre|ξ| < 1. As
a result, the Laguerre modelling is more adequate for the
representation of strongly damped systems having a dominant
dynamic. In addition, optimal pole identification guarantees
a good description of the system with a smaller number of
parameters. Thanks to these properties, the Laguerre base
has been applied to the identification and control of linear
systems. The major drawback of using the Laguerre base
lies in its incompatibility with complex systems. Indeed, the
Laguerre model, characterized by the filtering of the input,
representing these types of systems requires a very high
number of parameters. To work around this problem Bouzrara
et al. [5] proposed to use Laguerre’s orthonormal functions for
input and output filtering of the ARX model. This proposal
is used by Garna et al. [6] for the parametric reduction of
the bilinear model. The obtained results of this procedure
of modelling are of great and encouraging interest for the
representation of complex linear MIMO systems.

In this case, the use of the orthogonal functions of Laguerre
has been proposed [7] for the filtering of the inputs and outputs
of the MIMO ARX model and the obtained model is called
MIMO ARX-Laguerre. The latter is characterized by a reduced
number of parameters compared to that of the MIMO ARX
model if the Laguerre poles are identified in an optimal way.
For this reason, we propose in this paper the optimization of
the Laguerre poles of the MIMO ARX-Laguerre model using
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the geneticalgorithm[8, 9, 10, 11]. The latter has been widely
adopted in recent years and presents a very powerful meta-
heuristic of research inspired by Charles Darwin’s theory of
natural evolution. These algorithms reflect the process of nat-
ural selection where the most suitable individuals are selected
for reproduction in order to produce the offspring or the next
generation. Unlike other optimization algorithms, the process
of identification using genetic algorithms is based on guided
random search. This search can lead to an optimal solution by
starting from a random initial cost function and then searching
only in the cheapest space (in the guided direction). This is
suitable when working with large and complex data sets.

The paper is organized as follows: in section 2 we let’s
present the MIMO ARX-Laguerre model. This model is ob-
tained by breaking down the MIMO ARX model into MISO
ARX subsystems and by developing the coefficients of the
latter on two independent Laguerre bases. In this context, we
present a recursive representation of the MIMO ARX-Laguerre
model. Section 3 presents the identification of the Fourier
coefficients of the model studied. In section 4 we propose an
optimization algorithm of Laguerre poles by exploiting the
genetic algorithm. Finally, section 4 evaluates, through the
application to a CSTR Benchmark, the performances of the
proposed algorithm.

II. MIMO ARX-L AGUERREMODEL

In this section, we present a recent alternative for the
modeling of linear MIMO systems [7]. This alternative con-
sists in extending each linear MIMO ARX model on a set
of orthonormal and independent Laguerre bases by filtering
the inputs and outputs of the process using Laguerre or-
thonormal functions. The resulting model, called the MIMO
ARX-Laguerre model, ensures the reduction in the number
of parameters compared to the classic MIMO ARX model
with a recursive and simple vector representation. However,
this reduction strongly depends on the optimal choice of the
Laguerre pole characterizing each base.

Generally, the problem of identifying a linear MIMO system
can be divided into several problems of identifying systems
with multiple inputs and single output (MISO). Indeed, a
MIMO system havingp inputs andm outputs can be rep-
resented by a collection ofm MISO subsystems depicted by
Fig. 1.
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Fig. 1. Representationof a linear MIMO system by a set of MISO subsystems

In this case the outputyi(k) of the ith MISO subsystem
can be represented by the MISO ARX model as follows [20]:

yi(k) =
m∑

r=1

n a∑

j=1

h air (j) yr(k − j) +
p∑

t=1

n b∑

j=1

h bit(j)ut(k − j)

pour; i = 1, . . . , m
(1)

whereut(k) and yr(k) are thetth input and therth output
of the system respectively;h air (j) andh bit(j) are the coeffi-
cients of the model; andna andnb are the orders of the model.
In the following, we present the decomposition of the coef-
ficientsh air (j) andh bit(j) on orthonormal and independent
Laguerre bases. Thus, the development of the linear MIMO
ARX-Laguerre model results from this decomposition of each
MISO ARX model.

A. Principle of decomposition

According to the stability condition within the meaning
of the BIBO (Bounded Input Bounded Output) criterion, the
coefficientshair (j) andhbit(j) of the MISO ARX model (1)
are absolutely summable:





∞∑

j=1

|h air (j)| < ∞
∞∑

j=1

|h bit(j)| < ∞
(2)

The coefficientshair (j) andhbit(j) therefore belong to the
Lebesgue spacè2 [0, +∞) and they can be decomposed on
orthonormal and independent Laguerre bases as follows:





h air (j) =
N a−1∑
n=0

gn, air ` air
n (j, ξ air ) , r = 1, . . . , m

h bit(j) =
N b−1∑
n=0

gn, bit ` bit
n (j, ξ bit) , t = 1, . . . , p

(3)

whereN a andN b are the truncation orders,ξ air
andξ bit

are
the Laguerre poles and̀air

n (j, ξ air
) and` bit

n (j, ξ bit
) represent

the orthonormal and independent functions of the Laguerre
bases [5]. So the decomposition (3) is characterized by a
number of Laguerre poles equal tonp:

np = m + p (4)

The coefficientsgn, air
and gn, bit

of the decomposition
are the Fourier coefficients which can be defined by these
equalities:





gn, air =
na∑

j=0

hair (j) ` air
n (j, ξ air )

gn, bit =
nb∑

j=0

hbit(j) ` bit
n (j, ξ bit)

(5)
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By substitutingthe relation (3) in each MISO ARX model
given by the equation (1), the resulting model, entitled MISO
ARX-Laguerre is written [7, 12]:

yi(k) =
m∑

r=1

Na−1∑
n=0

gn, air x i
n, yr

(k) +
p∑

t=1

Nb−1∑
n=0

gn, bit x i
n, ut

(k)

(6)
with :

• x i
n, yr

is the output of the(n+1)th filter associated with
the rth output:

x i
n, yr

(k) =
∞∑

j=0

` air
n (j, ξ air ) yr(k − j) (7)

• x i
n, ut

is the output of the(n+1)th filter associated with
the tth input:

x i
n, ut

(k) =
∞∑

j=0

` bit
n (j, ξ bit)ut(k − j) (8)

We note that the resulting model (6) is characterized by a
number of Fourier coefficients equal tonc:

nc = mNa + p Nb (9)

Moreover, the model (6) is linear with respect to the Fourier
coefficientsgn, air andgn, bit therefore classical linear identi-
fication methods can be applied. However, it is nonlinear with
respect to the Laguerre polesξ air andξ bit , which requires the
application of appropriate identification approaches.

B. Recursive representation of the MISO ARX-Laguerre model

According to [12], the MISO ARX-Laguerre model admits
this recursive vector representation:





X i
yr

(k + 1) = A i
yr

X i
yr

(k) + b i
yr

yr(k)

X i
ut

(k + 1) = A i
ut

X i
ut

(k) + b i
ut

ut(k)

yi(k) = C T
i Xi(k)

(10)

where fori, r = 1, . . . ,m et t = 1, . . . , p on a :

• X i
yr

and X i
ut

are vectors containing the output of
Laguerre filters:

{
X i

yr
(k) =

[
x i

0,yr
(k) · · ·x i

Na−1,yr
(k)

]T ∈ <Na

X i
ut

(k) =
[
x i

0,ut
(k) · · ·x i

Nb−1,ut
(k)

]T ∈ <Nb

(11)
• X i(k) is a vector consisting ofX i

yr
andX i

ut
:

Xi(k) =
[
(X i

y1
(k))

T · · · (X i
ym

(k))
T

(X i
u1

(k))
T · · · (X i

up
(k))

T
]T

∈ <nc

(12)

• C i is a vector containing the Fourier coefficientsgn, air

andgn, bit characterizing (6) :

Ci = [g0, ai1 · · · gNa−1, ai1 · · · g0, aim
· · · gNa−1, aim

g0, bi1 · · · gNb−1, bi1 · · · g0, bip · · · gNb−1, bip

]T ∈ <nc

(13)

• A i
yr

and A i
ut

are square matrices of dimensionsN a

and N b, respectively whose componentsA i
yr

(h, q) and
A i

ut
(h, q) are defined as follows:

A i
yr

(h, q) =





ξ air si h = q

(−ξ air )
h−q−1(1− ξ2

air
) si h > q

0 si h < q

for h, q = 1, . . . , Na

(14)

A i
ut

(h, q) =





ξ bit si h = q

(−ξ bit)
h−q−1(1− ξ2

bit
) si h > q

0 si h < q

for h, q = 1, . . . , Nb

(15)

• b i
yr

and b i
ut

are vectors of dimensionsN a and N b,
respectively:

b i
yr

=
√

1− ξ2
air




1
(−ξ air )
(−ξ air )

2

...
(−ξ air )

N a−1



∈ <Na

b i
ut

=
√

1− ξ2
bit




1
(−ξ bit)
(−ξ bit)

2

...
(−ξ bit)

N b−1



∈ <Nb

(16)

From the relation (10), each MISO ARX-Laguerre model
can be described by this compact vector representation:

{
Xi(k + 1) = Ai Xi(k) + B i

u u (k) + B i
y y (k)

yi(k) = C T
i Xi(k)

(17)

with:

Ai = bloc diag
{

A i
y1

, . . . ,A i
ym

, A i
u1

, . . . , A i
up

}
∈ <nc ×nc

(18)

B i
y =


 B i

y

0 p Nb, m


 ∈ <nc ×m, B i

u =

[
0m Na, p

B i
u

]
∈ <nc × p

(19)





B i
y = bloc diag

{
b i

y1
, . . . , b i

ym

} ∈ <m Na ×m

B i
u = bloc diag

{
b i

u1
, . . . , b i

up

}
∈ < p Nb × p

(20)

u (k) = [u1 (k) . . . up (k)]T ; y (k) = [y1 (k) . . . ym (k)]T

(21)
where0 i, j of dimensioni× j.
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C. Recursive representation of the MIMO ARX-Laguerre lin-
ear model

Since the MIMO ARX-Laguerre model can be decomposed
into a set of MISO ARX-Laguerre models, the resulting
MIMO ARX Laguerre model can therefore be formulated from
the relation (17) by this compact recursive vector representa-
tion [12]:

{
X(k + 1) = AX(k) + Bu u (k) + By y (k)

y (k) = CT X (k)
(22)

where:

X(k) = [(X1(k))T . . . (Xm(k))T ]T ∈ <Nc (23)

andA, Bu, By andC are matrices of dimensions (Nc×Nc),
(Nc × p), (Nc ×m) and (Nc ×m), respectively, with:

Nc = mnc = m (mNa + pNb) (24)

A =




A1 0nc, nc · · · 0nc, nc

0nc, nc A2 · · · 0nc, nc

...
...

. ..
...

0nc, nc 0nc, nc · · · Am


 ∈ <

Nc ×Nc

Bu =




B1
u

B2
u

...
Bm

u


 ∈ <

Nc × p, By =




B1
y

B2
y

...
Bm

y


 ∈ <

Nc ×m

(25)

C =




C1 0nc
· · · 0nc

0nc
C2 · · · 0nc

...
...

. . .
...

0nc
0nc

· · · Cm


 ∈ <Nc ×m (26)

such that0nc
is the null column vector of dimensionnc.

We note that the MIMO ARX-Laguerre model defined
by (22) is characterized byNc Fourier coefficients andNp

Laguerre poles defining the vectorξm,p as follows:

ξm,p = [ξa11 , . . . , ξa1p
, ξb11 , . . . , ξb1m︸ ︷︷ ︸

for the 1st output

, . . . ,

ξam1 , . . . , ξamp
, ξbm1 , . . . , ξbmm

]︸ ︷︷ ︸
for the mth output

∈ <Np
(27)

avec :

Np = m np = m (m + p) (28)

wherenp is defined by (4).

III. I DENTIFICATION OF THE FOURIER COEFFICIENTS OF

THE ARX-L AGUERREMIMO MODEL

From the representation (22) the MIMO ARX-Laguerre
model is represented by a set of MISO ARX-Laguerre rep-
resentations given by (17), the proposed method of recursive
identification of the Fourier coefficients constitutingCi asso-
ciated with theith outputyi(k) of the MIMO ARX-Laguerre
model, consists in minimizing the following criterion:

Ji =
h∑

k=1

(
yo,i(k)−CT

i Xi(k)
)2

; i = 1, . . . ,m (29)

whereyo,i(j) is the measuredith output of the system. As each
MISO ARX-Laguerre model is linear and the criterionJi is
quadratic with respect toCi, respectively, its minimization
provides a global minimum. Therefore, standard parameter
estimation methods such as least mean square (LMS) or
recursive least squares (RLS) methods can be used to calculate
the estimated parameter vectorsCi.

IV. OPTIMIZATION OF THE LAGUERRE POLES OF THE

ARX-L AGUERREMIMO MODEL

The MIMO ARX-Laguerre model is a set of ARX-Laguerre
MISO models given by (10), each characterized bync Fouurier
cooefficients andnp Laguerre poles. As shown by Bouzrara
et al. [5], we obtain a significant reduction in the number
of parameters when each Laguerre base is characterized by
an optimal value of the Laguerre pole. Thus, we propose the
optimization of the Laguerre poles using the genetic algorithm.

A. Genetic algorithm

The first step of the genetic algorithm is fixing the expres-
sion of the objective or evaluation function to optimize.Then,
probabilistic steps are involved to create an initial popula-
tion of Nind individuals. The initial population will undergo
genetic operations (evaluation, mutation and crossover ...) to
converge towards the optimal solution of the problem which
minimizes the objective function [13]. The optimization based
on the genetic algorithm is summarized in these steps:

- Initiation
The process begins with a collection of individuals called
initial population. Each individual is a solution to the
problem to be solved. This step is generally random.

- Evaluation
This step consists in evaluating the performance (fitness)
of each individual of the initial population vis--vis the
objective function. This step assigns each individual a
score where the highest is assigned to the individual who
minimizes the objective function. Based on these scores,
a new population of potential solutions is created using
simple evolutionary operators: selection, crossover and
mutation.

- Selection
The idea is to select the most suitable individuals and to
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let thempasson their genes to the next generation [14,
15, 16].

- Crossover
The step of genetic crossover creates new individuals. For
each pair of parents, a crossover point is chosen randomly
in the genes. The offspring are created by exchanging
the genes of the parents with each other until they reach
the crossover point. The new offspring is added to the
population and this step only affects a limited number
of individuals established by the crossover ratePc (≤
100%).

- Mutation
The mutation consists in bringing a small disturbance to
a number of individuals established by the mutation rate
Pm (≤ 100%). This operation has the effect of coun-
teracting the attraction exerted by the best individuals,
which makes it possible to explore other areas of the
search space.

- Termination
The algorithm ends if the population has converged and
does not produce offspring significantly different from
the previous generation.

B. Optimization of the Laguerre poles

In this case, the Laguerre filters depend essentially on the
Laguerre poles expressed in a non-linear way (unlike the
Fourier coefficients). Consequently, in order to better locate the
dynamics of the system and to allow an optimal and adequate
choice of the poles for a significant parametric reduction
of the MIMO ARX-Laguerre model (22), we propose the
optimization of these poles using the genetic algorithm.

In this regard, the optimal pole values of the MIMO ARX-
Laguerre multimodel are identified by minimizing the normal-
ized mean squared error (EQMN). The latter is chosen as an
objective function and consists in calculating the cumulative
error between the measured outputs vectoryo(k) and the
outputs vector of the MIMO ARX-Laguerre modelbmy(k)
on a measurement windowH:

EQMN =
‖yo(k)− y(k)‖2

‖yo(k)‖2 =

m∑
i=1

H∑
k=1

(yo,i(k)− yi(k))2

m∑
i=1

H∑
k=1

(yo,i(k))2

(30)
After fixing the objective function, we generate an initial

population of individualsInd containing the Laguerre poles
of the MIMO ARX-Laguerre model.

In what follows, in order not to complicate and reduce the
calculation time of the genetic algorithm, we propose to reduce
the number of Laguerere poles to be optimized by taking equal
the polesξ air

= ξ ai
and ξ bit

= ξ bi
for i, r = 1, . . . , m et

t = 1, . . . , p. In this case, the dimension of the poles vector
ξm,p defined by (27) is equal to2 m and not m (m + p)

meaningξm,p ∈ < 2 m thus forming the vector of population
of individualsInd :

Ind = ξm, p =


 ξa1, ξb1︸ ︷︷ ︸

for the 1st output

, . . . , ξam, ξbm︸ ︷︷ ︸
for the mth output


 ∈ <2 m

(31)
The performances of the individuals formingInd are eval-

uated using the criterionEQMN as an evaluation function.
The individuals with the highest performances are selected to
undergo different genetic operations (crossover, mutation and
selection). After a defined number of iterations, the genetic
algorithm converges towards the optimal values. The strategy
for identifying the Fourier coefficients and optimizing the
Laguerre poles of the MIMO ARX-Laguerre model using the
genetic algorithm is summarized in algorithm 1.

Algorithm 1: Identification of the parameters of the
MIMO ARX-Laguerre model

1) Suppose we haveH input/output observations
(u(k), yo(k)).

2) Fix the truncation ordersNa and Nb.
3) Fix the size of the populationNind as well as the

crossover and mutation ratesPc and Pm, respectively
and the number of iterationsGmax.

4) Initialization: Generate randomly an initial population
of Nind vectors of parametersInde = ξe

m,p, e =
1, . . . , Nind and acounter = 1

5) While counter < Gmax do :

5.1 Evaluation : For each individual estimate the
Fourier coefficients then evaluate the objective
functionEQMN given by (30)

5.2 Selection: ChooseNind × Pc individuals of the
current population according to the evaluation of
the values of the evaluation function.

5.3 Crossover and mutation: Apply the crossover to the
chosen individuals then apply the mutation with
a probability Pm to generate newNind possible
solutions.

5.4 Evaluation : For each new solution, estimate the
Fourier coefficients then evaluate the objective
functionEQMN .

5.5 Termination of the genetic algorithm when the
number of iterationscompteur = Gmax is
reached. If not:

5.6 compteur = compteur + 1 and return to step 5.

6) The individual of the last populationInde such that
EQMNmin = min

e=1...Nind

(EQMNe) corresponds to

the optimal Laguerre poles of the MIMO ARX-Laguerre
model.

V. A PPLICATION TO THECSTR BENCHMARK

To validate algorithm 1 of the identification of the pa-
rameters of the MIMO ARX-Laguerre model, the application
to the CSTR Benchmark is proposed. The studied reactor
involves two reactantsB1 and B2 with concentrationsCB1
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andCB2 and flow ratesw1 andw2, respectively. These flows
are controlled by using the two control valvesCV 1 andCV 2
respectively. The main use of the system is the chemical
reaction between the two reactantsB1 and B2 at a level
h of the liquid in the reactor at a concentrationCB . The
mathematical model of the nonlinear CSTR is given by Beale
et al. [17]:




dh(t)
dt

= w1(t) + w2(t)− 0.2
√

h(t)
dCB(t)

dt
= (CB1 − CB(t))

w1(t)
h(t)

+ (CB2 − CB(t))
w2(t)
h(t)

− k1CB(t)
(1 + k2CB(t))

(32)
wherek1 andk2 are the constants associated with the rate of
consumption of the chemical reaction. In what follows, the
reactor is assumed to be a MIMO process with two inputsw1

andCB1 which are the flow rate and the concentration of the
reactantB1 and two outputs which are the heighth of the fluid
in the reactor and its concentrationCB . In this case, we fix
the feed ratek1, k2 and the ratew2 and the concentrationCB2

of the reactantB2. These parameters are defined in TABLE
I.

TABLE I
FIXED PARAMETERS OF THECSTR BENCHMARK

Fixed parameters Values

w2 0.3 L min−1

CB2 5 kmol m−3

k1, k2 1

For the identification phase, the value of the sampling
period is set toTe = 0.5 s and the inputsw1 and CB1 are
two pseudo-random sequences with amplitudes varying in the
intervals [0.35, 0.7] and [0, 30] as illustrated in Fig. 2. The
output signalsh andCB are shown in Fig. 3.

The truncation orders are taken equal for all the sub-models
in order to reduce the parametric complexity:

Na = Nb = 1 (33)

By applying algorithm 1, we proceed to the identification
of the MIMO ARX-Laguerre model. To do this, we consider
an initial population of sizeNind = 60 while fixing Gmax =
1000 generations and the values of the crossover and mutation
rates atPc = 0.9 andPm = 0.033 respectively.

In Fig. 4 we present the evolution of the evaluation function
EQMN defined by (30) calculated for each iteration of
algorithm 1. Moreover, we also present in Fig. 5 the evolution
of the Laguerre poles and in Fig. 6 the evolution of the Fourier
coefficients characterizing the MIMO ARX-Laguerre model
for Na = Nb = 1.

Thus for the last population corresponding to the number of
iterations equal to1000, meaning when we havecounter =
1000, the optimal Laguerre poles are identified. These are
summarized in TABLE II and moreover the optimal values of
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the Fourier coefficients of the MIMO ARX-Laguerre model
are presented in TABLE III.

TABLE II
IDENTIFIED LAGUERRE POLES OF THEMIMO ARX-L AGUERRE MODEL

ξs
a1 ξs

b1 ξs
a2 ξs

b2
-0.7573 -0.8823 0.9959 0.9956

According to the figure 4, we note that the results of the
parametric identification of the MIMO ARX-Laguerre model
are obtained for a value of the evaluation function equal to
EQMNmin = 0.0020%. In this regard, we present in figure
7 the evolution of the outputs of the system and of the outputs
of the MIMO ARX-Laguerre model. We note the agreement

TABLE III
IDENTIFIED FOURIER COEFFICIENTS OF THEARX-L AGUERREMIMO

g0,a11 g0,a12 g0,b11 g0,b12
0.5660 0.0088 10.6732 0.0014

g0,a21 g0,a22 g0,b21 g0,b22
-0.3534 0.5059 71.7500 0.0797

betweenthe outputsof the Benchmark(h,CB) and those of
the MIMO ARX-Laguerre model(y1, y2).
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Fig. 7. Evolution of the benchmark outputs and the MIMO ARX-Laguerre
model outputs

VI. CONCLUSION

In this paper, we have proposed an algorithm for the use
of the genetic algorithm to optimize the Lagurre poles of
the MIMO ARX-Laguerre model. This model is obtained
by decomposing the MIMO ARX model on the Laguerre
orthonormal. The resulting model guarantees a significant
reduction in the number of parameters with a simple recursive
representation. Parametric reduction is guaranteed if the opti-
mal values of the Laguerre poles are selected. The proposed
algorithm is validated through a numerical simulation to the
CSTR Benchmark.
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