
The impact of practicing the computational thinking

in a programming course

Fernanda Brito Correia

Coimbra Institute of Engineering

Polythecnic Institute of Coimbra

Coimbra, Portugal

fernanda@isec.pt

Anabela Gomes

Coimbra Institute of Engineering

Polythecnic Institute of Coimbra

CISUC - Center for Informatics and

Systems of the University of Coimbra

Coimbra, Portugal

anabela@isec.pt

E. Bigotte de Almeida

Coimbra Institute of Engineering

Polythecnic Institute of Coimbra

CASPAE-Centro de Apoio de Pais e

Amigos da Escola

Coimbra, Portugal

ebigotte@isec.pt

Ricardo Almeida

CASPAE-Centro de Apoio de Pais e

Amigos da Escola

Coimbra, Portugal

ricardo.almeida@caspae.pt

Abstract— Engineering students have problems related to

problem-solving skills, which reflects on a high failure rate in

introductory programming curricular units they attend. To try

to reduce this failure rate and to help students to acquire the

necessary programming competences, new processes of teaching

and learning are needed. Plans should be drawn to foster

positive attitudes towards programming to reinforce students’

motivation to learn and to apply their knowledge to new

situations. In higher education and from an early stage,

constructing instruments that facilitate the learning and

teaching process and the promotion of student involvement,

contributes to build a sustainable structure that includes

students’ projects carried out in areas of programming

knowledge, which are considered essential to facilitate the

assimilation of computational thinking. To achieve this, it was

implemented a collaborative project, where students should

develop a project using the Scratch software. This collaborative

project was evaluated, using several questionnaires with various

statements answered by the students after they finished their

project. These questionnaires were analysed, by grouping the

statements of the questionnaires into categories and sub-

categories. Conclusions, about the usefulness of mapping both

Scratch and C programming language in the process of learning

and teaching, in the learning of programming introductory

concepts and in the students’ motivation to try other

programming languages, are extracted from the evaluation of

their projects and from the analysis of these questionnaires.

Keywords— Scratch, Higher Education, Mathematics,

Programming, Computational Thinking Skills

I. INTRODUCTION

Higher Education institutions with Engineering degrees
have a very heterogeneous public with diverse personal,
motivational and cognitive characteristics and several
knowledge backgrounds. The literature includes many
references about the high failure and dropout rates in
introductory programming courses in many higher education
institutions worldwide [1-6]. Many causes for the learning
difficulties associated to these courses have already been
identified. Usually students have lack of preparation in
mathematics and problem solving [7-10].

In order to contemplate this problem, every year, teachers
try to reflect about the use of different and innovative teaching

methods. They look for new methodologies and strategies that
can motivate students in order to obtain better learnings and
better results, while maintaining the level of demanding and
objectives.

New students arrive to engineering degrees with different
levels of problem-solving knowledge. This happens majorly
because their previous courses are less focused on the
autonomous resolution of problems and logical reasoning.
Such problem has transversal repercussions to several courses,
like those related with mathematics and programming [11-12].

As Biomedical Engineering teachers we are naturally
sensitive to this problem. It is well known that these students
have problems related with problem-solving skills, which
reflects on the results to Programming Introduction course.
Consequently, in the 1st semester from the 1st year, a higher
failure rate is noticed in the 1st programming course they
attend. It is also well known that these students are highly
motivated for areas and topics that use study methodologies
through rote learning and mechanization, such as health topics
in detriment of technologies.

The assumptions of the Bologna model and the
recommendations of the Agency for Evaluation and
Accreditation of Higher Education (A3Es) point out precisely
in the sense that there must be a higher concern in the planning
of transversal competency training throughout the course.
Thus, it is considered that the development of
multidisciplinary projects may be a relevant strategy for
training such students and also for the integration of students
in higher education.

Therefore, teachers from two curricular units from the 1st
year and 1st semester, one about introductory programming,
Introduction to Information Technology (ITI), and another
about mathematics, Integral Calculus (IC), decided to carry
out a collaborative project that involved their common
students. This project allows, on the one hand, the student’s
development of programming skills, and on the other hand,
the involvement of all participants in the development of
mathematical pedagogical resources. This collaborative
project had two main goals to achieve. As a 1st goal, to allow
the development of computational thinking skills through the
use of different learning strategies to help the learning process

ISSN: 2766-9823 Volume 3, 2021

12

mailto:anabela@isec.pt

of the students involved in the various curricular units of their
Biomedical Engineering degree, in particular in the curricular
units that contain programming subjects. As a 2nd goal, to
involve students in the construction of mathematical
pedagogical resources. The construction of these resources
will also allow the development of abstract thinking and the
ability to modularize, reducing a problem to simpler
situations, representing problems in different ways, making
analogies with similar problems and developing deductive
thinking. This process allows the improvement of several
problem-solving skills through the expansion of analytical,
quantitative, analogical and combinatorial reasoning skills.

In this context and with this approach of an
interdisciplinary project, the authors decided to use the
Scratch software as a tool, for students to learn how to develop
projects effectively with different levels of complexity,
learning the logic of programming and how to solve problems,
and at the same time develop their autonomy of
computational thinking.

Scratch software allows to learn mathematical basic
concepts in a constructive manner and awakens student
interest and motivation to program [13], developing in
students their own path for learning. Felleisen and
Krishnamurthi [14] emphasized the concept of "imaginative
programming", considering its importance as an element of
programming referring the close relationship between
mathematics and computation.

II. THE STUDY

The study focused on students of the Biomedical
Engineering degree, ministered at the Coimbra Institute of
Engineering (ISEC) from the Polytechnic Institute of Coimbra
(IPC), Portugal, enrolled in the courses of ITI and IC, in the
1st semester, 1st year. The sample is composed by 33 students
(11 males and 22 females), where 72.4% are between the ages
of 18 and 20 years. The subjects contained in ITI are the ones
usually taught in a first programming course. Here we use the
C language to teach the fundamental procedural programming
concepts. The subjects covered include the basic concepts
taught in an introductory programming course using a
procedural programming language, like data types, operators
and expressions, standard input and output formatted data,
data structures, functions, arrays and string manipulation. In
the first three weeks students solve programming problems
using sequential, selection and repetitive structures through
pseudocode. Only after a certain comprehension of the subject
the problems are solved using the C language giving emphasis
to the syntax details. This course has 4 contact hours per week,
1 hour of theoretic class and 3 hours of lab classes in two
groups of about 30 students each. In addition, teachers offer
more 6 hours per week to clarify students’ doubts, during the
entire semester.

Due to the already mentioned difficulties of the students to
learn programming we have decided to use the Scratch tool to
help them to learn the programming concepts and structures,
since this tool allows a higher abstraction level and a visual
approach of programming. To help students to overcome their
difficulties and have better programming results, we
conducted an interdisciplinary project developed as a
curriculum complement of ITI with the collaboration of IC,
since students have both curricular units. After the conclusion
of the project and considering the main objectives of our
investigation we tried, using qualitative and quantitative

approaches, to understand the perceptions of students in
relation to the importance of this project.

For this analysis we studied two aspects. Firstly, in relation
to the use of Scratch software. Secondly, to validate the
importance of undertaking the developed project to develop
computational thinking and programming learning.

This collaborative project consisted firstly about raising
awareness on the Scratch platform: how it should be used,
what its potentialities are, what students can and cannot
develop, and how they can do it. For the multidisciplinary
team, it is a phase of diagnostic evaluation, perceiving the
students’ major difficulties, the areas that should be more
worked, and the projects they like to develop, where their
motivation is greater. After this, there was a learning phase of
the platform, where students learned to develop projects
effectively with different levels of complexity, including the
leaning and practice of the logic of programming, and how to
solve problems while developing their autonomy of learning.
Students had full autonomy to build a project, following
previously established guidelines, in groups of 2 elements, to
be presented at the end of the semester. Teachers and a
monitor offered introductory workshops and accompanying
extra classes’ hours, intervening only when requested by the
students, providing autonomous learning based on trial and
error. The various projects developed by the students were
educational games or animations inspired by introductory
mathematical themes. Finally, students had to prepare a final
report and a final presentation.

To evaluate this collaborative project, teachers developed
several questionnaires. Here two questionnaires are analysed:
A1 – a questionnaire about the satisfaction, importance and
difficulties of the students when using Scratch. This
questionnaire also includes questions related to computational
thinking skills. A2 – a questionnaire about the impact of
Scratch used in programming learning. In each questionnaire,
the format of the scale used was a five-point Likert type,
which describes the student degree of agreement, where 1 was
the minimum value and 5 was the maximum value. Being 1 –
Totally disagree, 2- Disagree, 3 – Do not agree or disagree, 4
– Agree and 5 – Totally agree.

The questionnaire A1 has 18 statements. The 1st 12
statements we categorized in the following three categories:
“Satisfaction”, “Utility and ease of access” and “Ease of
learning” (Table1). The remaining 6 statements in the A1
questionnaire were related to computational thinking, inspired
in part by the computational thinking grid [15]. There were
statements related with the following aspects “Experiment and
Interact”, “Test and Correct” and “Reuse and recombine”
(Table 2). The category “Abstracting and Modularizing”, was
not contemplated with a direct question but taken out through
a more detailed topic that students had to include in the project
report. The other categories were also supplemented with
descriptions required in the mentioned report. For example, on
“Experimenting and Interacting” they had to indicate how
they built the project in the most detailed way as possible.
About “Test and Correct”, in the report, students also had to
indicate a section where they should describe the main
problems they had and the way they proceeded to solve them.
About “Abstracting and Modularizing”, students were asked
to indicate in the report how it was decided which sprites were
needed for the project and where they were used and for what
purpose.

ISSN: 2766-9823 Volume 3, 2021

13

TABLE I. USE OF SCRATCH TOOL

Category Question

Satisfaction

A1Q1. I liked to work with the Scratch tool.

A1Q3. I felt motivated to work with Scratch.

A1Q17. I would like to work with Scratch in

the future.

Utility and

accessibility

A1Q4. Scratch is an ideal tool to build
educational materials.

A1Q5. The Scratch tool is of easy access.

A1Q15. I recognize in Scratch different

potential.

A1Q18. I recognize in Scratch important
features for those who start in programming.

A1Q19. I understand that it is important for all

graduates in Biomedical Engineering receive
training in Scratch

Ease of learning

A1Q2. I felt difficulties when using the

Scratch tool.

A1Q6. The learning process of the Scratch

tool was easy.

A1Q7. The programming environment is easy

to understand and use.

A1Q8. Generally, I felt comfortable to use the
Scratch tool.

TABLE II. COMPUTATIONAL THINKING

Category Question

Experiment

and interact
A1Q9. I reviewed several times my project.

Test and

correct
A1Q10. The final result of my project was the intended.

Test and

correct

A1Q11. I easily identified code errors, when something

wasn't right.

Reuse and

recombine

A1Q12. I tried to program other projects during the

preparation of the main project.

A1Q13. I researched other Scratch projects to inspire me.

A1Q14. I understood the code from other projects and used

these codes in my project.

The questionnaire A2 had 7 statements that we categorized
in the following four categories: “Concepts”, “Scope/Range”,
“Algorithms” and “Active learning/autonomy”. The category
“Algorithms” was divided in 4 subcategories: “Specification”,
“Analysis”, “Processing” and “Test” (Table3).

TABLE III. IMPACT OF SCRATCH USE IN ITI

Category
Sub-

category
Question

Concepts

(selections,

repetitions, …)

A2Q1. Better understand certain
concepts of programming.

Scope/range

A2Q2. Know the type of questions

and answers that programming can

and cannot provide.

Algorithmics

Specification
A2Q5. Identify and specify
programming problems.

Analysis

A2Q4. Recognize the central ideas

necessary in solving a

programming problem.

Processing

A2Q3. Understand and evaluate a
set of logical steps required in an

algorithm.

Test

A2Q6. Solving programming

problems including the application
of appropriate algorithms.

Active

learning/autonomy

A2Q7.Develop active learning

processes (the student contributes

to his learning process actively) in
the field of programming.

The questionnaires were answered by the students, who
performed a public presentation and assessment of their final
work, with a joint and shared debate of each project developed
by them. In order to develop complementary studies in the
context of the contribution of this action for the improvement
of the performance of the students in order to allow a better
understanding of each student trajectory, student
identification was requested, but not mandatory. The
confidentiality in the treatment and disclosure of the data was
guaranteed.

III. THE RESULTS

This section reports the obtained results after the
questionnaires (A1 and A2) analysis. Here are also mentioned
aspects considered relevant and extracted from the students’
final project report.

A. Scratch impact analysis

Figures Fig. 1, Fig. 2 and Fig. 3 show the graphics of the
quantitative analysis of A1 questionnaire questions
concerning the categories “Satisfaction”, “Ease of learning”
and “Utility and ease of access” regarding Scratch tool used in
students’ projects.

Concerning the 1st sub-category “Satisfaction”, about the
satisfaction using Scratch software, (A1Q1), in general, the
involved students liked to work with it, with 67.65% of the
sample agreeing with the statement and 26.47% fully
agreeing. When asked about motivation (A1Q3), 73.53% of
students agreed that they felt motivated to work with Scratch.
They also refer that they would like to work with Scratch in
the future, in a professional context (A1Q3) (I agree - 47.06%
and I totally agree - 11.76%).These results seem to indicate
that even though students refer that they were not so
motivated, they liked working with Scratch.

Fig. 1. Satisfaction of using Scratch.

However, the overwhelming majority (A1Q4: I Agree -
44.12% and I Agree Totally - 47.06%) found it to be very
useful for building educational materials while simultaneously
being easily accessible (A1Q5: Agree - 35.29% and Totally
Agree - 55.88%). They also recognize in Scratch different
potentialities (A1Q15: Agree - 50.00% and Totally Agree -
35.29%), and important characteristics for those who start
programming (A1Q18: Agree - 44.12% and Totally Agree -
41,18%), understanding that it is important for all graduates in
Biomedical Engineering to receive training in Scratch
programming when they start programming (A1Q19: Agree -
50.00% and Totally agree - 8.82%).

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5

Satisfaction

A1Q1. I liked to
work with the
Scratch tool.

A1Q3. I felt
motivated to work
with Scratch.

ISSN: 2766-9823 Volume 3, 2021

14

Fig. 2. Utility and accessibility of using Scratch.

Concerning Scratch software ease of learning, most
students reveal that the learning process is easy (A1Q6: Agree
- 61.76% and Totally agree - 11.76%), however, when asked
about their difficulties using this tool in a specific situation the
results were not so favourable (A1Q2 Agree – 41.18% and
Totally agree - 2.94%). Students found Scratch's work
environment easy to use (A1Q7: Agree - 58.82% and
Completely Agree - 17.65%) and they generally feel
comfortable using the tool (A1Q8: Agree - 64.71% and
Totally agree - 14.71 %).

Fig. 3. Ease of learning of using Scratch.

B. Computational Thinking Analysis

As mentioned before, we also analysed the following

dimensions of Computational Thinking, namely the sub-

categories: “Experimenting and Interacting”, “Test and

Correct”, “Reuse and Recombine” and “Abstract and

Modularize”. Regarding the competence of the sub-category

“Experimenting and Interacting”, students were asked to

describe, in each project report, how they built their project,

step by step in the most detailed way possible. However, in

general, these descriptions were very elementary, not

detailing specific aspects of it. Few gave a general description

of the project, in an orderly manner. Still on this topic,

students in A1Q9 were asked whether they had reviewed the

project several times, with a significant majority (97.06%) of

the students expressing agreement (partial agreement

(38.24%) or total agreement (58.82%)) regarding having

reviewed their project several times.

Regarding the competence of the sub-category “Test

and Correct” (A1Q10 + A1Q11) we asked students if they

easily identified errors in the code (A1Q11) and if the final

result of the work was what was expected (A1Q10).

Regarding the statement A1Q11, the majority (58.82%) of the

students expressed agreement (partial agreement (52.94%) or

total agreement (5.88%)) due to having easily identified error

in the codes, only 5.88% did not partially agree and 35.29%

having no opinion (neither agreed nor disagreed). Concerning

the question A1Q10, the majority (76.47%) of the students

expressed agreement (partial agreement (55.88%) or total

agreement (20.59%)) regarding satisfaction with the final

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5

Utility and accessibility

A1Q4. Scratch is
an ideal tool to
build educational
materials.

A1Q5. The Scratch
tool is of easy
access.

A1Q15. I recognize
in Scratch different
potential.

A1Q18. I recognize
in Scratch
important features
for those who
start in
programming.

A1Q19. I
understand that it
is important for all
graduates in
Biomedical
Engineering
received training
in Scratch.

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5

Ease of learning

A1Q2. I felt
difficulties when
using the Scratch
tool.

A1Q6. The
learning process
of the Scratch tool
was easy.

A1Q7. The
programming
environment is
easy to
understand and
use.

A1Q8. Generally, I
felt comfortable
to use the Scratch
tool.

ISSN: 2766-9823 Volume 3, 2021

15

result of their project, 5.88% did not partially agree and

having some students (17.65%) without an opinion (neither

agreed nor disagreed). In the report, students also had to fill

in a section where they should describe the main problems

they had and how they proceeded to correct them. However,

most students either did not describe the problems or were

very vague in their answers about the problems, so we

considered their answers to be of no relevance to this

analysis.

Regarding the competence of the sub-category “Reuse

and Recombine” (A1Q12, A1Q13 and A1Q14) we asked if

they researched other projects (A1Q13), if they understood

the code of other projects and if they used them (A1Q14) and

if they tried to implement other projects (A1Q12). Regarding

the question, A1Q13, the majority (82.35%) of the students

expressed agreement, meaning that the majority researched

other projects (partial agreement (58.82%) or total agreement

(23.53%)), only 11.76% did not fully or partially agree, with

5.88% without opinion (neither agreed nor disagreed).

Regarding the question A1Q14, the majority (70.59%) of the

students expressed agreement, having understood the code of

other projects and using it in their project (partial agreement

(50.00%) or total agreement (20.59%)). 17.65% did not

partially or totally agreed, with fewer students (11.76%)

without an opinion. Regarding the question A1Q12, there was

a percentage of 35.29% students who expressed agreement

regarding having tried to program other projects during the

elaboration of their project (partial agreement (23.53%) or

total agreement (11.76%)). 38.24% did not agree partially or

totally, meaning that they just did their project, with 27.47%

of students having no opinion (neither agreed nor disagreed).

Concerning this aspect, it was noticed that the majority of

students tried to find inspiration in other projects, especially

in coding approaches that could be useful for their project.

Many of them deviated from the initial idea because they

were unable to implement it or because they did not find

available implementations in relation to what they had in

mind. This information was deduced during the presentations

and defences of the projects and also during the various

phases of presentation of the project that deviated from what

was initially intended. Those who tried to incorporate parts of

other available projects, found it difficult to describe how

they adapted ideas, scripts or resources from other projects.

Worse than that, was the fact that they did not identify the

sources and the authors in which they were inspired.

Regarding the competence of “Abstract and

modularize”, students in the report were asked to indicate

how they decided which sprites were needed for the project

and where they were used and for what purpose. However,

the majority of the students provided little relevant or low-

level descriptions, giving no general idea of the decision to

choose certain sprites according to the general objectives of

their project.

It should be noted that the works produced by students

were also evaluated by the teachers and submitted to the Dr.

Scratch tool [16]. Although we cannot draw conclusions with

statistical significance given the sample size, we can make

the following considerations. The results of the produced

projects were generally good, being the average 82%, the

minimum 66%, the maximum 100% and the standard

deviation of 10%. Scratch helped students in terms of

algorithms, helping to realize a set of programming concepts.

Regarding the evaluation by Dr. Scratch, the differences were

minimal with respect to the parameters under consideration,

namely, “Flow Control”, “Data Representation”,

“Abstraction”, “User Interactivity”, “Synchronization”,“

Parallelism ”and “Logic”. So, we did a correlation analysis

between the global score (adding these parameters) obtained

in each project and the respective students classifications,

with no correlation being obtained. It was not a surprise, since

we took into account in the project evaluation other aspects

that stood out such as usability, pedagogical issues,

presentation and defence, not related to the aspects evaluated

by Dr. Scratch.

It was also clear, that this analysis involved only the

teachers, so we consider that an evaluation and testing of

projects developed by students, would be an added value to

have in consideration in future projects.

C. Programming Knowledge analysis

Students’ opinion about the impact of using Scratch in

programming learning in ITI, A2 questionnaire, is illustrated

in the graphics of Fig. 4, Fig. 5, Fig. 6 and Fig. 7.

Regarding the programming concepts understanding,
A2Q1, the majority (57.69%) agreed, 46.15% partially agreed
and 11.54% totally agreed that the developed project helped
them understanding these concepts. Relatively to the scope
and range of programming-related issues, A2Q2, 65.38%
considered that Scratch's work gave them a better
understanding of the type of programming-related questions
and answers, although only 7.69 % fully agreed.

Fig. 4. Impact of the Scratch use in concepts programming learning.

Fig. 5. Impact of the Scratch use in scope of programming learning.

0%

10%

20%

30%

40%

50%

1 2 3 4 5

Concepts

A2Q1. Better
understand
certain concepts
of programming.

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5

Scope

A2Q2. Know the
type of questions
and answers that
programming can
and cannot
provide.

ISSN: 2766-9823 Volume 3, 2021

16

With respect to the problem-solving ability of a
programming problem as far as the algorithm is concerned,
sub-category “Algorithmics” A2Q3 to A2Q6, most students
answered that they agreed that their project helped them to
develop this ability. To A2Q5 question, concerning the
identification and specification of programming problems
using Scratch, 73.08% of the sample agreed with the sentence
(57.69% of partial form and 15.38% of total form). Regarding
A2Q4 statement, asking if the work done in Scratch helped to
better analyse and recognize the main ideas for solving a
programming problem, the answers showed 57.69% of
agreement (50% partially and 7.69% overall). The A2Q3
statement, if Scratch helped to better perform algorithmic
processing with regard to the understanding and evaluation of
the procedure and writing of the algorithm (i. e., the logical
steps required to transform the input into output) gathered
84.62% of agreement (11.54% of partial form and 73.08% of
total form). The A2Q6 statement, concerning if the work
performed in Scratch helped to better test the adequacy of the
algorithm used in solving a programming problem met
57.69% of agreement (11.54% of partial form and 46.15% of
total form). It is notable that in these questions’ majority the
percentage of students who did not agree was 0% and nearly
0% those who did not agree partially (3.85% in A2Q3, 7.69%
in A2Q4, 0% in A2Q5 and 0% in A2Q6). This data can mean
that the remaining percentages referred to students who stated
that they had no opinion on the subject.

Fig. 6. Impact of the Scratch use in algorithmics programming learning.

Fig. 7. Impact of the Scratch use in active programming learning.

When questioned about the advantages of carrying out
their project, the obtained answers were, in general, very
positive. They refer that their project helped them to improve
the logical reasoning (useful in mathematics, programming
and in many other engineering subjects), to improve the
comprehension level (of programming concepts) and the skill
to transmit and explain it to others due to the consolidation of
acquired knowledge and the necessary organization level to
plan larger tasks. They also mention that they acquired a set
of competences necessary to learn programming effectively
(logical reasoning, code organization, planning of major
projects and consolidation of concepts, among others). They
found Scratch useful to help them understand the concepts and
realize its real meaning and application in concrete and real
situations making it easy to adapt and transfer them to other
languages more complex such as the C language. They felt
more confident to study and try other programming languages
due to the mapping using these two programming languages.
They also referred that this project gave them a different
perspective of the usefulness of programming with utility and
fun. This triggered the desire to apply the learned concepts to
new situations and make new projects, programming and
developing games and new interactive applications.

About the disadvantages in carrying out these projects the
obtained responses were essentially reported in relation to the
time spent on each project. They reported that the work
volume was excessive, requiring lots of time, dedication and
persistence, forcing them to a hard work of thinking logically
and found it much more difficult than all the other subjects
they studied. The majority of students considered that, apart
from these aspects there were no disadvantages. However, a
minority considered that it was not so useful, mainly because
this is not a programming language that they can use at a future
professional work. Moreover, many were disappointed with
the final result obtained regarding to all the effort applied.
Some of them also pointed as a negative aspect the classes
schedule for this project (done extra regular hours), namely
that they worked too late and after a full day of classes it was
difficult to find concentration to work.

A minority of the students also considered that Scratch
project did not help them to understand C programming
language. They also did not considered Scratch very useful to
diversify the type of math exercises.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5

Algorithmics

A2Q5. Identify and
specify
programming
problems.

A2Q4. Recognize
the central ideas
necessary in
solving a
programming
problem.

A2Q3. Understand
and evaluate a set
of logical steps
required in an
algorithm.

A2Q6. Solving
programming
problems including
the application of
appropriate
algorithms.

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5

Active Learning

A2Q7.Develop
active learning
processes (the
student
contributes to his
learning process
actively) in the
field of
programming.

ISSN: 2766-9823 Volume 3, 2021

17

Fig. 8. Computational thinking with Scratch.

IV. CONCLUSIONS

As Biomedical Engineering teachers we are naturally
sensitive to the difficulties of the students to learn
programming. It is well known that these students have
problems related with problem-solving skills, which reflects
on the results of programming introduction curricular unit. In
the 1st semester from the 1st year, a higher failure rate is
noticed in the 1st programming curricular unit they attend. To
try to reduce this failure rate and to help students to acquire
the necessary programming competences, it was implemented
a collaborative project using the Scratch software.

To evaluate the mentioned project addressed to students
from the 1st semester from the 1st year, of the 1st
programming curricular unit of Biomedical Engineering
degree, teachers applied and analysed two questionnaires,

answered by the students after developing their projects using
the Scratch software, A1 and A2. A1 – a questionnaire about
the satisfaction, importance and difficulties of the students
when using Scratch. This questionnaire also includes
questions related to computational thinking skills. A2 – a
questionnaire about the impact of Scratch used in
programming learning.

The questionnaires made of several statements and
answered by the students using a 5-level scale were organized
in categories and some of the categories in subcategories
described in Table 1 and Table 2 for questionnaire A1 and
Table3 for questionnaire A2. Besides that, students pointed
out advantages and disadvantages of using the Scratch
software to help them leaning how to program. The results
seem to indicate that even though students refer that they were
not so motivated, they liked working with Scratch. Most
students reveal that the general learning process was easy, that
they found Scratch's work environment easy to use and
generally they felt comfortable using this software, but many
students felt difficulties when using it in a specific situation.

Several dimensions of Computational Thinking were also
analysed. The students achieved low values for the various
parameters analysed in the computational thinking grid. This
highlights the need for approaches that develop the
computational thinking, so necessary for learning
programming.

It was also done a correlation analysis between the global
score, adding Dr. Scratch parameters obtained in each project,
and the respective students classifications, but no correlation
was found. A reason for that could be because it was taken
into account, in each students’ project evaluation other
aspects, behind the aspects evaluated by Dr. Scratch.

Students also referred several advantages in developing a
project using Scratch, like improving the logical reasoning,
improving the programming concepts comprehension level or
the acquisition of skills to transmit and explain the acquired
knowledge to others. Most students, after finishing their
project, felt more confident to study and try other
programming languages due to the mapping using these two
programming languages Scratch and C language.

About the impact of using Scratch in programming
learning, the majority of students agreed that the developed
project helped to understand programming concepts and gave
those students a better understanding of the type of
programming-related questions and answers. They also
considered that their project helped to develop their algorithm
problem-solving ability when programming.

As disadvantages students highlight that the work volume
necessary to develop their project was excessive, which is
understandable, since they had extra hours to develop and be
accompanied in their project. Only a minority of students
considered that their Scratch project did not help them to
understand C programming language.

We also consider that the evaluation and testing of projects
developed by students, besides professors, would be an added
value to have in consideration in future projects.

ACKNOWLEDGMENT

The authors would like to thank all students that
participated in the studies and to the teachers and people that
allowed their realization.

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5

Computational Thinking

A1Q9. I reviewed
several times my
project.

A1Q10. The final
result of my
project was the
intended.

A1Q11. I easily
identified code
errors, when
something wasn't
right.

A1Q12. I tried to
program other
projects during the
preparation of the
main project.

A1Q13. I
researched other
Scratch projects to
inspire me.

A1Q14. I
understood the
code from other
projects and used
these codes in my
project.

ISSN: 2766-9823 Volume 3, 2021

18

REFERENCES

[1] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” ACM SIGCSE Bull., vol. 39, no. 2, pp. 32, Jun. 2007,
doi: 10.1145/1272848.1272879.

[2] C. Watson and F. W. B. Li, “Failure rates in introductory programming
revisited,” in Proceedings of the 2014 conference on Innovation &
technology in computer science education - ITiCSE ’14, 2014, pp. 39–
44, doi: 10.1145/2591708.2591749.

[3] T. Jenkins, “On the difficulty of learning to program,” in Proceedings
of the 3rd Annual LTSN_ICS Conference (Loughborough University,
United Kingdom, August 27-29, 2002), The Higher Education
Academy, 2002, pp. 53-58.

[4] E. Lahtinen, K. Ala-Mutka and H-M Järvinen, H-M., "A study of
difficulties of novice programmers," in Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer
Science Education (Monte de Caparica, Portugal, June 27-29, 2005),
ACM New York, NY, USA, 2005, pp. 4-18.

[5] R. Lister, B. Simon, E. Thompson, J. L. Whalley and C. Prasad, “Not
seeing the forest for the trees: novice programmers and the SOLO
taxonomy,” SIGCSE Bulletin, vol. 38, no. 3, pp. 118-122, 2006.

[6] P. Byrne and G. Lyons, “The effect of student attributes on success in
programming,” SIGCSE Bulletin, vol. 33, no. 3, pp. 49-52, 2001.

[7] I. Milne and G. Rowe, “Difficulties in learning and teaching
programming – views of students and tutors,” Education and
Information Technologies, vol. 7, no. 1, pp. 55–66, 2002.

[8] J. Bennedsen and M. E. Caspersen, “Abstraction ability as an indicator
of success for learning object-oriented programming?,” SIGCSE
Bulletin inroads, vol. 38, no. 2, pp. 39-43, 2006.

[9] W. D. Gray, N. C. Goldberg and S. A. Byrnes, “Novices and
programming: Merely a difficult subject (why?) or a means to

mastering metacognitive skills?,” Journal of Educational Research on
Computers, vol. 9, no. 1, pp. 131-140, 2007.

[10] J. Stachel, D. Marghitu, T. Brahim, R. Sims, L. Reynolds and V.
Czelusniak, “Managing Cognitive Load in Introductory Programming
Courses: A Cognitive Aware Scaffolding Tool,” Journal of Integrated
Design and Process Science, Computer Science, vol. 17, no. 1, pp. 37-
54, 2013.

[11] A. Gomes, L. Carmo, M. E. Almeida and A. J. Mendes, “Mathematics
and programming problem solving,” in Proceedings of 3rd E-Learning
Conference – Computer Science Education (Coimbra, Portugal, 2006).

[12] A. Gomes and A. J. Mendes, “A study on student performance in first
year CS courses,” in Proceedings of the 15th Annual Conference on
Innovation and Technology in Computer Science Education –
ITiCSE’10 (Ankara, Turquia, 2010).

[13] L. Calao, J. Moreno-Leon, H. Correa, G.Robles, ”Developing
Mathematical Thinking with Scratch An Experiment with 6th Grade
Students”, G. Conole et al. (Eds.): EC-TEL 2015, LNCS 9307, pp. 17–
27, 2015.

[14] M. Felleisen, S. Krishnamurthi, “Safety in Programming Languages,”
in Proceedings of the Sixth ACM-SIGSOFT Symposium on the
Foundations of Software Engineering, November 1998.

[15] K. Brennan and M. Resnick, “New frameworks for studying and
assessing the development of computational thinking,” American
Educational Research Association meeting, pp. 1-25. Vancouver:
AERA.

[16] J. Moreno-León, G. Robles, G. and M. Román-González, “Dr. Scratch:
Automatic Analysis of Scratch Projects to Assess and Foster
Computational Thinking,” Revista de Educación a Distancia, vol. 46,
pp. 1-23.

.

ISSN: 2766-9823 Volume 3, 2021

19

