
A New Method for a Micromouse to Find its Way
Through a Maze Unaided

Chutisant Kerdvibulvech
Department of Information and Computer Technology,

Rangsit University
52/347 Muang-Ake, Paholyothin Rd. Lak-Hok, Pathum

Thani 12000, Thailand
chutisant.k@rsu.ac.th

Andrew Junmee
Department of Information and Computer Technology,

Rangsit University
52/347 Muang-Ake, Paholyothin Rd. Lak-Hok, Pathum

Thani 12000, Thailand
andrew.j@rsu.ac.th

Abstract— A Micromouse is a robot that is designed to find its
way through any maze with a black line on a white map. The
white map acts as a white background for the maze. Since its
external environment is not known, the robot requires some
intelligence or decision-making capabilities to find its way
through the maze. Therefore, this paper covers on the “decision
making algorithm”. It is an electro-mechanical robot that
consists of 3 main sub systems: the drive system, an array of
sensors, and the control system. This paper also covers algorithm
and programming logic to solve the maze. Then gradually
improves the algorithm to accurately solve the maze on a one-
way path with extra intelligence. Our aim is to allow the Micro
mouse to reach the end of the maze.

Keywords—robotic; maze; tracking; decision making; micro-
mouse

I. INTRODUCTION
Micromouse is a robot designed to get to the end of the

maze, unaided. The robot essentially comprises of a drive
motor, steering and turning method to move the robot. It has
sensors to detect the lines on the maze and control logic to
control the activity of the robot and keep it on track. The robot
is powered by a battery and has to find its way from a
predetermined starting point to the end of the maze unaided.
The shorter the time period it takes, the better the decision-
making algorithm. The robot has to keep track of where it is
and keep exploring the maze lines and detect once it reaches
the finishing point.

The mice is completely autonomous robots that must find
its way [1] from a predetermined starting position to the end of
the maze unaided. The mouse will need to keep track of where
it is and detect when it has reached the goal [2].

Autonomous robots have wide reaching applications, as
reviewed in [9], from Bomb sniffing to finding humans in
wreckage to home automation. It is possible that a Micromouse
can save lives and can be argued that not only saving a life of
human but also saving the world. This is why we have
contributed to researches and advanced robotic studies. It is
important to know the potential the Micromouse has and to use
this technology in your own desire.

 Several related works have been presented in some
Micromouses competing against other micromouse in

competitions because of their high-tech Micromoues and
advanced technology. [7] The MightyMouse objective is to
find the center of a 16 by 16 cell maze for some time, the
MightMouse will attempt to make its fastest run from the
starting point to the destination cells. We aim to make a maze
2-squared meter long and a robot that can track lines. The
difference is that, the maze consists of one-way path from start
to finish so finding the fastest run isn’t necessary. The maze
does not need to be complicated with huge amount of twists
and turn.

Nowadays, Micromoues are built to solve mazes. There are
still mobile robots. Instead of making the robot autonomous,
their idea is to make the maze autonomous so that the mobile
robot can reach its goal. The basic algorithm [8] is improved by
retaining information of the number of decisions that have been
made. Consideration is given to implementation using a limited
power microprocessor. Their strategy and technique is the
opposite of most Micromouse and significance in a way. But
we prefer having the robot guide its way through the maze
rather than the maze do it.

Fast vision-based object and person tracking is important
for various applications in mobile robotics and Human Robot
Interaction [3]. Comparing both experiments together, we
noticed that there are many ways in Robotic Tracking. We are
mainly familiar with Object Tracker for Robotic Application
and Line Following Algorithm. It is good to have a tracker for
Robotic Application on your electronic devices, but in practical
work this doesn’t exist. In the end, you will have to use The
Line Following Algorithm. Using these results, it is said that
robotic tracking relies deeply on what you tracking for. With
more and more experiments taking place we are well aware
there will be new and different ways for tracking using robotic.

That autonomous robot could move freely and makes
decisions, without any lines, as presented in [4]. Ants show an
incredible ability to collectively transport complex irregular-
shaped objects with seemingly simple coordination A robot
that can coordinate itself on invisible lines relies on effective
transportation would be outstanding. But the truth is, this is just
a theory. If this theory was to hit the markets, you would be
looking at a robotic ant. Looking at their experiments, it is
quite possible to achieve. In the coordination phase, you are
talking about tons and tons of research and lab work. They aim

ISSN: 2766-9823 Volume 3, 2021

20

to go far ahead of any kind Line Following Algorithm and
Maze-Solving Algorithm. Having said that, they are basally
giving eyes to the robot. But is it worth it? Or would not you
want to track something that is achievable today.

Kilobot is deigned to make testing collective algorithms of
robots accessible to researchers [5]. In the past, testing
collective algorithms was important because without
algorithms the robots could not function. The Kilobot gets rid
of human errors and generates algorithms in fast and accurate
way. This kind of work would have speeded up the amount
time we wasted on testing codes and algorithms. Whereas our
work compiles a entirely different algorithm than the Kilobot.
Moreover, it shows that robotics can be used in various ways
depending on the algorithm. The Kilobot uses the algorithm to
test algorithms and the Micromouse uses algorithms to track
lines.

The kit includes the entire maze solving software and many
tips and hints on assembling the Micromouse [7]. Also includes
photos and videos of the completed Micromouse. This paper
only helps assembly your own Micromouse, but it does not
mean it is useless. In fact, it quiet useful to have this
knowledge. The problem is you need to know the algorithms to
successfully complete a Micromouse. It shows step-by-step
how to assembly your robot. The equipment they used a far
different than the kit we used [10]. The turn over board has
more voltage converters. We guess having more converters
your Micromouse will have more power, less power spikes and
you won’t have to change boards for the next 3-4 months. It is
safe to say there are several ways to make a Micromouse but
having more voltage converters is not needed.

In their works, a team of students put together a
Micromouse that can track and detect walls on 3D dimensional
maze. The Micromouse must be able to calculate the width and
lengths of the each wall of the entire maze. So the robot can
move swiftly and quickly through the maze. [11] Micromouse
is an annual competition, held the IEE Region 6 spring
meeting, in which an autonomous robot must find its way to
the center of a maze. The Line Following Algorithm would not
be possible on a 3D dimensional maze with walls and objects.
The Line Following Algorithm needs to have a darker line and
a brighter background, since the Maze-Solving Algorithm does
not track lines. It is completely impossible. The difference is
not only on the algorithm but also on the maze. The Line
Following Algorithm has to have a 2D dimensional maze on a
flat and plain surface.

The way Richard T. Vannoy [12] written out his source
code is outstanding. He really cleaned out so much of the
useless codes that weren’t necessary. His technique and style
for programming is a lot better. His code pretty much does the
same thing but with less codes. For the mechanical part, we
admire that we used a steel ball to hold the bearing rods in
place. Whereas in our robot we have a rubber ball, which keeps
the robot balanced. Richard T. Vannoy’s work [15] is quiet
similar to ours, looking specifically on the binary code. The
trick [13] to getting the robot to move alone the line is to
always aim toward the edge of the line.

It is not a Micromouse, the way they are tracking lines is
mainly on light. The robot has a more advanced and new

technology than the Micromouse. The NXT sensors [7] are
more expensive than the ZX-03 sensor and the outcome is that,
you will have a much more accurate calibration when detecting
light. Another thing is that, the NXT sensor is so accurate it can
even track the edge of the lines, rather than just a normal plain
line. A robot that uses the NXT sensors will able to turn swiftly
on sharp lines without going off track, whereas in the
Micromouse the turns have to be quite squared.

The goal of [9] is to build a Micromouse that is fast enough
to compete in Micromouse competitions. The motors and
chassis of the robot are faster and wider. The motors allow the
wheels to spin faster and the chassis has more space for the
robot rotate around the maze without losing any speed. We aim
to use the Micomouse to complete the maze with a decent time.
Speed is not an issue. Considering, calculating speed and
adjusting the motors to speed up your robot is a difficult factor,
we do not see the point in doing so. As long as the robot can
guide its way through the maze unaided states the fact the
Micromouse is a successful project.

Richard’s maze [12] is fairly simple, yet it has more turns
than on our maze. It would probably take less time to complete
the maze on Richard’s project. Designing a maze-solving
robot, you have to think two steps ahead. For example, the left
hand rule and the right hand rule. On a simple maze, there are
only 8 possible loops that the robot can encounter. Left Turn
Only, Right Turn Only, Left or Right (“T”), Four Way, Straight
or Left, Straight or Right, End of Maze, and Dead End. These
possibilities are set into the left and right hand rule as data and
are stored into the microcontroller. Once the robot is placed
onto the lines, it triggers the sensors to send signals to the
microcontroller. In our work, there are 3 only possibilities. Left
Turn Only, Right Turn Only and, End of Maze. Considering,
our maze is one-way path 8 possibilities is not needed. The
idea was to complete the maze with less possible. As you can,
we taken away 5 possibilities and compiled it to the
Micromouse.

RoboMind [16], a robot simulation environment, was
presented to solve simply connected mazes. RoboMind is built
by software they created. The software is used for testing the
robot, so the robot will always find the exit in any maze. The
software has various kinds of options and quiet user-friendly,
so you don’t have to write tons and tons of code, most of it is
generated for you. Whereas in our work most of the testing
came from practical work, finding errors was less precise. The
RoboMind software is good tool to improve testing. The
software has an augment reality maze and robot, where users
can reorganize the maze-solving algorithm without having to
touch the robot in the real world. Testing robots without any
software is not impossible, but it is not an easy job. While
testing, we had to constantly change batteries over and over
again.

II. MECHANICAL DESIGN
There are 9 parts that we used to put together our own

Micromouse, which are Microcontroller Circuit, Robot Driving
Motor, Cable Line, Input Circuit, Robot Wheel, Robot Rubber
Wheel, Standard Grid Plate, Standard Plastic Bar, Light-

ISSN: 2766-9823 Volume 3, 2021

21

Emitting Diode. Once the robot was fully assembled. Codes,
algorithms, and testing are needed to place it on the maze.

A. Overview of robot
 Figure 1 shows the brain of the robot, because this is where
all the data is stored. It connects the Robot driving motors,
Input circuit and LED to the Microcontroller Circuit. The wires
that are attached to the Microcontroller Circuit are used to send
and receive information. Under the Microcontroller Circuit a
battery pack is attached to it, that gives power to the driving
motors.

Fig. 1: Microcontroller Circuit

Figure 2 represents the Driving Motor. There are two
motors that are attached to the robot wheels, one by one.
Driving Motors are used to make the wheels spin and for
steering, so that the robot can move forward. It converts any
form of energy into mechanical energy and power.

Fig. 2: Driving motor (2 sets)

Figure 3 shows the IR sensors of the robot; they are used like
human instincts. If there is a turn on the maze, the robot will
turn without having to stop. The sensors will feed input to the
main circuit then produce an output. By moving left and right,
the sensors are tracking whether the line in front of the robot is
straight or if it’s a turn. Therefore the sensors act more
accurately to making decisions. A binary code is then sent to
the main circuit as input and output to rotate the robot to make
the robot turn. The robot is able to find it’s way from the start

of the maze to the end, without any errors. There are two
wheels on the robot used to balance the robot and of course to
make it move.

Fig. 3: IR Sensors (2 sets)

Output circuit used to receive input from the main circuit
after process and using that output to send to the motors. LED
lighting is the eyes of the robot. In an environment with dim
lighting the LED lighting is able to detect dark colours and
light colours. By doing so, a room with dim lighting is best
suited for this kind of Micro mouse, since the dim lighting
makes the dark colour visible to the robots sensors.

The programming language we used to write the coding for
the Micro mouse is written all in C++. We found it very helpful
when applying this language to our robot. It helped us define
analog inputs and time limits accurately.

B. Tracking and The Maze
In order to execute the algorithm accurately and prevent the

robot from going off track the robot has to detect the colour it
is moving in. There are major considerations on the design of
the robot since various approaches can be introduced in the
way the robot sees its environment. One elaborate is that the
Micro mouse is color sensitive.

C++ is used to program the microcontroller and the line
labyrinth performs the line following algorithm. The robot is
able to detect the lines with help of the IR sensors. IR led sends
light to the ground, if the ground is black the light is absorbed
and the reflected light from the ground will not trigger the
transistor. The output of the transistor is 0 when the robot is on
the black line. When the robot is on the white background, the
reflected IR light is enough to trigger the transistor.

Solving mazes has been studied for years and years in
mathematics, which means there are too many algorithms to
name here. An algorithm is a set of instructions that, when
carried out, produce a certain result. The result in our case is a
route to the target destination of the maze.

The maze is made out of plastic. The size of the maze is 2-
squared meter long. The maze has a single through-route with
twist and turns and is not designed to be as difficult to navigate
for the Micro mouse. But there are still some challenges and
some will be easier then others.

While the speed of the robot is fixed, it means that the robot
is bound to have slightly more problems on twist and turns
rather than on a straight line. This is because the robot has to

ISSN: 2766-9823 Volume 3, 2021

22

detect where it’s position and keep up with how fast the robot
is moving. The speed of the robot determines whether the
detection is correct and leads to whether the robot will stay on
track. Both detection and speed has to be properly adjusted and
tested so that both detection and speed meets it making point.

C. Decision-making Algorithm and P Control
In every decision-making algorithm consists of a start and

end. This algorithm tells the robot, why should we do this?
When should we do this? Will it be a success?

Now, these simple questions are answered using a binary
code. A binary code represents computer processor instructions
using the binary number system's two binary digits, 0 and 1,
which only a computer can read.

The robot will always rotate left and right. This is because
of the decision-making algorithm. The reason the robot will
always rotate left and right no matter what is because the robot
is detecting whether the line under the sensor is black or white.
So, setting the timer in the decision-making algorithm, we
assigned the left steer to 0 and the right steer to 1.

For example a straight line will be written like this
01010101. In binary a turn will be written like this 0010101 or
1101010, which means the first two digits of 0’s makes a left
turn and carried on straight the first two digits of 1’s makes a
right turn and carried on straight.

Here is the code for the decision-making algorithm.
 if(bot_mode == MODE_ROTATE_R){ //Rotate the robot right (clockwise)...

 track = clip_pos(track);

 r_speed = addsat(REV1,track);

 l_speed = addsat(FWD1, 0 - track);

 if(timer == 1){ //...until front sensors find a line

 if(motors_stopped()){

 bot_mode=MODE_TRACKLINE_RAMP_UP;

 timer = abs(speed);

 }

 if(bot_mode == MODE_ROTATE_R){ //Rotate the robot left (clockwise)...

 track = clip_pos(track);

 r_speed = addsat(REV1,track);

 l_speed = addsat(FWD1, 0 - track);

 if(timer == 0){ //...until front sensors find a line

 if(motors_stopped()){

 bot_mode=MODE_TRACKLINE_RAMP_UP;

 timer = abs(speed);

 }

 P stands for proportional. The idea behind P Control is to
have an output, in this case our motors, and a feedback input,
our IR sensors, and use the data from the feedback to change
the output value accordingly and proportionally.

Tracking light is a major problem in calibration. When
tracking a light, you have to think of as it like a mirror. A

mirror reflects light in many ways, but we don’t want the light
to see the robot. We want the robot to see the light. Even if a
single light ray can make the robot go off track.

Fig. 4: A scenario where the robot is on the right of the
maze.

Fig. 5: A scenario where the robot is on the left of the maze.

First, we tried using only two Light sensors, as depicted in
Figure 4. One for each side is right and left. But there was still
a slight problem with the calibration. So, we added two more

ISSN: 2766-9823 Volume 3, 2021

23

Light-Emitting Diode to the Micro mouse that made it easier
and accurate to track light. If the robot is placed on the left of
the maze the output of the left-looking sensor will be less than
the output of the right looking sensor because it is further away
from the maze (IR sensors decrease their output when the
object goes away.)

III. EXPERIMENTAL RESULTS
The previous map we applied to the robot was fairly small

and the details were poor. We replaced the previous map with a
much more challenging maze. To prove the maze works better,
we recorded a video of the performance. In the video, the maze
has a few dents, which may cause the robot to go off track. We
place the robot on the starting point. While the robot is
traveling throughout the maze, we are assisting the robot by
flatting out the dents. Flatting out the dents supports the robot
in reaching the finishing point. A flat surface is the best
possible way for the Micromouse to proceed to the finishing
point without any errors.

 Fig 4. Line-Following Algorithm

The Line Following Algorithm has proven that any
Micromouse can be completely robustly. It’s a method by
which a robot navigates from one position to another by
following a line. This line is usually a white line against a
darker background or a black line against a brighter
background.

As shown in Figure 4, the Line Following Algorithm
allows the Micromouse to aid its way through the maze without
any assistant just by following the lines in its path. It means, a
user does not need a controller. All he/she has to do is push the
start button and watch it do its job.

The Line Following Algorithm uses a 2D dimensional
maze and contains a flat surface. It has a black line and a white
background. It takes approximately 2:30 minutes to complete
the maze from the start. The Maze-Solving Algorithm uses 3D
dimensional and contains objects and walls, but no lines.

The main reason we decide to make a Micromouse with
The Line Following Algorithm is mainly because of its low
cost. The Micromouse Kit for the Maze-Solving Algorithm is

quiet costly. The way we put together the Micromouse is
mostly made out of plastic and Lego parts to stick together the
Micromouse Kit.

 Fig 5. The Maze-Solving Algorithm

For any beginners that want to build a Micromouse we
recommend them to go with The Following Algorithm to start
with because it is cheaper and the algorithm is easier to learn.
Our experimental results can be found online at [6]:
http://youtu.be/jWhFa2d_PVA.

IV. CONCLUSIONS
The technology as we know is improving everyday [9] and

we hope in the near future Micro mouse can be improved in the
same way. For instance they are used in many squads around
the country. It’s intelligent weaponry that can make the world a
safer a place.

To the state the fact that the Micro mouse is a success or
not is by letting the robot find it’s way through the maze
without going off track, and without any error detection. In
order to keep the Micro mouse on track, it may need some
assistants on flattening out the dents on the maze. The problem
lays on the maze not the robot. Due to our coding and testing
my robot has no problem guiding itself through the maze from
start to end. It is proven that our research is safe to say it was a
success.

REFERENCES

[1] http://www.micromouse.ca [website] last retrieved 12/02/2013
[2] http://robogames.net/rules/maze.php [website] last retrieved 12/02/2013
[3] Alexander Kolarow, Michael Brauckmann. “Vision-based Hyper-Real-

Time Object Tracker for Robotic Applications”
[4] Michael Rubenstein, Golnaz Habibi, Adrian Cabrera. “Collective

Transport of Complex Objects by Simple Robots" Theory and
Experiments

[5] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. “ Kilobot: A
Low Cost Scalable Robot System for Collective Behaviours”

[6] http://youtu.be/jWhFa2d_PVA [website] last retrieved 12/07/2013
[7] Kelly Ridge, Sanjeev Giri, Peter Shaw, Jason Flynn. “MightMouse: An

Autonomous Maze Solving Robot”
[8] L. Wyard-Scott, Q.-H. M. Meng. “A Potential Maze Solving Algorithm

for a Micromouse Robot”
[9] http://madan.wordpress.com/2006/07/24/micromouse-maze-solving-

algorithm/ [website] last retrieved 29/06/2013

ISSN: 2766-9823 Volume 3, 2021

24

[10] This is a cut down version of the Picaxe Micromouse Manual supplied
with the kit.

[11] Minji Kim, IEE UCSD President. “Micromouse 2011”
[12] Richard T. Vannoy II, M.S.I.T., B.S.E.E.T. “Building a Line

Following Robot”

[13] Carnegie Mellon Robotics Academy. “Line Tracking Basic Lesson”
[14] Jonathan W. Valvano. “Lab 24 Line Tracking Robot”
[15] Richard T. Vannoy II. “Design a Line Maze Solving Robot”
[16] Research Kitchen, Freshbrain, Hill Air Force Base. “RoboMind

Challenges”.

ISSN: 2766-9823 Volume 3, 2021

25

