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Abstract—In this paper, the symmetric 2-adic complexity of
Ding-Helleseth generalized cyclotomic sequences of order four
with period equal to a power of an odd prime is studied. The
estimate of symmetric 2-adic complexity of these sequences is
obtained. It is shown that above sequences have large symmetric
2-adic complexity.

Index Terms—binary sequences, generalized cyclotomy, 2-adic
complexity

I. INTRODUCTION

Pseudorandom binary sequences are widely used in many
areas of communication and cryptography. The use of cyclo-
tomic classes and generalized cyclotomic classes to design
sequences is a well-known method. Classical cyclotomy was
first considered in detail by Gauss. Generalized cyclotomy,
as a natural generalization of cyclotomy, was presented by
Whiteman. Further, Ding and Helleseth proposed a generalized
cyclotomy of order 2 with respect to odd modulo N [2]. This
cyclotomy was generalized in series of papers. Later, Fan and
Ge introduced a unified approach to study both of Whiteman
and Ding-Helleseth generalized cyclotomy. There are a lot
of papers devoted to study the properties of cyclotomic and
generalized cyclotomic sequences.

In the application on cryptography, sequences, as candidates
of key in stream cipher system, are needed to have big
complexity. Linear complexity and 2-adic complexity of a
sequence are defined as the length of the shortest linear
feedback shift registers or feedback with carry shift registers
respectively, which is able to generate the given sequence.
The notation of 2-adic complexity of sequence was presented
by Klapper and Goresky [9], [10]. Later Hu and Feng [8]
proposed a new measure which they called symmetric 2-
adic complexity. They also showed that symmetric 2-adic
complexity is better than 2-adic complexity in measuring the
security of a binary periodic sequence. Thus it is important
to study 2-adic complexity of the known sequences and find
binary sequences with large linear complexity and symmetric
2-adic complexity.

In this paper we consider the symmetric 2-adic compexity
of Ding-Hellesth generalized sequences of order four with

period equal to a power of an odd prime. The linear com-
plexity of such sequences is studied in [4], [5], [16](see also
references here). Comparing with the linear complexity, the 2-
adic complexity of cyclotomic and generalized sequences has
not been fully researched. The 2-adic complexity of the series
of sequences with ideal autocorrelation or good autocorrelation
were studied in [11], [12], [15], [17] (see also references
here). Very recently, the 2-adic complexity of Ding-Helleseth
sequence of order two with period p2 was determined in [3],
[14] for p 6≡ ±5 (mod 24) and was estimated in [13] for pn.

In this paper, we will obtain the estimate of symmetric 2-
adic complexity of Ding-Helleseth binary sequence of order
four with period pn. The 2-adic complexity of these sequences
was studied for n = 1 in [15] in a different way. Therefore,
we will assume further that n > 1. Our results show that these
sequences have high symmetric 2-adic complexity.

II. DING-HELLESETH SEQUENCES OF ORDER FOUR WITH
PERIOD pn

We need some preliminary notations before we begin. First,
we recall the definitions of generalized cyclotomic classes of
Ding-Hellesth of order four and sequences for our case.

Let p be a prime, p≡ 1 (mod 4) and let n≥ 1 be an integer.
Denote by g a primitive root modulo pn. Then an order g
equals pn−1(p−1).

For k = 1,2, · · · ,n we put by definition

D(pk)
j =

{
g j+4t (mod pk) |0≤ t < pk−1(p−1)/4

}
, j = 0,1,2,3.

(1)
The cosets D(pk)

j , j = 0,1,2,3 are called Ding-Helleseth gen-
eralized cyclotomic classes of order four with respect to pk.
It is clear by the definition that |D(pk)

j |= pk−1(p−1)/2.
We will denote by Zpk the ring of integers modulo pk, and

by Z∗pk the multiplicative group of Zpk , namely, Z∗pk = {x ∈
Zpk | gcd(x, pk) = 1}. If A is a subset of Zpk , then let us put
by definition bA = {ba mod pk| a ∈ A} and b+A = {(b+
a) mod pk| a ∈ A}, where b ∈ Z.
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According to [2], we have partitions

Z∗pn = D(pn)
0 ∪D(pn)

1 ∪D(pn)
2 ∪D(pn)

3

and

Zpn =
n⋃

k=1

pn−k
(

D(pk)
0 ∪D(pk)

1 ∪D(pn)
2 ∪D(pn)

3

)
∪{0}.

Let

C0 =
n⋃

k=1

pn−k(D(pk)
0 ∪D(pk)

1 )∪{0}

and

C1 =
n⋃

k=1

pn−k(D(pk)
2 ∪D(pk)

3 ).

Ding-Helleseth generalized cyclotomic sequences of order
four u∞ = (u0,u1,u2, . . .) with period pn is defined as

ui =

{
0, if i (mod pn) ∈C0,

1, if i (mod pn) ∈C1.
(2)

The linear complexity of these sequences was studied in [4].
Here we will estimate the symmetric 2-adic complexity of
sequences defined by (2).

We end this section with a reminder of the method for
computing 2-adic complexity. Let s∞ = {s0,s1, . . . ,sN} be a
binary sequence with period N. Let S(x) = ∑

N−1
i=0 sixi ∈ Z[x].

According to [9] the 2-adic complexity of s∞ can be defined
as

Φ(s∞) =
⌊

log2

(
2N−1

gcd(S(2),2N−1)
+1
)⌋

,

where bxc is the greatest integer that is less than or equal to
x.

The symmetric 2-adic complexity of s∞ is defined by
Φ̄(s∞) = min(Φ(s∞),Φ(s̃∞)), where s̃∞ = (sN−1,sN−2, . . . ,s0)
is the reciprocal sequence of s∞. So, we must define the
greatest common divisor of two numbers.

III. SUBSIDIARY LEMMAS

In this section, we will first give some subsidiary lemmas,
and then investigate 2-adic complexity of u∞ defined in (2).
The properties of generalized cyclotomic classes are well-
known (see for example [2], [4]). The necessary for sequel
properties are presented in the following lemma. Despite the
simplicity, the proof is included here for completeness.

Lemma 1: Let j = 0,1,2,3. With the notation as above, we
have

(i) D(pn)
j (mod pl) = D(pl)

j for l = 1,2, . . . ,n−1;

(ii) If b ∈ D(pn)
j then (b+ t pl) ∈ D(pn)

j for l = 1,2, . . . ,n−1;

(iii) D(pn)
j = {b,b+ pl , . . . ,b+(pn−l−1)pl | b ∈ D(pl)

j };
(iv) We have the partition D(pn)

j =
⋃pn−l−1

t=0

(
D(pl)

j + t pl
)

, l =
1,2, . . . ,n−1

(v) We have the partition

pn−kD(pk)
j =

pk−l−1⋃
t=0

(
pn−kD(pl)

j + t pn−k+l
)
,

k = 1, . . . ,n, l = 1, . . . ,k−1.
Proof: (i) This statement follows from (1).

(ii) Since b + t pl ≡ b (mod pl) we see that the second
conclusion follows from (i) and (1).

(iii) According to (i) and (ii) any element from {b,b +

pl , . . . ,b + (pn−l − 1)pl | b ∈ D(pl)
j } belongs D(pn)

j and a
number of different elements of this set equals pn−1(p− 1),
i.e. it equals the order D(pn)

j .
(iv) This statement follows from (iii).
(v) By (iv) we see that

pn−kD(pn)
j =

pn−l−1⋃
t=0

(
pn−kD(pl)

j + t pn−k+l
)
=

pk−l−1⋃
t=0

(
pn−kD(pl)

j + t pn−k+l
)
.

Since pn−kD(pn)
j = pn−kD(pk)

j in Zpn this completes the proof
of this lemma.
Now we discuss the properties of generating sequence’s poly-
nomial.

Lemma 2: Let m = 0,1, . . . ,n−1 and k = 1, . . . ,n. Then

∑
i∈pn−kD(pk)

j

2i (mod
2pm+1−1

2pm −1
) =

=


0, if k > n−m,

pn−m−1
∑

i∈D(p)
j

2pmi, if k = n−m,

pk−1(p−1)/4, if k < n−m.

Proof: We consider three cases.
(i) Suppose k > n−m; then n− k < m and by Lemma 1(v)

for l = m−n+ k we obtain

∑
i∈pn−kD(pk)

j

2i = ∑
i∈pn−kD(pm−n+k)

j

(
2i +2i+pm

+ · · ·+2i+(pn−m−1)pm
)

and the statement of Lemma 2 (i) follows from the last
equality.

(ii) Let k = n−m. In this case, by Lemma 1 (i) we get
pn−kD(pk)

j (mod pm+1) = pmD(pn−m)
j (mod pm+1) = pmD(p)

j

(mod pm+1) and |pmD(pn−m)
j |= pn−m−1(p−1)/4. Hence

∑
i∈pn−kD(pk)

j

2i (mod 2pm+1 −1) = pn−m−1
∑

i∈D(p)
j

2pmi.

(iii) If k < n−m then n− k ≥ m+1 and

∑
i∈pn−kD(pk)

j

2i (mod 2pm+1 −1) =

∑
i∈D(pk)

j

2pn−ki (mod 2pm+1−1)= |pn−kD(pk)
j |= pk−1(p−1)/2.
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The following lemma will be heavily used in our investigation
of the 2-adic complexity of u∞ in the next sections.

Lemma 3: Let u∞ be defined by (2) and let U(x)=∑
pn−1
i=0 uixi

be a generating polynomial of u∞. Then

U(2) (mod
2pm+1 −1
2pm −1

) =

= pn−m−1
∑

i∈D(p)
2 ∪D(p)

3

2pmi +(pn−m−1−1)/2

for m = 0,1, . . . ,n−1.
Proof: By definition of U(x) and (2) we see that

U(2) =
n

∑
k=1

∑
i∈pn−k(D(pk)

2 ∪D(pk)
3 )

2i.

Thus, using Lemma 2 we obtain this statement.

So, we need to study the properties of sums ∑

i∈D(p)
j

2pmi. This

will be done in the next section.

A. Generalized ”Gauss sums”

In this subsection, we will use the generalization of notation
of ”Gauss periods” and ”Gauss sums” presented in [17].

Let a 6= 1 and gcd(a, p) = 1. By definition put

ζ j(a) = ∑
i∈D(p)

j

ai, j = 0,1,2,3.

It is clear that ζ j(ab)≡ ζ j+k(a) (mod ap−1) for b ∈ D(p)
k .

By definition, put H = ζ0(a)+ζ2(a)−ζ1(a)−ζ3(a). Then
H(c) = ∑i∈Z∗q χ(i)ci where χ is quadric character of Z∗q. The
properties of H for c = 2 were studied in [17]. In this case,
we can also obtain the following statement in the same way
as in [17].

Lemma 4: H2 ≡ q (mod (cq−1)/(c−1)).
Denote by (i, j) = |(D(p)

i + 1)∩D(p)
j | the cyclotomic num-

bers of order four, i, j ∈ N. The following statement is well-
known for Gauss periods over finite fields (see for example
[1]). It is also true for generalized Gauss periods over finite
rings.

Lemma 5: Let k, l = 0,1,2,3. Then

ζl(a) ·ζl+k(a)≡
3

∑
f=0

(k, f )4ζ f+l(a)+δ (mod aq−1),

where δ =


(p−1)/4, if p≡ 1(mod 8), k = 0

or p≡ 8(mod 8), k = 2,
0, otherwise.

Also we note that according to the definition we have

ζ0(a)+ζ1(a)+ζ2(a)+ζ3(a) = (ap−1)/(a−1)−1.

Using the formulae for the cyclotomic numbers of order four
from [6] and Lemma 5 we can obtain the following statement.

Lemma 6: Let S(a) = ζ2(a)+ζ3(a), gcd(a, p) = 1 and p =

x2 +4y2. Then S(a) and S(ag2
) are satisfying the congruence

1) X2+4X ≡ 2yH− p−1 (mod (aq−1)/(a−1)) for q≡ 5
(mod 8);

2) X2+4X ≡ 2yH + p−1 (mod (aq−1)/(a−1)) for q≡ 1
(mod 8);

Using the new notations we can write that

U(2) (mod
2pm+1 −1
2pm −1

) = pn−m−1S(2pm
)+(pn−m−1−1)/2

(3)
for m = 0,1, . . . ,n−1.

So, the studying of 2-adic complexity of above sequences
is equivalent to the investigation of properties of generalized
Gauss periods. We show in the following lemma that this is
also true for symmetric 2-adic complexity.

Lemma 7: Let ũ∞ = (upn−1,upn−2, . . . ,u0) be the reciprocal
sequence of u∞ defined by (2) and let Ũ(x) ∈ Z[x] be a
generating polynomial of ũ∞. Then

2Ũ(2)≡

{
pn−m−1S(2pm

), if q≡ 1 (mod 8)
pn−m−1S(2g2 pm

), if q≡ 5 (mod 8)

+(pn−m−1−1)/2 (mod
2pm+1 −1
2pm −1

).

Here S(a) = ζ2(a)+ζ3(a) as in Lemma 5.
Proof: By definition we have Ũ(x) = ∑

pn−1
i=0 upn−1−ixi

and 2Ũ(2) = ∑
pn

i=1 upn−i2i. We get 2Ũ(2) = ∑
pn−1
i=0 u−i2i−u0+

u02pn
, hence

2Ũ(2)≡
pn−1

∑
i=0

u−i2i (mod 2pn −1).

Further, we consider two cases.
If p≡ 1 (mod 8) then −1 ∈D(p)

0 and ui = u−i. In this case
2Ũ(2)≡U(2) (mod 2pn −1).

Now, let p≡ 5 (mod 8). In this case −1 ∈D(p)
2 and we see

that −i ∈ pmD(pn)
( j+2) mod 2 if i ∈ pmD(pn)

j . Thus

2Ũ(2) =
n−1

∑
k=0

∑
i∈pn−k(D(pk)

0 ∪D(pk)
1

2i.

With similar arguments as above we obtain that 2Ũ(2) ≡
pn−m−1

∑

i∈D(p)
0 ∪D(p)

1

2pmi +(pn−m−1−1)/2≡ pn−m−1S(2g2 pm
)+

(pn−m−1−1)/2 (mod 2pm+1−1
2pm−1

).

IV. MAIN RESULT

Our main result is the following statement. Let n0 be the
greatest integer that is less than (4n−3)/5.

Theorem 8: Let u∞ be a Ding-Helleseth generalized cy-
clotomic sequence defined by (2) and n > 1. Then Φ̄(u∞) ≥
pn− pn0+1.

Proof: For the proof of this statement we will show that

Φ̄(u∞)≥
⌊

log2

(
2pn −1

2pn0+1 −1
+1
)⌋

.

We estimate of gcd
(
U(2),2pn −1

)
for this purpose.
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It is clear that

2pn −1 =
2pn −1

2pn−1 −1
· . . . · 2

p2 −1
2p−1

· (2p−1).

Let d be a divisor of gcd
(

U(2),(2pm+1 −1)/(2pm −1)
)

. Then

by Lemma 3 we obtain that d divides pn−m−1S(2pm
) −

(pn−m−1)/2 or S(2pm
)≡ p−n+m+1(pn−m−1−1)/2 (mod d).

We consider two cases.
(i) Let p ≡ 5 (mod 8). Then by Lemma 6 we get

p2n−2m−1 + 1 ≡ 2yH p2n−2m−2 (mod d) or according to
Lemma 4

p4n−4m−2 +2p2n−2m−1 +1≡ 4y2 p4n−4m−3 (mod d).

Since p = x2 +4y2, it follows that

x2 p4n−4m−3 +2p2n−2m−1 +1≡ 0 (mod d).

Thus d < p4n−4m−2. Further, d divides (2pm+1 −1)/(2pm −1),
hence pm+1 divides d − 1 and d = 1+ hpm+1, h ≥ 1 is an
integer. We have 4n−4m−2 > m+1 or m < (4n−3)/5. So,
if m≥ (4n−3)/5 then gcd

(
U(2),(2pn −1)/(2pm+1 −1)

)
= 1

and

Φ(u∞)≥
⌊

log2

(
2pn −1

2pn0+1 −1
+1
)⌋

where n0 is the greatest integer that is less than (4n−3)/5.
The inequality

Φ(ũ∞)≥
⌊

log2

(
2pn −1

2pn0+1 −1
+1
)⌋

we can prove in the same way using Lemma 7.
(ii) Let p≡ 1 (mod 8). In this case by Lemmas 6 and 7 we

get −p2n−2m−1 + 1 ≡ 2yH p2n−2m−2 (mod d) or according to
Lemma 4

p4n−4m−2−2p2n−2m−1 +1≡ 4y2 p4n−4m−3 (mod d).

Thus, in this case we can obtain the result in the same way
as for q≡ 5 (mod 8).

It is clear that n0 ≤ n−1 for n > 1 and we have the following
corollary from Theorem 8

Corollary 9: Let u∞ be a Ding-Helleseth generalized cyclo-
tomic sequence defined by (2). Then Φ̄(u∞)≥ pn− pn−1.

Remark 1: If q≡ 5 (mod 8) then by Lemma 4 and the proof
of this theorem we see that

Φ(ũ∞) =
⌊

log2

(
(2pn −1)/d +1

)⌋
where

d =
n0

∏
m=0

gcd

(
2pm+1 −1
2pm −1

,x2 p4n−4m−3 +2p2n−2m−1 +1

)
.

For q≡ 1 (mod 8) we have that

Φ(ũ∞)≥
⌊

log2

(
(2pn −1)/d +1

)⌋

where

d =
n0

∏
m=0

gcd

(
2pm+1 −1
2pm −1

,x2 p4n−4m−3−2p2n−2m−1 +1

)
.

Theorem 8 shows that Ding-Helleseth generalized cyclo-
tomic sequences of order four with period pn have high
symmetric 2-adic complexity.

V. CONCLUSION

We showed that Ding-Helleseth generalized cyclotomic bi-
nary sequences of order four with period equal to a power of
an odd prime have high symmetric 2-adic complexity. Thus,
2-adic complexity of these sequences is good enough to resist
the attack by the rational approximation algorithm.
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