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Abstract—In order to help to solution power-sharing process, 

keep to frequency and voltage constrained limits in microgrid 

system. The parameter values must therefore be chosen 

accurately. Optimization techniques are a hot topic of researchers; 

hence this paper presents an optimization technique for finding 

parameter values of system. This paper will apply a version of 

Harris hawks optimization (HHO) on microgrid to control the 

power sharing, frequency and voltage. The results of simulation 

show that the HHO droop controller improves the quality of 

micro-grid power by ensuring that variability in the control of 

microgrid frequency and voltage and efficient power sharing 

occurs that when there is a micro-grid island mode and when there 

is a load variation. 

Keywords— droop control, microgrid, Harris hawks 

optimization, power sharing. 

I. INTRODUCTION  
In the last decade, the electricity demand was increase and in 
the near future, the demand for electricity will be expected to 
rise significantly [1]. To meet this projected demand, there is a 
trend towards renewable energy sources to be used because 
they are environmentally sound and are considered 
economically better [1]. This transition in electricity generation 
from conventional to renewable energy sources (RES) [2]. This 
has culminated in the development of small-scale power 
generation systems named microgrids [2]. A microgrid that 
involves local loads and Distributed generation sources (DGs) 
[3]. DG systems are ideal for highly reliable electrical power 
supply [3]. Various types of energy resources are currently 
available, such as wind turbines (WTs), photovoltaic system 
(PVS), fuel cell (FC) [4]. It is difficult to connect these 
renewable resources directly to a utility grid [5].  To solve this 
problem is used microgrid to make the interface between the 
utility grid and distributed renewable resources [3]. Microgrid 

must be worked in the grid-connected mode as well as island 
mode contingency [3]. The inverter must be used to convert DC 
to AC. Therefore, an inverter is the main microgrid element [3]. 
In a microgrid, there are working Inverter parallel. Because if 
an inverter fails, the remaining modules can still supply the 
necessary power to the load [3]. The inverters control is 
intended to deliver the active and reactive energy while 
preserving the variability in frequency and voltage within the 
allowable limits [6]. To control inverters used the droop control 
technique. The droop control technique provides power-
sharing, voltage and frequency constrained limits [7]. Such 
droop controllers are tuned with identical parameters in the d-
axis and q-axis by trial-and-error method [8]. Nonetheless, in 
obtaining optimum parameters or even the right outcomes, this 
method has a major limitation. 
Researchers have a propensity to use optimization algorithms 
to overcome many engineering problems and challenges. 
Lately,  several types of algorithms have emerged such as of 
Harris hawks optimization (HHO) [1], Salp Swarm Inspired 
Algorithm (SSIA) [2], grasshopper optimization algorithm 
(GOA) [3], Sine Cosine Algorithm (SCA) , Whale 
Optimization Algorithm (WOA) [4], Moth-Flame Optimization 
Techniques [5], and Grey Wolf Algorithm (GWO)[6]. X. 
Bao.Proposed a hybrid technique between HHO and DE [7]. 
The proposed method could fulfill the real-world and complex 
task of multilevel thresholding color image segmentation 
excellently. Touqeer et al.  Applied the grasshopper 
optimization algorithm (GOA) on the islanded microgrid were 
used to calculate the PI controller gain [3]. Ebrahim et al. Using 
PSO to measure primary and secondary PI-based droop control 
coefficients for autonomous microgrid [8]. Although, the 
Previous literature has been successful in achieving power 
sharing, However, the researchers did not consider microgrid 
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droop control uncertainties such as controller gains inaccuracy, 
system parameter deterioration, and RER uncertainties. 

II. Background of HHO 
In 2019, Heidari et al proposed a new mathematical model 
called HHO that inspired them to do so is the nature of the life 
of the hawks and their behavior in attacking prey [1]. The 
hawks can be classified as nature's smartest birds. The most 
important features of the Harris hawk are that it lives in fixed 
groups and the special cooperative behaviors with other 
members of the family living in the same cohesive unit. Of the 
nature of the Harris hawk that  is well acquainted with  their 
family members and tries to be aware of their movements 
during the attack on prey [1]. In this way, the hawks often 
conduct a '' leapfrog '' movement throughout the target site. 
Many hawks try to attack from several directions together and 
at the same time to besiege prey. The outcome of the previous 
attack depends on the ability to escape and prey behavior, either 
the attack can be completed quickly by capturing prey within 
seconds or the prey will resist,  needs here the seven kills may 
contain multiple, short-length, quick dives nearby the prey 
during several minutes[1]. The main benefit of this strategy is 
that the Harris hawks cooperate with each other to reach the 
prey for their exhaustion, further weakening them. Besides the 
above, the prey is hard to regain their ability to defend 
themselves and avoid the hawks attack, often the strongest 
Harris' hawk catches prey and shares food with the rest of the 
group [1].  
HHO can be applied to any optimization problem because it is 
a population-based and gradient-free technique. The HHO 
algorithm also includes including two exploration phases, 
transition from exploration to exploitation and four exploitative 
steps [1]. 
A. Exploration Phase 

The exploration phase is that the hawks of the Harris sit 
randomly in their positions waiting for the prey to be found. 
The exploration process consists of two strategies [9]. There are 
two strategies, each with equal chances of choice, through 
which Harris Hawks improves his position. Which can be 
explained in detail as follow: a random value of k < 0.5 means 
that the hawks perch at certain locations depending on the 
position of other group members, all members can make sure 
that they are near enough when the intended prey is attacked. 
On the other side, a random value of k ≥ 0.5 suggests that the 
hawks perch at tall trees randomly to discover the desert area. 
[1]. 

𝑌(𝑡 + 1) =

{
(𝑌𝑝𝑟𝑒𝑦(𝑡) − 𝑌𝑚(𝑡)) − 𝑐3(𝐿𝐵 + 𝑐4(𝑈𝐵 − 𝐿𝐵)) 𝑘 < 0.5

𝑌𝑟𝑎𝑛𝑑(𝑡) − 𝑐1|𝑌𝑟𝑎𝑛𝑑(𝑡) − 2𝑐2𝑌(𝑡)|  , 𝑘 ≥ 0.5
     (1) 

Where Y (t + 1) is the hawks ' position vector in the next 
iteration, 𝑌𝑝𝑟𝑒𝑦(𝑡) is the prey's position, 𝑌𝑚(𝑡) is the average 
position of the actual population of hawks, 𝑌𝑟𝑎𝑛𝑑(𝑡) is a hawk's 
position randomly selected from the current team, c1, c2, c3, c4, 
q are random numbers inside (0,1), Y(t) is the hawk's current 
position vector. UB and LB are the upper and lower bounds of 
the search space. t is the current counter of iteration [1], [9]. 

𝑌𝑚(𝑡) =  
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖=1 (𝑡)   (2) 

Where Yi(t) reflects each hawk's position, N shows the total 
number of members of the team. 
B. Transition from Exploration to Exploitation 

Since the prey is trying to escape, there is a process between 
exploitation and discovery called the transition from 
exploration to exploitation. The prey loses a lot of energy 
during the prey attempt to escape and puts the prey energy 
equation as follows [1]: 

𝐸 = 2𝐸0(1 −
𝑡

𝑇
 )    (3) 

E0 changes randomly at each iteration within the interval (−1, 
1). When the prey's ability to escape decreases, this means that 
it is valuable of E0 decreases from 0 to -1. But when the prey 
energy increases to escape, this means that the value of E0 
increases from 0 to 1 and T is the max iteration. The exploration 
phase would be |E| ≥ 1. The step of exploitation would be |E| < 
1 [1]. 
C. Exploitation Phase 

In this stage, by attacking the intended prey found in the 
previous process, the hawks of the Harris manage the surprise 
pounce. The HHO suggests four possible strategies to design 
the attack phase. Suppose r is a random number between 0 and 
1. Assume r is an opportunity for a prey to escape successfully 
(r < 0.5) or not to escape successfully (r ≥ 0.5) before sudden 
jump on prey. Whatever the prey has tried to escape, the prey 
won't be able to escape most of the time because the hawks will 
surround the prey in various directions depending on the 
retained prey energy E. The retained prey energy used to 
determine the type of besiege if it is soft or hard. In this relation, 
the soft  besiege occurs when |E| ≥ 0.5 and the hard  besiege 
occurs when |E| < 0.5.In fig.1 show the four Exploitation 
steps[1], [9]. 
1) Soft besiege 
In this case r ≥ 0.5 and |E| ≥ 0.5. Although the prey has enough 
energy, because of some random hawk jumps, the prey cannot 
escape the attack. The Harris’ hawks encircle the prey quietly 
to make prey exhausted and then the hawks swoop on the prey. 
The Harris’ hawks action is described as follows [1], [9]: 

𝑌(𝑡 + 1) = ∆𝑌(𝑡) − 𝐸|𝐾𝑌𝑝𝑟𝑒𝑦(𝑡) − 𝑌(𝑡)|  (4) 
∆𝑌(𝑡) = 𝑌𝑝𝑟𝑒𝑦(𝑡) − 𝑌(𝑡)   (5) 
𝐾 = 2(1 − 𝑐5)    (6) 

where 
∆Y(t): is the difference between the position of the prey and the 
current location of the hawk in iteration t. K is refers to the 
strength of the prey jump random during the escape. In each 
iteration, this value changes randomly to simulate the nature of 
prey movements. c5is a random number of (0,1) 
2) Hard besiege 

In this case of r ≥ 0.5 and |E| < 0.5. The prey is very 
exhausted and   has low energy to escape. As a result, the 
hawks are making virtually no effort to catch the prey, and 
then the hawks are pouncing on the prey.  Using the 
following formula, each hawk upgrades its current 
location[1], [9]: 
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𝑌(𝑡 + 1) = 𝑌𝑝𝑟𝑒𝑦(𝑡) − 𝐸|∆𝑌(𝑡)| (7) 
3) Soft besiege with progressive rapid dives 

In this approach is |E| ≥0.5 but r < 0.5. The prey has enough 
energy to escape successfully, so before the sudden swoop 
on the prey, the hawks must create a soft siege. This 
approach is smarter than the case before. In the HHO 
algorithm, the theory of levy flight (LF) is used to design a 
mathematically model that illustrates prey and leapfrog 
movements. LF is used to represent the zigzag movements 
of prey during their escape (especially if the prey is 
considered a rabbit) and the hawks ' irregular, sudden and 
speedy diving to surround the prey. Hawks try to correct 
their positions gradually depending on the movements of 
prey, and therefore the hawks many fast dives around prey. 
Therefore, to assume that the hawks could evaluate 
(decide) their next move on the basis of the following rule 
in Eq 9 [1], [9]. 

𝐻 = 𝑌𝑝𝑟𝑒𝑦(𝑡) − 𝐸|𝐾𝑌𝑝𝑟𝑒𝑦(𝑡) − 𝑌(𝑡)|       (8) 
In order to determine whether the hawk this movement 
better or worse, so it compares the possible outcome of 
such a movement, including the preceding. If the result is 
unsatisfactory, when they see that the prey is trying to 
escape and makes a lot of deceitful movements, the hawks 
begin to make some irregular, sudden and quick dives to 
approach the prey. The following equation will illustrate 
this movement [1], [9]: 

𝐺 = 𝐻 + 𝑆 × 𝐿𝐹(𝐷)  (9) 
where 

D: the dimension of problem 
S: a random vector by size 1 × D  
LF: the levy flight function 

𝐿𝐹(𝑥) = 0.01 ×
𝑢×𝜎

|𝑣|
1
𝛽

   (10) 

𝜎 = (
𝛤(1+𝛽)×sin (

𝜋𝛽

2
)

𝛤(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2 )
)

1

𝛽

   (11) 

where  
u, v:  random values inside (0,1) 
β:  a default constant set to 1.5 
the strategies formulating the hawks ' position vector can be 

illustrated as follows: 

𝑌(𝑡 + 1) = {
𝐻 𝑖𝑓 𝐹(𝐻) < 𝐹(𝑌(𝑡))

𝐺 𝑖𝑓 𝐹(𝐺) < 𝐹(𝑌(𝑡))
  (12) 

4) Hard besiege with progressive rapid dives 

In this way E | <0.5 and r <0.5, The prey has insufficient energy 
to flee and the hawks are carrying out a hard besiege 
simultaneously. This approach modernizes hawk sites and 
resembles that of soft besiege with a gradual rapid dive. The 
position of team members is updated by reducing the distance 
between their average position and the prey position. This 
motion is illustrated by the following equation [1], [9]: 

𝑌(𝑡 + 1) = {
𝐻 𝑖𝑓 𝐹(𝐻) < 𝐹(𝑌(𝑡))

𝐺 𝑖𝑓 𝐹(𝐺) < 𝐹(𝑌(𝑡))
  (13) 

Where H and G are obtained by applying new Eqs rules. (14) 
and (15) respectively [1], [9]. 

𝐻 = 𝑌prey(𝑡) − 𝐸|𝑘𝑌prey(𝑡) − 𝑌𝑚(𝑡)| (14) 
𝐺 = 𝐻 + 𝑆 × 𝐿𝐹(𝐷)   (15) 

III. Droop control technique of Microgrid 
The Turbine Governor (TG) and the Automatic Voltage 
Regulator (AVR) are used in the conventional power system to 
keep both the voltage and the frequency within limits. 
Unfortunately, TG and AVR cannot be used in PVS and FC 
systems because they are not suitable for these systems. For 
these reasons, it becomes mandatory to search for another 
alternative solution. To maintain the voltage and frequency 
during any change in the load, thanks to the droop control. 
Microgrid's complete control strategy consists of the following 
three steps: droop control, power and voltage-current 
controllers [3]. Fig. 1 Displays the microgrid control strategy, 
including three steps, which will be explained in detail in the 
subsections below.  

R1
R2

L1

C1

Full bridge 

inverter

L2

𝐈𝐨  𝐈𝐢 

𝐕𝐨  𝐕𝐢 

load

DC 

source

Power control

Voltage Controller

PWM

𝐈𝐨  𝐕𝐨  

𝐕𝐨
∗ 

 

Current Controller

𝐕𝐨  𝐈𝐨  

  

 

 

𝐈𝐢
∗ 

𝐈𝐢 

𝐕∗ 

R1
R2

L1

Full bridge 

inverter

L2
𝐕𝐨  𝐕𝐢 DC 

source

C3  
Fig. 1. The system block diagram 

a) Power Control 
The power circuit consists of the three-phase VSI, the resistive-
inductive-capacitive (RLC) filter, the coupling inductor (L2), 
and the three-phase load. The RLC filter's most important 
function is to decrease the high-frequency harmonic to maintain 
pure sinusoidal voltage. To reduce the coupling between the 
active and reactive power, the coupling inductor (L2) is in series 
with the RLC filter and works as a harmonic damper. 
It is important to control Droop that it allows parallel generators 
to run in a microgrid. Droop control depends on a relationship 
between active power and frequency, reactive energy and 
voltage. The droop control has benefits of locally measured data, 
requires no communication signal, high reliability, simple 
structure, easy implementation, and various power ratings [3]. 
In order to calculate the active power (p) and the reactive power 
(q) before the filter using the output voltage (V0) and output 
current (I0), the V0 and I0 are translated into the dq reference 
frame for calculating (p) and (q) using (16) and (17) [17]: 

𝑝 = 𝑉0𝑑  𝐼0𝑑  + 𝑉0𝑞  𝐼0𝑞  (16) 
 𝑞 = 𝑉0𝑑  𝐼0𝑞  + 𝑉0𝑞  𝐼0𝑑   (17) 

For improvement, the p and q will pass in a low pass filter and 
will be renamed as P and Q. The P and Q are calculated 
according to (18) and (19), respectively: 
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𝑃 =
𝜔𝑐

𝑆+𝜔𝑐
(𝜈0𝑑  𝐼0𝑑  + 𝜈0𝑞  𝐼0𝑞) (18) 

 𝑄 =
𝜔𝑐

𝑆+𝜔𝑐
(𝜈0𝑑  𝐼0𝑞  + 𝜈0𝑞  𝐼0𝑑) (19) 

After calculating P and Q, the reference angular frequency ω 
and the reference voltage V will be calculated through (20) and 
(21): 

𝜔 = 𝜔𝑛 − 𝑚𝑝 ∗ 𝑃   (20) 
 𝑉 = 𝑉𝑛 − 𝑛𝑞 ∗ 𝑄    (21)  

Where ωn and Vn are the constant coefficients of frequency and 
voltage characteristics.  
mp and nq are the coefficients of static droop. 
Thanks to the ability to reduce the voltage drop, there are two 
parameters that must be controlled: Q and nq. The Q is 
uncontrollable because it depends on the load. The nq must be 
small. This must therefore be correctly calculated. 

b) Voltage-Current Controller 

The reference voltage and frequency are used to calculate the 
reference current (Ii

*) by inserting them into the voltage 
controller. The current controller will be fed by the output of 
the voltage controller Ii

*. The current controller output (V*) feds 
the pulse width modulation (PWM). The output of PWM is 
used to control VSI. To calculate Ii

* and V*, equations (22) and 
(23) are employed [17]. 

𝐼𝑖
∗ = −𝜔𝐶𝑓𝑉𝑜

∗ + 𝑘𝑝𝑣(𝑉𝑜
∗ − 𝑉𝑜) +

𝐾𝑖𝑣

𝑠
(𝑉𝑜

∗ − 𝑉𝑜)   (22) 

𝑉∗ = −ω𝐿𝑓𝐼𝑖 + 𝑘𝑝𝑐(𝐼𝑖
∗ − 𝐼𝑖) +

𝑘𝑖𝑐

𝑆
(𝐼𝑖

∗ − 𝐼𝑖)      (23) 
Where 𝐿𝑓 is the coupling inductor  
ω is the cut-off frequency  
S is the Laplace transform parameter 
Through the PI controller, voltage and current are controlled. 
The PI controller gains must be correctly calculated. Several 
approaches are used to calculate PI gains, such as the approach 
to trial and error and the method of root locus. Such 
technologies cannot manage complex nonlinear systems such 
as microgrid or even evaluate the precise gains of controllers. 
The estimation of PI gains is therefore very important, so this 
paper will attempt to find the PI controller's optimal gains by 
applying the HHO algorithm.  

IV. Application of HHO in Microgrids 
As an optimization tool, the HHO technique has proven 
successful, so it will be used to evaluate the optimum control 
parameters and droop control coefficients when load variation 
occurs. HHO is the technique from which parameter control and 
parameter control parameters (Kp1, Ki1, Kp2, Ki2, Kp3, Ki3, Kp4, 
Ki4, nq, mp) can be obtained to eliminate voltage and frequency 
fluctuations. This process confirms the microgrid's high-power 
quality and certifies equitable sharing of power. Any technique 
of optimization requires an objective function to carry out its 
task. To minimize the error between the measured and required 
values, this objective function is used. The four types of 
objective error benchmark functions are expressed by (24)-(27) 
[10]: 

IAE=∫ │e(t)│. dt
∞

0
  (24) 

ISE=∫ 𝑒2∞

0
(𝑡). 𝑑𝑡  (25) 

ITAE = ∫ 𝑡. │𝑒(𝑡)│. 𝑑𝑡
∞

0
   (26) 

ITSE= ∫ 𝑡. 𝑒2(𝑡). 𝑑𝑡
∞

0
  (27) 

Where 
IAE: integral of absolute error  
ISE: integral of square error  
ITAE: integral of time absolute error  
ITSE: integral of time square error 
The ITAE is the most commonly used fitness integration error 
referred to in the literature because of its easier use and better 
results compared to its competitors to its contenders like ISE, 
IAE, and ITSE [10]. Because of the squaring of error, ISE and 
ITSE are very violent criterions and therefore yield unrealistic 
performance. However, compared to the ITAE, the IAE is also 
an inferior alternative because ITAE offers more practical 
indexing of errors due to the inclusion of the time multiplying 
error feature. 
Fig. 2 Contains a test system diagram consisting of one solar 
PV array system (SPVA), one fuel cell system (FC), DC-DC 
boost converter, two battery stations (BSs), supercapacitor 
(SC), three-phase VSI, load, and transmission line. The 
microgrid testing system simulates reality by taking into 
account the effects of transient behaviors on the entire network. 
The load is shared equally as seen from the MG autonomy 
given in Fig.2. 
one of SPVA and one of fuel cell are used. Moreover, two 
battery stations each with 56 kW capacity are employed to 
assist the microgrid power quality. In order to improve the 
dynamic response of the microgrid, super capacitors will be 
used because they have the ability to charge and discharge 
quickly. Using the DC-DC boost transformer incremental 
conductance (INC) method to monitor the output voltage of the 
SPVA DC output terminals, the maximum power point tracking 
point (MPPT) is reached. Table 1 summarizes the parameters 
of the test system (islanded microgrid model) [11]. MATLAB 
R2019a codes the HHO for microgrid droop control. Table 2 
illustrates a comparison of four types of optimization 
techniques 

3-phase 

VSI_1

Rline_1 Lline_1 Rline_2 Lline_2 

VSI_1

VSI_2

Pload  

PVSI_1 PVSI_2 

=
=

=
=

=
=

Battery PV

supercapacitor

3-phase 

VSI_2

=
=

=
=

Battery

=
=

supercapacitor

Fuel cell

Pbat

Psc

Ppv
Pbat

Pfc

Psc

-
+

-
+

DG1
DG2  

Fig. 2. test system diagram  

Table 1 The test system parameters [11]. 
Parameter Value Parameter Value 

Vbase 380 V ωn 1 p.u. 
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Sbase 100 kVA Vn 1 p.u. 
ωbase 314 red/sec Rline1 0.14 p.u. 
Lf 0.95 x10-3 p.u. Lline1 2.1 x10-3 

p.u. 
Cf 35 x10-6 p.u. Rline2 0.2 p.u. 
Rf 0.067 p.u. Lline2 3.5 x10-3 

p.u. 
Lc 0.23 x10-3 p.u. Pload 70 x103 
Rc 0.02 p.u. ωc 0.1 p.u. 
Ts 5.144 x10-6 

sec 
Frequency of 

PWM 
10 kHz 

Power of 
PV 

109.88 kW Capacitance of 
supercapacitor 

29 F 

Power of 
battery  

56kW fuel cell PEMFC - 
50 kW - 
625 Vdc 

Table 2 results of the four optimization techniques 
 SSA PSO ABC HHO 

Objective 
function 

10.25 
x106 

12.66 
x106 

18.46x1
06 

5.86x10
6 

Kp1 0.6914 0.5579 0.6415 0.4517 
Ki1 311.4964 475.0824 530.04 257.97 
Kp2 0.548548 0.513765 0.4707 0.4680 
Ki2 543.6527 565.1678 349.22 387.77 
Kp3 11.27808 13.09909 12.225 13.996 
Ki3 13879.68 12410.52 6358.14 10480.5 
Kp4 10.25541 13.05646 9.00344 5.41320 
Ki4 14414.39 11132.63 13267.8 11112.9 
nq 0.272247 0.225909 0.26615 0.31545 
mp 0.014868 0.009724 0.01563 0.01045 

Time 
Taken 
(min) 

207.2686 219.1358 224.480 296.026 

V. Case study: Islanding Mode with Changes in Continuous 
Cyclic Load (IMCCCL) 

In this section, RERs variability (variable solar irradiance and 
temperature) is considered for islanded MG with change of 
load. Fig.3 Shows solar irradiance from 1000 W / m2 to 0 W / 
m2. Variation of the solar radiation can be interpreted as ramp 
up / down. Solar radiation is zero at 1.1 to 1.2 seconds, meaning 
the PV energy is zero so both the battery and the condenser 
replace the energy. Fig.4 Indicates temperature fluctuations 
between 25°C and 50°C. The microgrid is operated in 
insulation mode with continuous cyclic load variations under 
RER variability as 70 kW (0.7 p.u.) from 0- 0.3 sec, then the 
load value increased to 110 kW (1.1 p.u.) at 0.3- 0.7 sec, then 
the load value backs to 70 kW (0.7 p.u.) at 0.7- 1.2 sec, then the 
load value increased to 110 kW (1.1 p.u.) at 1.2- 1.7 sec, then 
the load value backs to 70 kW (0.7 p.u.) at 1.7- 2 sec, then the 
load value increased to 110 kW (1.1 p.u.) at 2- 2.5 sec,  finally 
the load value backs to 70 kW (0.7 p.u.) at 2.5- 3 sec  at the end 
of the load cycle. Fig. 5 Shows that each DG pumps equal 
amounts of active power into load. Markedly, the rate of power 
change is approximately the same as the rate of load 
adjustment, which confirms the strong tracking behavior for 
droop controllers based on HHO during the scenario of 
continuous load variations and variations of output power of 
PV. In addition, voltage and frequency in DGs are preserved 
within the acceptable limits during the change of output PV and 
load, as shown in Fig. 6 and 7. Fig. 8 provides insight into how 
a multi-source energy management scheme is presented by 

SSIA-PSO based droop control strategy. On top of that, Fig. 8 
shows how dynamically SPVAS, BS and SC communicate with 
each other to preserve supply continuity. 

 
Fig. 3. Solar irradiance variation 

 
Fig. 4. Solar temperature variation 

 
Fig.5 Active powers generated by DGs  

 
Fig. 6. Voltage magnitude  

 
Fig.7 Inverter frequency  
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Fig. 8 Powers of SPVASs, BSs, and SC 

VI. Conclusion 
This paper applied a algorithm for optimisation, HHO. HHO 
was applied in the field of MG droop control, after proving its 
efficiency. There are two  sources of a microgrid test system. 
The first source consists of a solar PV array, a battery station 
(BS), a supercapacitor (SC). The second source consists of a 
fuel cell (FC), a battery station (BS), a supercapacitor (SC). The 
HHO is used to calculate PI controller gains and droop control 
scheme coefficients. The cost function consists of four types: 
IAE, ISE, ITAE, and ITSE. By applying ITAE as an objective 
function the best solution is obtained. The comparison with four 
different types of optimization techniques (SSIA, PSO, ABC, 
and HHO) applied to the MG scheme confirmed HHO quality 
as a method of improvement. The obtained gains from PI 
controllers and the droop control coefficients Kp1, Ki1, Kp2, Ki2, 
Kp3, Ki3, Kp4, Ki4, nq, mp are implemented in the system. 
Suggested case include sluggish and rapid shifts in both RERs 
and load as well as abrupt and ramp variations. Results of the 
simulation showed that power sharing among the parallel DGs 
was achieved thanks to the droop control strategy based on 
HHO. The frequency deviation is within the acceptable range, 
and with good dynamic response, the DGs are rapidly following 
load changes. HHO efficacy has been tested by testing many 
factors that are evaluated during solar radiation, temperature 
and load changes including the power sharing network, 
frequency and voltage limits. 
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