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Abstract—It is well-known that inverse heat conduction prob-
lems (IHCPs) are severely lll-posed, which means that small
perturbations in data may cause extremely large errors in
the solution. This paper introduces an accurate method for
solving inverse problems, as solution procedure, we use Tikhonov
regularization in combination with the genetic algorithm. Find-
ing the regularization parameter as the decisive parameter is
modeled by this method, a few sample problems were solved
to investigate the efficiency and accuracy of the method. A
linear sum of fundamental solutions with unknown constant
coefficients assumed as an approximated solution to the sample
IHCP problem and collocation method is used to minimize
residues in the collocation points. In this contribution, we use
Morozov’s discrepancy principle and Quasi-Optimality criterion
for defining the objective function, which must be minimized to
yield the value of the optimum regularization parameter.

Index Terms—Inverse Heat Transfer, Tikhonov regularization,
Genetic algorithms, III-Posed Problems, Morozov’s discrepancy
principle.

I. INTRODUCTION

Inverse problems have wide applications in technological
and scientific fields [1].The primary purpose of solving these
problems is to obtain solution indirectly. The main reason
for the emergence of the inverse heat transfer problems is
not knowing boundary conditions or difficulty in accessing
boundaries. Therefore, to solve the problem without having
boundary conditions, it is necessary to have additional infor-
mation, which is usually obtained by the sensors installed in an
accessible place. Therefore, with empirical data, it is possible
to estimate the conditions needed to solve the problem without
direct measurements or access to boundary locations.

In direct heat transfer problems, geometry, boundary con-
ditions, initial conditions, and thermo-physical properties are
known, and the purpose is to calculate the temperature dis-
tribution inside the solution domain. In the case of inverse
heat transfer, one or some information are unknown, and the
purpose is to estimate them by using additional information
such as the measured temperatures inside the solution domain.

The main difficulty in solving inverse problems is that they
are almost always severely ill-posed. A problem is called well-
posed, according to Hadamard [2] if there exists a unique

solution to it that continuously changes with input data. The
inverse solution is extremely sensitive to measurement errors,
and even the smallest in inputs may cause a significant error in
the final approximation of the boundary conditions, therefore,
regularization is required for solving inverse problems.

Since IHCPs are incredibly diverse, their solution also
requires different strategies. On the one hand, solving methods
can be classified into three different classes: analytical, numer-
ical, and experimental solutions. Of course, in some cases, a
combination of the mentioned methods can be used for solving
the problem. Analytical methods are often useful in solving
linear problems, but numerical methods such as the Finite
Difference method, finite element method, and boundary ele-
ments are applied in solving nonlinear and multidimensional
problems. In 1960, Stolz showed that frequent use of tiny time
steps results in instability in the solution of such problems
[3]. It can be seen that using small time steps has the opposite
effect on inverse heat conduction problems (IHCPs) compared
to numerical solutions of the direct heat conduction equation.

Another method that uses the regularization technique is
the conjugate gradient method with an adjoint problem, which
is developed and suggested in detail by Alifanov [4], Zisnik
and Orlande [5]. The conjugate gradient method minimizes
an objective function, at each iteration, choosing a new guess
by taking the old assumption and tacking on an additional
term that pushes the solution closer to the optimal one. This
regularization technique can also be used to solve linear and
nonlinear inverse problems or parametric estimations.

Tikhonov and Arsenin introduced Tikhonov and Iterative
Regularization Methods [6]. This method is usually provided
as a whole domain solution in which all the components of
heat flux are estimated for all times and spatial locations si-
multaneously. Different approaches have been proposed in the
literature for the solution of IHCPs, and generally, a specific
solution for a particular problem cannot be applied for other
problems. Various analytical and numerical methods have been
proposed for solving IHCPs. The special sequential function
developed by Beck [7], is a sequential method stepping
forward in time, based on least squares method and Duhamel
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theorem. The complex mathematics in estimating components
of the heat flux in different times and spatial locations is a
fundamental problem in the mentioned algorithm. In 1991,
Hensel did some research on the analytical transfer function
to solve inverse heat conduction problems. He presented an
inverse heat method for a one-dimensional case using an
adjoint algorithm with a frequency domain [8].

In 1996, Lesnic et al. proposed another way to solve the
IHCPs. In this method, the least squares regularization and en-
ergy method have been introduced into the boundary element
method (BEM) formulation. The numerical results obtained
using this technique has the advantage of not needing to mesh
generation in all domain, unlike the finite element method
or finite difference method [9], [10]. Yeun et al. dealt with
the smooth fitting problem using the genetic programming
algorithm, they presented a novel approach for choosing the
regularization parameter and compared the result with general
cross-validation (GCV) B-Splines [11].

Several researchers have proposed combinations of the
method used in reference [7], which seeks to minimize the
problems involved in measuring errors. As suggested by
Keanini et al. In 2005, the goal is to achieve better stability. In
this case, they have proposed a modified sequential function
for solving stability of parabolic thermal conduction problem.
This method uses computational steps that are larger than the
sampled intervals, and future time intervals are all set equal to
the time interval in the data [12]. In 2008, Slota et al. combined
the Tihonov regulation method and the particle swarm opti-
mization algorithm, which is a stochastic optimization method,
for approximating the heat source without the prior informa-
tion of the functional form in temperature-dependent unsteady
heat conduction problem and compared the results with the
conjugate gradient method [13]. Ajith and et al. Applied a
lattice Boltzmann method (LMB), finite volume method and
genetic algorithm approach to study the effect of modeling
tools for the design of high-temperature heater enclosures in a
2-D geometry [14]. Stephany et al. presented a regularization
technique applied to an inverse radiation-convection problem
formulated as a finite dimensional optimization problem and
solved by hybridization of the ant colony optimization (ACO)
with the Levenberg–Marquardt method [15].

Singh and Das presented the thermal investigation of a
porous stepped fin made from different ceramic porous materi-
als Al and SiC; they used the approximate analytical Adomian
decomposing method to solve the nonlinear problem along
with the Newton–Raphson method [16]. Some researchers
applied an inverse algorithm based on the conjugate gradient
method and the discrepancy principle to estimate the unknown
time-dependent frictional heat flux at the interface of two
contacting surfaces [17], [18]. Dong et al. presented the
alleviation of non-optimal regularization parameter influence
on the temperature distribution reconstruction accuracy in
participating medium using coupled methods, i.e., two kinds
of regularization methods (least square QR decomposition
(LSQR) method and truncated singular value decomposition
(TSVD) method) combined with genetic algorithm (GA) [19].

For some samples, even combinational methods with non-
optimal regularization parameters can be more accurately
solved than results obtained by LSQR or TSVD [20], [21]. In
2015, Udayraj et al. examined three developed metaheuristic
algorithms, including ant colony optimization, cuckoo search,
and particle swarm optimization for a class of heat trans-
fer problems. Unknown boundary heat fluxes are estimated
for conduction, convection, and coupled conduction–radiation
problems [22]. Heng et al. in 2016 used five types of Krill
herd algorithms to optimize the geometric locations of the
control points and solved the inverse geometry design of a
two-dimensional radiative enclosure filling with participating
media [23].

In this research, the method of Tikhonov regularization
is combined with the genetic algorithm to solve the inverse
problem. A genetic algorithm is used to find the regulariza-
tion parameter, which is the main problem of regularization
methods.

II. THEORY

The definition of a well-posed problem was given by
Jacques and Hadamard for the first time, to understand what
kind of boundary conditions should be used for different types
of differential equations [24]. He believed that mathematical
models of physical phenomena should have the following
properties: a solution exists, the solution is unique; the solution
changes continuously with initial conditions. If one of these
properties is violated, the problem is called ill-posed. Stable
numerical differentiation of noisy data, stable inversing of ill-
posed matrices, parameter determination in a partial differen-
tial equation, first order homogeneous differential equations
are examples of Ill-posed problems. Consider the following
ill-posed problem in which K is a linear bounded operator
from X into Y :

Kθ = W, K : X → Y, (1)

Suppose that the right side is given with its approximation
Wδ in such a way that ‖W −Wδ‖ ≤ δ. Naturally, we need
to find the approximate answer in the set Qδ : {θ ∈ X :
‖Kθ −Wθ‖ ≤ δ}. In any case, in an ill-posed problem, we
cannot take an arbitrary element xδ ∈ Qδ as an approximate
solution for problem (1), because θδ does not change contin-
uously as Wδ changes. Satisfying equation ‖Kθ −Wθ‖ ≤ δ
does not guarantee that θδ is close to the desired response.
Suppose that K is a bounded linear operator between Hilbert
spaces X to Y [25] and then Jα has a unique minimum in
θδ ∈ X , the minimum is the unique solution of the normal
equation λθλ + K∗Kθλ = K∗W In which, for all x ∈ X ,
Jλ(θ) = ‖Kθλ − W‖22 + λ‖θλ‖22 is defined as Tikhonov’s
function. Rλ : Y → X , Rλ = (λI +K∗K)−1K∗.It can be
proved that the operators form a regularization strategy with
lim
λ→0
‖RλKθe − θe‖ ≤ lim

λ→0

‖z‖
√
λ

2 , θe = K∗z ∈ K ∗ (Y ), z ∈
Y . This method is called Tikhonov regularization.

After approximation, the result will be:∥∥θλ,δ − θe∥∥ ≤ δ

2
√
λ

+
‖z‖
√
λ

2
:= E(λ) (2)
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Theoretically, although ‖z‖ is not known, we can minimize
the E(λ) function to find the optimal value for the ‖z‖
regularization parameter, e.g., in the posteriori method for
choosing parameter λ which is called Morozov’s discrepancy
principle the value of is not required. Choosing an appropriate
regularization parameter is a critical part of achieving an
optimal response. The most commonly used methods for
selecting the regularization parameter are as follows.

A. Morozov’s discrepancy principle

In this method, it is proposed that λ(δ) > 0 be calculated
in such a way that the Tikhonov solution which corresponds
to the following equation

λθλ,δ +K∗Kθλ,δ = K∗Wδ (3)

which is the minimizer of the following functional:

Jλ,δ(θλ,δ) := ‖Kθλ,δ −Wδ‖2 + λ‖θλ,δ‖2 (4)

satisfies
‖Kθλ,δ −Wδ‖ = Wδ (5)

Therefore, λ choosing in this condition is sufficient to ensure
that, on the one hand, the difference is equal to δ and, on the
other hand, λ is not too small [26].

B. Quasi-Optimality criterion

The Quasi-Optimality criterion [26] determines the value
λ > 0 in such a way that

Λ(λ) := λ2fTδ K(K∗K + λI)−4K∗fδ = min (6)

To obtain the regularization parameter, in this paper, we use
Morozov’s discrepancy principle, which requires the distur-
bance amplitude, and Quasi-Optimality criterion, which does
not require disturbance amplitude. We can use derivatives,
or different numerical root finding can be used to optimize
the objective functions of these two criterions, but doing this
for any criterion requires separate calculations and derivation
and root finding that complicates the work and raises com-
putational costs, at the same time, there is no guarantee that
the algorithm implemented converges. This paper presents a
new high-precision meta-heuristic algorithm, which is easy to
modify and doesn’t produce complications when the objective
function changes, which then is applied to a sample problem. It
is clear that the solution in Tikhonov regularization depends on
the regularization parameter, which directly affects the degree
of approximation and the stability of the solution. In terms of
approximation, the smaller the λ is the better and ‖θλ − θe‖
will have a smaller value in a stable solution; but from the
stability point of view, the bigger the λ is the better. The
key in solving Tikhonov regularization method is finding the
optimal value for the regularization parameter. In Morozov’s
discrepancy principle, the regularization parameter is chosen
in such a way that:

‖Kθλ −Wδ‖22 = δ2 (7)

On the other hand, in the Quasi-Optimality criterion, the opti-
mal regularization parameter is the minimizer of the following
objective function.

Λ(λ) =
1

λ2WT
δ K(KTK + λI)

−4
KTWδ

(8)

Unlike Morozov’s discrepancy principle, in the Quasi-
Optimality criterion, the magnitude of perturbations is not
required. In this paper, a genetic algorithm is used to find the
optimal regularization parameter. The purpose is to optimize
one of the two following objective functions for obtaining the
optimal value of the regularization parameter.

Γ(λ) =
∣∣∣‖Kθλ −Wδ‖22 − δ

2
∣∣∣ (9)

Λ(λ) =
1

λ2WT
δ K(KTK + λI)

−4
KTWδ

(10)

Initially, a population of monogenic chromosomes which their
gene value is λ is created, then by having the value of λ
for each chromosome, αλ is calculated for each chromosome.
Using θλ, the value of the objective functions Γ(λ) and Λ(λ)
are calculated for each chromosome. Crossover and mutation
operations are performed to create offspring and mutated
chromosomes and the value of the objective functions are
calculated for them. The chromosomes are ranked according
to the value of their objective function then, the best chro-
mosomes make up the second generation according to their
rank, all of these operations are carried out again for the
second generation. The genetic algorithm continues until the
stopping criterion is satisfied. After stopping the algorithm,
the chromosome which has the lowest value of the objective
function in the last generation is the solution and its gene is
the optimal regularization parameter λopt. Fig. (1) depicts the
schematic of solving an inverse heat conduction problem using
the proposed algorithm in this paper.

C. Solving the sample heat conduction problem using the
proposed algorithm

Fig. (2) illustrates an inverse heat conduction problem
investigated in this paper. The energy equation with boundary
and initial conditions for this problem can be written as
follows:

∂u(x,t)
∂t − ∂2u(x,t)

∂x2 = 0 , 0 ≤ x ≤ 1, t ≥ 0,

u(0, t) = e−π
2t, t ≥ 0

u(1, t) = −e−π2t, t ≥ 0
u(x, 0) = cos(πx), 0 ≤ x ≤ L = 1

(11)

Analytical solution of this problem is u(x, t) =
cos(πx)e−π

2t, 0 ≤ x ≤ 1, t > 1. For two reasons, this
problem has been used to define the inverse problem; First,
it has a relatively large coverage factor e−π

2t which, by
increasing the value of final time, i.e., increasing the value of
τ , makes solving the problem more difficult and the matrix of
coefficients much more ill-conditioned and as time increases,
and the response approaches to its steady state quickly. Sec-
ond, this problem has been used as a standard example in
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Fig. 1. Schematic of solving an inverse heat conduction problem using the
algorithm provided in this paper.

Fig. 2. Schematic of the IHCP examined in this paper.

research papers to investigate the accuracy and stability of
the regularization algorithms. Using the exact solution of Eq.
(11) in order to obtain the additional conditions, the inverse
problem is defined as:

∂u(x,t)
∂t − ∂2u(x,t)

∂x2 = 0 , 0 ≤ x ≤ 1, 0 ≤ t ≤ τ,
u(0, t) = f(t) = e−π

2t, 0 ≤ t ≤ τ,
u(1, t) = g(t) = −e−π2t, 0 ≤ t ≤ τ,
u(x, τ) = Ω(t) = cos(πx)e−π

2τ , 0 ≤ x ≤ 1
(12)

The approximate answer is formed using fundamental solu-
tions as follows [27]

U∗(x, t) =
f∑
l=1

αlΨl(x, t) =
f∑
l=1

αl
H(t+t0)

2
√
π(t+to)

e
(x−xl)

2

4(t+to)

xl = ( l−1f−1 ), l = 1, ..., f.
(13)

t0 is a parameter that is equal to the value of final time τ in
our calculations. xl will be uniformly distributed in [0, 1]. To
investigate the stability of the problem, the noise level entered
into the additional condition is considered to be 0, 1, 3 and
10 percent. The collocation points are defined as

(xi, ti) =


(0, ( e

−s(i)−1
e−1−1 τ)), s(i) = i−1

m−1 , i = 1, ...,m

(1, ( e
−s(i)−1
e−1−1 τ)), s(i) = i−m−1

m−1 , i = m+ 1, ..., 2m

( i−2m−1r−1 , τ), i = 2m+ 1, ..., 2m+ r
(14)

The genetic algorithm is used to minimize objective func-
tions Γ and Λ. The initial population consists of 25 chro-
mosomes, each chromosome has only one gene, which is
the value of regularization parameter λ. For the selection
process, we use the roulette wheel, the maximum number
of generations is 500, which is considered as the stopping
algorithm criteria.

In order to investigate the accuracy of the approximate
solution, error is defined on the collocated points on the
boundary at t = 0 as:

error(xi) = U∗(xi, 0)− uexc(xi, 0) (15)

In which uexc(Xi, 0) = cos(πXi)). The above equation
shows the error distribution as a function of X . The average
error in the entire domain is calculated as:

ME =

r∑
i=1

|U∗(xi, 0)− uexc(xi, 0)|
r

(16)

Where r is the number of collocation points on the boundary
t = 0.

III. RESULTS

Regularization is done for m = 18, r = 18 (n = 54
collocation points), 54 no. of trial functions (f = 54) and
final time τ = 0.1. The result of genetic calculations and
convergence of objective functions are discussed in this paper.
The performance of the Quasi-Optimality criterion and the
Morozov’s discrepancy principle are also compared at the
desired time. The approximated solutions will be compared
with each other and with the exact solution.

A. Results for different values of noise levels

The value of converged Morozov and Quasi- Optimality
objective functions using a genetic algorithm for noise = 1%
are respectively equal to Γ(λopt) ≈ O(10−16) and Λ(λopt) ≈
O(10−16), But this does not mean that the optimal regular-
ization parameter of the Morozov’s discrepancy principle is
better, But in general, the objective function of the Quasi-
Optimality criterion converges to larger amounts in respect to
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the Morozov’s objective function. Despite better convergence
patterns for Morozov’s objective function in comparison with
Quasi-Optimality criteria, it is clearly evident in Fig. (3) that
using regularization parameter λopt obtained from the quasi-
optimal criterion, the approximate solution is generally closer
to the exact one.

Fig. 3. Comparison of the approximate solution obtained using Quasi-
Optimality and Morozov’s regularization parameter with the exact solution
for noise = 1% and τ = 0.1 and n = 54 and f = 54.

Same as disturbance level at noise = 1%; with an increase
to 3%, the accuracy of the Quasi-Optimality criterion is much
higher than the Morozov’s discrepancy principle (Fig. (4)). In
calculating Tikhonov regularization coefficient using a genetic
algorithm, increasing the population size will increase the
required time it takes to calculate each generation, at the
same time it reduces the number of generations needed to
achieve optimal achievable value for regularization parameter.
In various runs of the code, it can be seen that initial
population growth did not affect improving the final value
of the objective function. As a result, there was no need to
increase the population size and examine its impact for noise
levels.

Fig. 4. Comparison of the approximate solution obtained using Quasi-
Optimality and Morozov’s regularization parameter with the exact solution
for noise = 3% and τ = 0.1 and n = 54 and f = 54.

The Quasi-optimality criterion results in less error and
is a more precise method. The optimal parameters of the

two methods differ significantly as shown in the table (I).
By increasing the noise level to 3%, the accuracy of the
Quasi-optimality criterion is still much better than Morozov’s
discrepancy principle as shown in table (II).

TABLE I
COMPARISON OF THE QUASI-OPTIMALITY CRITERION AND THE

MOROZOV’S DISCREPANCY PRINCIPLE FOR m = r = 18, f = 54,
noise = 1%, AND τ = 0.1

Criterion λopt Objective function ME ‖error‖ δ
Morozov 9.32× 10−9 5.20× 10−17 0.2397 1.1025 0.0645
quasi-optimality 0.0419 2.79× 10−9 0.0334 0.1570 0.0645

TABLE II
COMPARISON OF THE QUASI-OPTIMALITY CRITERION AND THE

MOROZOV’S DISCREPANCY PRINCIPLE FOR m = r = 18, f = 54,
noise = 3%, AND τ = 0.1

Criterion λopt Objective function ME ‖error‖ δ
Morozov 0.0021 0 0.18 0.8276 0.1872
quasi-optimality 0.0301 3.06× 10−9 0.0271 0.1346 0.1872

The value of average error increases as the norm of noise
increases. Interestingly, by the rise in disturbance norms, the
average error of the Morozov method has decreased, although
the Quasi-optimality criterion is more precise. Various meth-
ods for choosing the regularization parameter in different
problems have different accuracies.

Naturally, increasing the level of disturbance in a continuous
solution will increase the error in the output. But using
Morozov’s discrepancy principle by increasing the level of
disturbances, the error value decreases in the most collocation
points. In Quasi-optimality criterion, by increasing levels of
disturbances, the error value increases subsequently and at
the same time, remains at an acceptable level. Although this
criterion does not require the extent of disturbance range or
‖W −Wδ‖2, it has a great accuracy.

As shown in Fig. (5-a), using Morozov’s discrepancy princi-
ple to find the optimal regularization parameter, in the case of
a disturbance of 10 percent the error value in most collocation
points will be less than 1 or 3 percent cases. Interestingly, the
error value is the highest in the case where the disturbance
level is 1%. Additionally, the error value is not acceptable
at any level of disturbance. In Fig. (5-b) it can be seen by
increasing levels of disturbances, the error value increases
subsequently and at the same time remains at an acceptable
level. The use of Quasi-optimality criterion can also be more
practical since it might not be possible to find the norm of error
in the measured data used as an additional condition. It can be
seen in Fig. (6) that, even in the presence of 10% noise level,
which is very high and in practice in inverse engineering, the
measurement errors are much lower than this, the approximate
solution follows exact solution accurately which demonstrates
the successful implementation of our algorithm.
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(a)

(b)

Fig. 5. The error in the collocation points on the boundary t = 0 for n = 54,
f = 54, and at different noise levels, a) using the Quasi -optimality criterion
b) using the Morozov’s discrepancy principle.

Fig. 6. Accurate and approximate solution on the collocation points on the
boundary t = 0 for n = 54, f = 54, τ = 0.1 at different noise levels using
Quasi-optimality criterion.

Fig. (7) shows the approximate solution error on all collo-
cation points. In general, the error in the internal points is less
than the boundary collocation points.

B. Validation

The exact IHCP solved in this paper has not been solved in
any paper. Therefore, to verify the method, the problem studied
by Lesnic et al. [27], which they used fundamental functions
method using 60 collocation points and 20 guessed functions,
has been solved using out algorithm. Lesnic et al. [27] assumed

Fig. 7. Comparison between approximate solution error on all collocation
points for n = 54, f = 54, τ = 0.1 in different noise levels using quasi-
optimally criterion.

5% disturbance level and the final time τ = 0.25 and applied
Tikhonov regularization technique and the L-curve method to
their problem. This problem has been analyzed again based
on the method presented here, the problem is defined as:


∂u(x,t)
∂t − ∂2u(x,t)

∂x2 = 0 , 0 ≤ x ≤ 1, 0 ≤ t ≤ τ,
u(0, t) = f(t) = 0, 0 ≤ t ≤ τ,
u(1, t) = g(t) = 0, 0 ≤ t ≤ τ,
u(x, τ) = Ω(t) = sin(πx)e−π

2τ , 0 ≤ x ≤ 1
(17)

Fig. 8. Validation of the sample problem using quasi-optimally criterion
assuming τ = 0.25, n = f = 60 and noise = 5% .

The above problem was solved using the same parameters
which were used by Lesnic. Fig. (8) illustrates that the method
used in this study has an accurate solution and is in proper
compliance with the results of Lesnic et al. [27] and has a
precise solution.

IV. CONCLUSION

The primary purpose of this paper is to introduce an effec-
tive method for solving inverse problems in combination with
Tikhonov Regularization and genetic algorithms. Finding the
optimal regularization parameter in Tikhonov regularization
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has been modeled to investigate the efficiency and accuracy
of its application in solving sample IHCPs. Fundamental
solutions have been used to guess estimate solution with
constant unknowns’ coefficients, and the collocation method
is applied to minimize the residue on the collocation points.

The Morozov’s discrepancy Principle and the Quasi-
Optimality criterion are used to define the objective functions
which minimizing them gives the optimal parameter. Results
show that the parameters of the Genetic Algorithm (like
mutation rate, crossover, operator,...) should be chosen appro-
priately according to the dynamic of the problem. Otherwise,
the results will not be sufficiently precise. Crossover and
mutation operators play the main role in minimizing and
changing the selection operator did not have any practical
effect on minimizing the objective function. By increasing the
number of collocation or nodal points, the condition number
of the matrix of coefficients increased, and it became severely
ill-conditioned, however, if regularization applied successfully,
the increase of nodal or collocated points results in less
error in the estimated solution. The quasi-optimality criterion
was more effective at smaller final times while Morozov’s
discrepancy principle was better at larger final times. The
objective function of the Quasi-Optimality criterion minimized
to lower values with respect to Morozov’s objective function.
Comparing the results of the proposed hybrid method pre-
sented in this paper with the analytical solution and the results
of other researchers indicates the efficiency and accuracy of
this method in solving inverse problems.
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