
Sliding Modes Control of the Asynchronous Motor with an
Observer of a Special Class of the Non-linear Systems

Interconnected to an Estimator
AHMED CHOUYA

Department of Engineering Electrical
University of Djilali Bounâama
Khemis-Miliana City, 44 225

ALGERIA

Abstract: - The present paper deals sliding modes control of the asynchronous motor, where the sensor
mechanical speed, it replaced by a software sensor. It is an observer of a special class of the non-linear
systems interconnected to an estimator. The performances of the sliding modes control of the asynchronous
motor with an observer of a special class of the non-linear systems interconnected to an estimator proposed
are shown by a simulation treating the evaluation of the rotor flux and rotating speed an asynchronous
motor.
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1 Introduction
The new industrial applications require variable
speed transmissions having high dynamic perfor-
mances. These last years several techniques were
developed to allow the asynchronous variators to
reach these performances, (cf.[1], [2], [3], [4], [5],
[6], [7], [8], [9]).

However vectorial control and linearising input-
output, which allows a decoupling between the
variables of control, remain the most used con-
sidering the high dynamic performances which it
offers for a broad range applications [10].

With the aim of improve the dynamic per-
formances of the regulation speed of the asyn-
chronous motor, we considered it interesting to
call upon an observer of state to rebuild the state
(flux and speed) starting from the size and ma-
nipulated variable (tension) to control [11]. In the
following section a short recall of the asynchronous
model used, section 3 presents the non-linear ob-
server; sliding modes control is in section 4; where
stability (motor+observer) is checked; results of
simulations are given in section 5 by a simulation
with the software Matlab/Simulink.

2 Dynamic Model of
Asynchronous Motor

In this study, the model of the motor rests on the
following hypothesis, [12], [13]:

• The fluxes and the currents are proportional
by the intermediary of inductances and the
mutual.

• The losses iron are neglected .
• The air-gap is constant (squirrel-cage rotor).
• The homo-polar components are null.

It results from these assumptions that the various
mutual between rotor and stator can be expressed
like functions sinusoidal of the rotor position.
Its vector state is composed by the stator currents
and rotor fluxes, as follows:

disα
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disβ
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dt
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=
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Tr =
Lr
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; σ = 1− M2

LsLr

K =
M

σLsLr
; γ =

Rs
σLs

+
RrM

2

σLsLr

Ls, Lr and M are inductances cyclic stator, rotor
and cyclic mutual inductance between stator and
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rotor respectively; Rs and Rr are stator and rotor
resistances ; σ is the scattering coefficient; Tr is
the time constant of the rotor dynamics; J is the
rotor inertia; Cres is the resistive torque; p is the
pole pair induction; the model (1) is for a reference
frame binds to the fields stator.

3 Synthesis of Observer of a
Special Class of the Nonlinear
Systems Interconnected to an
Estimator

The model of the asynchronous machine (1) can
be rewritten in the shape of interconnected two
subsystems:

[
disα
dt
dΩ
dt

]
=

[
0 pKψrβ
0 0

] [
isα
Ω

]

+

 −γisα +
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Tr
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Tr
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+


−pΩKψrα +

1

σLs
vsβ

M

Tr
isα − pΩψsβ

pΩψrα

 (3)

The interconnected two subsystems (2) and (3)
can be represented in a more compact intercon-
nected form as follows:{

Ẋ1 = F1(X2)X1 +G1(U1, X1, X2)
Y1 = C1X1

(4){
Ẋ2 = A2X2 +G2(U2, X1, X2)
Y2 = C2X2

(5)

Where
X1 = [isα,Ω]

T , X2 = [isβ , ψsα, ψsβ ]
T ,

C1 = [1, 0] , C2 = [1, 0, 0] , F1(X2) =[
0 pKψrβ
0 0

]
,

A2 =

 −γ 0 K
Tr

0 − 1
Tr

0
M
Tr

0 − 1
Tr

, U = [vsα, vsβ ]
T ,

G1(U1, X1, X2) =

 −γisα +
K

Tr
ψrα +

1

σLs
vsα

p

J

M

Lr
(isβψrα − isαψrβ)−

Cres
J

,

G2(U2, X1, X2) =

 −pΩKψrα + 1
σLs

vsβ
M
Tr
isα − pΩψsβ

pΩψrα


and U1 = [vsα, 0]

T , U2 = [vsβ , 0, 0]
T ,

Y = [isα, isβ ]
T .

Before giving the hypothesis, we will make the
remarks and one presents notations used hereafter.

1. Set Λ1(X2) diagonal matrix defined by:

Λ1 (X2) =

[
1 0
0 pKψrβ

]
(6)

2. Set S the single solution of the algebraic equa-
tion of Lyapunov:

S +ATS + SA− CT1 C1 = 0 (7)

where A identity matrix.

A =

[
1 0
0 1

]
One can show that the explicit solution (7) is
given by:

S(i, j) = (−1)i+jCj−1
i+j−2 where Cij =

j!

i!(j − i)!

3. Set S̄ = Λ1(X2)
TSΛ1(X2) and C̄1 =

C1Λ1(X2)

With an aim of designing an observer cascades
for the subsystem (4), we pose the following hy-
pothesis:
Hypothisis 1 :

H1 :(vsα, ψrα, ψrβ, irα) and (vsβ, Ω, irβ) are
limited and supposed to be regularly persistent
to guarantee the property of observability of
the hypothesis (4) and (5) respectively.

H2 : F1 is global Lipschitz compared to X2, i.e.:∥∥∥∆−1
θ

(
F1 (X2)X1 − F1

(
X̂2

)
X1

)∥∥∥ ≤ ξ1 ∥ē1∥ ;

ξ1 > 0 : Constant of Lipschitz

H3 : G1 is global Lipschitz compared to X2, i.e.:∥∥∥∆−1
θ

(
G1 (U1, X1, X2)−G1

(
U1, X̂1, X̂2

))∥∥∥ ≤ ξ2 ∥ē1∥

ξ2 > 0 : Constant of Lipschitz
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H4 : G2 is global Lipschitz compared to X1, i.e.:∥∥∥G2 (U2, X1, X2)−G2

(
U2, X̂1, X̂2

)∥∥∥ ≤ ξ3 ∥e2∥

ξ3 > 0 : Constant of Lipschitz

H5 : There are two positive constants α1 et β1
such as:

0 < α2
1 < F T1

(
X̂2

)
F1

(
X̂2

)
< β2

1 (8)

According to the contribution of [16] the ob-
server of the subsystem (4) is given by:

˙̂
X1 = F1(X̂2)X̂1 +G1(U1, X̂1, X̂2)

+θ∆θS̄
−1C̄T1

(
Y1 − Ŷ1

)
Ŷ1 = C̄1X̂1

(9)

withe ∆θ =

[
1 0
0 θ

]
for θ > 0.

The estimator of the system (5) is given by the
following equations:{

˙̂
X2 = A2X̂2 +G2(U2, X̂1, X̂2)

Ŷ2 = C2X̂2

(10)

Let us note that the observer (9) is composed of
a term which is the copy of the dynamics of the
subsystem (4) and of another term which repre-
sents the part of correction. This correction is
a function of the error in estimation between the
measured currents and their considered multiplied
by the gains of the observer. When with the es-
timator (10), it represents only the copy of the
dynamics of the subsystem (4).

Now we present the analysis of total stability
of the observer of a special class of the systems
nonlinear interconnected with an estimator. This
analysis of stability is made by the Lyapunov
theory. We will see that the convergence dynam-
ics of the observer is fixed by that of the estimator
and thus cannot be arbitrarily selected.

3.1 Analyze Stability of the Observer
and the Estimator

To study the stability of the observer, we defines
the equations of the errors in estimation as follows:

e1 = X1 − X̂1 (11)
e2 = X2 − X̂2 (12)

we can easily check that:

Λ1(X̂2)F1(X̂2) = AΛ1(X̂2)

Thus, by multiplying the left and right side of the
equation (7) by ΛT1 (X̂2) and Λ1(X̂2) respectively,
to obtain to us:

θS̄ + F T1 (X̂2)S̄ + S̄F1(X̂2)− C̄T1 C̄1 = 0 (13)

The dynamic ones of these errors are given by:

ė1 =
(
F1(X̂2)− θ∆θS̄

−1C̄T1 C̄1

)
e1 + F1(X2)X1

−F1(X̂2)X1 +G1(U1, X1, X2)

−G1(U1, X̂1, X̂2) (14)

Set ē1 = ∆−1
θ e1, then ∆−1

θ F1(X̂2)∆θ = θF1(X̂2).

˙̄e1 = θ
(
F1(X̂2)− S̄−1C̄T1 C̄1

)
ē

+∆−1
θ

{
F1(X2)X1 − F1(X̂2)X1

}
+∆−1

θ

{
G1(U1, X1, X2)−G1(U1, X̂1, X̂2)

}
(15)

ė2 = A2e2 +G2(U2, X1, X2)−G2(U2, X̂1, X̂2)(16)

Lemma 1 :
If the hypothesis 1 is satisfied, then the system
(9)-(10) is an observer asymptotic of the system
(4)-(5). Moreover, the speed of convergence of the
error in estimation e = [ē1; e2]

T can be selected as
fast as that imposed by the estimator (10) of the
subsystem (5).

3.2 Proof of the Lemma 1
To prove convergence, let us consider the following
equation of Lyapunov:

V = V1 + V2 (17)

where V1 = ēT1 Sē1 and V2 = eT2 e2. By cal-
culating the derivative of V along the trajectories
of ē1 and e2, we obtains:

V̇ = 2ēT1 S̄ ˙̄e1 + 2ēT1 Λ
T
1 S̄Λ̇1ē1 + ėT2 e2 + eT2 ė2

= θ
(
2ēT1 S̄F1(X̂2)ē1 − 2ēT1 C̄

T
1 C̄1ē1

)
+2ēT1 S̄∆

−1
θ

{
F1(X2)X1 − F1(X̂2)X1

}
+2ēT1 S̄∆

−1
θ

{
G1(U1, X1, X2)−G1(U1, X̂1, X̂2)

}
+2ēT1 Λ

T
1 S̄Λ̇1ē1 + eT2

{
F2(X̂1) + F2(X̂1)

T
}
e2

+2eT2

{
G2(U2, X1, X2)−G2(U2, X̂1, X̂2)

}
(18)

By taking account of the hypothesis 1, and by
introducing the norms, then:

V̇ ≤ −θV − θ
∥∥C̄ē∥∥2

+2
∥∥S̄ē1∥∥ ∥∥∥∆−1

θ

{
F1(X2)X1 − F1(X̂2)X1

}∥∥∥
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+2
∥∥S̄ē1∥∥ ∥∥∥∆−1

θ {G1(U1, X1, X2)

−G1(U1, X̂1, X̂2)
}∥∥∥

+2ēT1 Λ
T
1 S̄Λ̇1ē1 + eT2

∥∥∥F2(X̂1) + F2(X̂1)
T
∥∥∥ e2

+2eT2

∥∥∥G2(U2, X1, X2)−G2(U2, X̂1, X̂2)
∥∥∥(19)

V̇ ≤ −θV + 2κ̆2λmax(S) ∥ē1∥2 {ξ1 + ξ2}
+2ηκλmax(S) ∥ē1∥2 +

(
µ+ ξ̃3

)
∥e2∥2(20)

where
∗ η = sup

∥∥∥Λ̇∥∥∥ and ξ̃3 = 2ξ3

∗ µ is selected a positive constant to satisfy the
condition of Lipschitz.

µ = max
(
2γ,

2

Tr

)
(21)

∗ λmin(S) and λmax(S) are the eigenvalues mini-
mal and maximum of S.

∗ κ̆ = max (1, β1)

∗ ∥e2∥2 = eT2 e2

By rewriting the preceding expression of V (17)
according to V1 and V2, we obtains:

V̇ ≤ −(θ − ξ̃1)V1 − (µ− ξ̃3)V2 (22)

Where

ξ̃1 = 2σ(S)
κ̆2

κ2
(ξ1 + ξ2 + κη) ;

κ = min (1, α1) , σ(S) =

√
λmax(S)

λmin(S)

If we take: 
π1 = θ − ξ̃1 > 0
and
π2 = µ− ξ̃3 > 0

Finally, while taking:

ζ = min (π1, π2) (23)

it follows that:

V̇ ≤ −ζ (V1 + V2) ≤ −ζV (24)

This finishes the proof of convergence of the ob-
server. Thus V is a Lyapunov function and
the speed of convergence of the error in estima-
tion is fixed by dynamics of the estimator (10) of
the subsystem (5).

4 Synthesis of the Control by
Sliding Modes

For a more general case, let us consider the system
described by the following equation:{

ẋ = f(x, u)
y = h(x)

where x ∈ ℜn is the vector of state, u ∈ ℜm
the control, y ∈ ℜr the vector of out-put. Let
us suppose that our system is commandable and
observable. The objective of the sliding mode con-
trol is, firstly, to synthesize a variety (surface)
S(x, t) ∈ ℜm such as all the trajectories of the
system obey one desired behavior of continuation,
regulation and stability. Secondly, to determine
a law of control (commutation), u(x, t), who is
able to attract all the trajectories of state towards
the sliding surface and to maintain them on this
surface. One will study the applicability of this
method in the case of the asynchronous motor.
The advantages of this approach are:

• The process of sliding is of a order reduced in
comparison to the original system.

• The sliding mode presents properties of ro-
bustness with respect to the variation of cer-
tain types of parameters.

However, a question arises:how to synthesize slid-
ing surfaces for various classes of system?

It is supposed that all the states are measured.
Our objective is to build a law of control U =

[ ua ub ]
T to force the states of the motor, who

are speed and rotor flux, to join the sliding surface
S = [ S1 S2 ]

T . This surface is defined by:

S1 =
k1
η
(Ω̂− Ωref ) + (̂isβψ̂rα − îsαψ̂rβ)

− Ω̇ref

η

S2 =
Tr
2
k2(ϕ̂− ϕref ) + [M (̂isαψ̂rα

+îsβψ̂rβ)− ϕ̂]− ϕ̇ref
Tr
2

(25)

where η =
p

J

M

Lr
and k1, k2 > 0, Ω̇ref and ϕ̇ref the

derivative compared to the time of Ωref and ϕref
(speed desired and norm of desired flux), respec-
tively. On S ≡ 0, we have

η(̂isβψ̂rα − îsαψ̂rβ) =

−k1(Ω̂− Ωref ) + Ω̇ref
2

Tr
[M (̂isαψ̂rα + îsβψ̂rβ)− ϕ̂] =

−k2(ϕ̂− ϕref ) + ϕ̇ref

(26)
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knowing that Ω̇ = η(̂isβψ̂rα − îsαψ̂rβ)

ϕ̇ =
2

Tr
[M (̂isαψ̂rα + îsβψ̂rβ)− ϕ̂]

(27)

one obtains{
Ω̇ = −k1(Ω̂− Ωref ) + Ω̇ref
ϕ̇ = −k2(ϕ̂− ϕref ) + ϕ̇ref

(28)

Then
d

dt
(Ω̂− Ωref ) = −k1(Ω̂− Ωref )

d

dt
(ϕ̂− ϕref ) = −k2(ϕ̂− ϕref )

(29)

Consequently, on S ≡ 0, the speed of the rotor
and the square of rotor flux must converge expo-
nentially towards their references. However, to
continue Ωref and ϕref , it is sufficient to make the
sliding surface gravitational and invariant. That
is to say the following proposal:

Proposal:
Let us consider the sliding surface = [ S1 S2 ]T

defined in (25) and the control law by sliding mode
U = Ui + Ue, with Ui = −D−1

[
u01 0
0 u02

] [
sign(S1)
sign(S2)

]
Ue = −D−1F

(30)

and {
u01 > |A|
u02 > |B| (31)

where

F =

[
A
B

]
, D =

 − 1

σLs
ψ̂rβ

1

σLs
ψ̂rα

M

σLs
ψ̂rα

M

σLs
ψ̂rβ


and

A =

(
k1 −

1

Tr
− γ

)
f2 − pΩ̂

(
f1 +Kϕ̂

)
−k1
η
Ω̇ref −

1

η
Ω̈ref (32)

B =

(
Trk2
2

− 1

)
˙̂
ϕ+M

[
M

Tr
mi −

(
1

Tr
+ γ

)
f1

+
K

Tr
ϕ̂+ pΩ̂f2

]
− Tr

2
k2ϕ̇ref −

Tr
2
ϕ̈ref (33)

with

f1 = îsαψ̂rα + îsβψ̂rβ , f2 = îsβψ̂rα − îsαψ̂rβ ,

mi = î2sα+ î2sβ then, S is gravitational and invari-
ant.

Proof:
That is to say the following function of Lyapunov
V =

1

2
STS; then, its derivative compared to time

is V̇ = StṠ with

Ṡ =

[
Ṡ1
Ṡ2

]
= F +DUi

where

Ui =

[
Ui1
Ui2

]
= −D−1

[
u01 0
0 u02

] [
Sign(S1)
Sign(S2)

]
We can rewrite Ṡ in the following form:

Ṡ = F −
[
u01 0
0 u02

]
Sign(S)

The S variety is gravitational if ST Ṡ < 0 i.e.

ST
(
F −

[
u01 0
0 u02

]
Sign(S)

)
< 0

then {
u01 > |A|
u02 > |B|

We can choose:

u01 =

∣∣∣∣(k1 − 1

Tr
− γ

)
f2 − pΩ̂

(
f1 +Kϕ̂

)
−k1
η
Ω̇ref −

1

η
Ω̈ref

∣∣∣∣ (34)

u02 =

∣∣∣∣(Trk22
− 1

)
˙̂
ϕ+M

[
M

Tr
mi −

(
1

Tr
+ γ

)
f1

+
K

Tr
ϕ̂+ pΩ̂f2

]
− Tr

2
k2ϕ̇ref −

Tr
2
ϕ̈ref

∣∣∣∣(35)

Then, the condition of existence of the sliding
requires only the knowledge of the maximum value
of the couple of load which the engine can support.
However, S = 0 is invariant if Ṡ = 0, i.e.(

0
0

)
= F +DUe, or Ue = −D−1F

It should be noted that this law of control is dif-
ferent from that proposed by [15], in the latter the
author gives the basic concepts for the synthesis
of a control to variable structure for the electric
actuators.
In addition, the force of the sliding mode is its
robustness with respect to the variation of param-
eters. It is easy to show that this law of control
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is robust compared to the errors of modeling and
the variation of certain parameters. This is pos-
sible by taking the gains of the regulator u01 and
u02 sufficiently large.
It is as very known as the technique of the sliding
mode gives the undesirable problem of chattering,
but one can cure that by replacing the function
Sign by a continuous function in the vicinity of
the origin.

Sign(Si) =

{
1 if Si > 0

−1 if Si < 0
(36)

In the design of the control, we supposed that
only measurements of the current and the tension
are available, we will need to consider flux rotor
and rotating speed seen of an application in real
time.

5 Results and Simulations
The vector of state of the motor is initialized with
the stopped state [ isα isβ ψrα ψrβ Ω ]

T
=

[ 0 0 0 0 0 ]
T ; whereas that

of the observer in a functional
state

[
îsα îsβ ψ̂rα ψ̂rβ Ω̂

]T
=

[ 0.2 0.2 1 1 10 ]
T , and the results are

given for the motor of which a direct starting,
i.e. a resistive torque null (Cres = 0) and these
characteristics are given in table (Tab.1):

Parameters Notation Value Unit
Poles pairs p 2
Stator resistance Rs 9.65 Ω
Rotor resistance Rr 4.3047 Ω
Stator inductance Ls 0.4718 H
Rotor inductance Lr 0.4718 H
Mutual Inductance M 0.4475 H
Rotor inertia J 0.0293 Kg.m2

Resistive torque Cres 0 N.m

Table 1: Parameters of the induction motor.[17]

We conceived simulation by carrying out the
diagram general in blocks as the figure shows it
(Fig.1).

Figure 1: Diagram general of the sliding modes
control of the asynchronous motor with an ob-
server of a special class of the nonlinear systems
interconnected to an estimator.

Simulation was made by Matlab-Simulink.
The simulation results are given by the curves ob-
tained law of sliding modes control which coeffi-
cients k1 = 8500000, k2 = 600000 and an observer
of a special class of the non-linear systems inter-
connected to an estimator which gain of observa-
tion θ = 41.

Figure 2: Curves of continuation of flux of sliding
modes control of the asynchronous motor with an
observer of a special class of the non-linear systems
interconnected to an estimator and desired flux.
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Figure 3: Curve error of continuation of flux of
sliding modes control of the asynchronous motor
with an observer of a special class of the non-linear
systems interconnected to an estimator.

Figure 4: Curves of continuation speed of sliding
modes control of the asynchronous motor with an
observer of a special class of the non-linear systems
interconnected to an estimator and desired speed.

Figure 5: Curve error of continuation speed of slid-
ing modes control of the asynchronous motor with
an observer of a special class of the non-linear sys-
tems interconnected to an estimator.

6 Conclusion
Current simulations made it possible to validate
the operation of the control in the majority of
the dynamic modes (starting, inversion of direc-
tion of rotation). The empirical determination of
the gains is thus specific to each motor, which con-
stitutes a serious constraint. The global conver-
gence of the controlled outputs is reached. The
stability of the whole of the system (motor, ob-
server,control) carried out. One notices an error
of convergence of the parameters observed due to
the difference of the dynamics of the process and
observer. It is noted that the results are satisfac-
tory.
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