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Abstract. This study proposes a dynamic multiple neighborhood structures to solve a variant of the frequency assignment problem 
known as the minimum order frequency assignment problem. This problem involves assigning frequencies to a set of requests while 
minimizing interference and the number of used frequencies. Several novel and existing techniques are used to improve the efficiency 
of this algorithm and make it different from other applications of multiple neighborhood structures in the literature. This includes 
solving the static problem by modeling it as a dynamic problem through dividing this static problem into smaller sub-problems, which 
are then solved in turn in a dynamic process using multiple neighborhood structures. Moreover, applying technique that aims to deter-
mine a lower bound on the number of frequencies required from each domain for a feasible solution to exist for each sub-problem, 
based on the underlying graph coloring model. These lower bounds ensure that the search focuses on parts of the solution space that 
are likely to contain feasible solutions. This study considers real and randomly generated benchmark datasets of the static problem and 
our approach achieved competitive results.  
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1 Introduction 

The frequency assignment problem (FAP) is related to 
wireless communication networks, which are used in 
many applications such as mobile phones, TV broad-
casting and Wi-Fi. The aim of the FAP is to assign fre-
quencies to wireless communication connections (also 
known as requests) while satisfying a set of constraints, 
which are usually related to prevention of a loss of sig-
nal quality. Note that the FAP is not a single problem. 
Rather, there are variants of the FAP that are encoun-
tered in practice. The minimum order FAP (MO-FAP) 
is the first variant of the FAP that was discussed in the 
literature, and was brought to the attention of research-
ers by [1]. In the MO-FAP, the aim is to assign frequen-
cies to requests in such a way that no interference oc-
curs, and the number of used frequencies is minimized. 
As the MO-FAP is NP-complete [2], it is usually solved 
by meta-heuristics. 

Many meta-heuristics have been proposed to solve 
the MO-FAP including genetic algorithm (GA) [3], 
evolutionary search (ES) [4], ant colony optimization 
(ACO) [5], simulated annealing (SA) [6] and tabu 
search (TS) [6, 7, 8, 9]. It can be seen from the literature 
that TS is a popular meta-heuristic for solving difficult 
combinatorial optimization problems. This generally 
applicable algorithm has proved to be an efficient way 
of finding a high quality solution for a variety of opti-
mization problems e.g. [10]. However, existing algo-
rithms in the literature are unable to find optimal solu-
tions in some datasets for the MO-FAP.     

In this paper, we present a dynamic multiple neigh-
borhood structures (DMNS), one of which is used as a 
diversification technique. The concept of using multiple 
neighborhood structures is inherited from the variable 

neighborhood search algorithm, introduced by [11]. In 
contrast, [6, 7, 8, 9] implemented only a single neigh-
borhood structure in their TS algorithms. Moreover, 
DMNS algorithm applies the good starting point strate-
gy by starting with a good initial solution using a 
greedy heuristic associated with a descent method. This 
should lead to more efficient solution method [12]. In 
contrast, an initial solution is randomly generated in [7, 
13]. Another technique used in DMNS algorithm is 
applying a lower bound on the number of frequencies 
that are required from each domain for a feasible solu-
tion to exist for each sub-problem, based on the under-
lying graph coloring model. These lower bounds ensure 
that the search focuses on parts of the solution space 
that are likely to contain feasible solutions. Experiments 
were carried out on the CELAR and GRAPH datasets, 
and the results show that our TS algorithm outperforms 
other algorithms in the literature.  

This paper is organized as follows: the next section 
gives an overview of the MO-FAP. Section 3 explains 
how to model the static MO-FAP to a dynamic prob-
lem. Section 4 explains how the underlying graph color-
ing model for the MO-FAP can be used to provide a 
lower bound on the number of frequencies for each 
instance and how this information can then be used to 
assist the search. In Sections 5 and 6, the overall struc-
ture of the DMNS algorithm for the static MO-FAP is 
outlined. In Section 7, the results of this algorithm are 
given and compared with those of other algorithms in 
the literature before this study finishes with conclusions 
and future work.    
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2 Overview of the MO-FAP   

The main concept of the MO-FAP is assigning a fre-
quency to each request while satisfying a set of con-
straints and minimizing the number of used frequencies. 
The MO-FAP can be defined formally as follows: given 

 a set of requests  R = {𝑟1, 𝑟2, … , 𝑟NR}, where NR is the 
number of requests, 

 a set of frequencies F = {𝑓1, 𝑓2, … , 𝑓NF} ⊂ ℤ+, where NF 

is the number of frequencies, 
 a set of constraints related to the requests and frequen-

cies (described below), 

the goal is to assign one frequency to each request so 
that the given set of constraints are satisfied and the 
objective function is minimized, where the objective 
function is minimizing the number of used frequencies. 
Note that the frequency that is assigned to requests 𝑟𝑖  is 
denoted as 𝑓𝑟𝑖 throughout of this study. The MO-FAP 
has four variants of constraints as follows: 

1. Bidirectional Constraints: this type of constraint 
forms a link between each pair of re-
quests  {𝑟2𝑖−1, 𝑟2𝑖} , where  𝑖 = 1, . . . , 𝑁𝑅/2 . In these 
constraints, the frequencies 𝑓𝑟2𝑖−1

 and 𝑓𝑟2𝑖
that are as-

signed to 𝑟2𝑖−1  and 𝑟2𝑖 , respectively, should be dis-
tance 𝑑𝑟𝑖𝑟𝑗

 apart. In the datasets considered here, 
𝑑𝑟𝑖𝑟𝑗

 is always equal to a constant value (238). These 
constraints can be written as follows:                  

| 𝑓𝑟𝑖
−  𝑓𝑟𝑗

|

=  𝑑𝑟𝑖𝑟𝑗
 

for 𝑖 = 1, … , NR/2 (1) 

2. Interference Constraints: this type of constraint forms 
a link between a pair of requests {𝑟𝑖 , 𝑟𝑗}, where the 
pair of frequencies  𝑓𝑟𝑖 and  𝑓𝑟𝑗

 that is assigned to the 
pair of requests 𝑟𝑖  and  𝑟𝑗 , respectively, should be 
more than distance 𝑑𝑟𝑖𝑟𝑗 apart. These constraints can 
be written as follows:  

| 𝑓𝑟𝑖
−  𝑓𝑟𝑗

|

>  𝑑𝑟𝑖𝑟𝑗
 

for 1 ≤ 𝑖 < 𝑗 ≤ NR (2) 

3. Domain Constraints: the available frequencies for 
each request 𝑟𝑖 are denoted by the domain 𝐷𝑟𝑖 ⊂ 𝐹, 
where  ∪𝑟𝑖∈𝑅 𝐷𝑟𝑖 = 𝐹. Hence, the frequency which is 
assigned to 𝑟𝑖  must belong to  𝐷𝑟𝑖 . For the datasets 
considered in this study, there are 7 available do-
mains. 

4. Pre-assignment Constraints: for certain requests, the 
frequencies have already been pre-assigned to given 
values i.e.  𝑓𝑟𝑖

= 𝑝𝑟𝑖 , where 𝑝𝑟𝑖 is given value.  

3 Modeling the Static MO-FAP as a 
Dynamic Problem 

In the DMNS algorithm, the static MO-FAP is broken 
down into smaller sub-problems, each of which is con-
sidered at a specific time period. To achieve this, each 
request is given an integer number between 0 and 𝑛 
(where 𝑛 is a positive integer) indicating the time period 
in which it becomes known. In effect, the problem is 
divided into 𝑛 + 1 smaller sub-problems  𝑃0 ,  𝑃1, … , 𝑃𝑛 , 
where n is the number of sub-problems after the initial 
sub-problem 𝑃0. Each sub-problem  𝑃𝑖  contains a subset 
of requests which become know at time period 𝑖. The 
initial sub-problem 𝑃0  is solved first at time period 0. 
After that, the next sub-problem 𝑃1 is considered at time 
period 1  and the process continues until all the sub-
problems are considered. In this study, we found that 
the number of sub-problems does not impact on the 
performance of the DTS approach for solving the static 
MO-FAP, so the number of sub-problems is fixed at 21 
(i.e. n = 20).  

Based on the number of the requests known at time 
period 0 (belonging to the initial sub-problem 𝑃0), 10 
different versions of a dynamic problem are generated. 
These versions are named using percentages which 
indicate the number of requests known at time period 0. 
These 10 versions are named 0%, 10%, 20%, 30%, 
40%, 50%, 60%, 70%, 80%, 90% (note that 100% 
means all the requests are known at time period 0 and 
so corresponds to the static MO-FAP).  

4 Graph Coloring Model for the MO-
FAP 

The graph coloring problem (GCP) is an underlying 
model to the MO-FAP [14]. The GCP involves allocat-
ing a color to each vertex such that no adjacent vertices 
are in the same color class and the number of colors is 
minimized. The MO-FAP can be represented as a GCP 
by representing each request as a vertex and a bidirec-
tional or an interference constraint as an edge joining 
the corresponding vertices. 

One useful concept of graph theory is the idea of 
cliques. A clique in a graph can be defined as a set of 
vertices in which each vertex is linked to all other verti-
ces. A maximum clique is the largest among all cliques 
in a graph. Vertices in a clique have to be allocated to a 
different color in a feasible coloring. Therefore, the size 
of the maximum clique acts as a lower bound on the 
minimum number of colors and therefore, by extension, 
as a lower bound on the number of frequencies for the 
MO-FAP. For example, the requests  𝑟1,  𝑟200,  𝑟871,  𝑟872 
and 𝑟899  form a clique in the CELAR 01 instance (see 
Figure 1). All of these requests are linked to each other 
by either a bidirectional (see Equation 1) or an interfer-
ence constraint (see Equation 2).  
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Fig. 1. An example of a clique in the CELAR 01 instance in 
the graph coloring model. 

 
Figure 1 shows 5 different requests forming a clique, 

so at least 5 different frequencies are required. Note that 
𝑟1,  𝑟200,  𝑟871 and 𝑟872 belong to domain 1, while 𝑟899 
belongs to domain 3. As the requests belong to different 
domains, the graph coloring model for each domain can 
be considered separately and then a lower bound on the 
number of frequencies that is required from each do-
main can also be calculated. Generalizing the clique 
problem concept for all datasets gives a lower bound of 
the number of frequencies which are required from each 
domain as well as an overall lower bound on the total 
number of frequencies for a whole instance.  

A Branch and Bound algorithm is used to obtain the 
set of all maximum cliques for each domain within each 
instance. Table 1 gives the minimum number of fre-
quencies that is required in each domain and the size of 
the maximum clique for the overall instance, together 
with the run time (in seconds) and the optimal number 
of used frequencies, which are known and are available 
from the FAP website1.  

Table 1. The lower bound of the number of frequencies for 
each domain. 

In-
stance 

Domain Ma
x. 

Cliq
ue 

Ru
n 
Ti
me 

Op-
timal 
Solu-
tion 

1 2 3 4 5 6 7 

CELA
R 01 

CELA
R 02 

CELA
R 03 

CELA
R 04 

CELA
R 11 

GRAP
H 01 

GRAP
H 02 

GRAP
H 08 

1
0 9 1

0 4 4 7 2 12 1.5
0 16 

1
0 0 1

0 0 0 0 2 14 0.0
2 14 

1
0 0 1

0 0 2 0 2 12 0.0
6 14 

1
0 0 1

0 4 2 0 2 44 0.3
4 46 

2
0 0 1

4 4 2 0 2 20 0.3
4 22 

8 3 6 2 4 4 2 18 0.0
3 18 

6 2 4 0 2 4 0 14 0.1
2 14 

1
0 2 6 2 3 8 3 16 0.2

8 18 

                                                           

GRAP
H 09 

GRAP
H 14 

6 2 1
0 2 2 8 2 18 0.4

8 18 

6 2 4 2 0 2 2 8 0.4
8 8 

5 Overview of the Dynamic Multiple 

Neighborhood Structures  

A key decision when designing the DMNS algorithm is 
the definition of the solution space and the correspond-
ing cost function. 

5.1 Solution Space and Cost Function 

In most cases, it has been found to be relatively straight-
forward to find solutions that satisfy the bidirectional, 
the domain and the pre-assignment constraints, as well 
as to define a neighborhood operator that moves be-
tween such solutions. Here the solution space S is de-
fined as the set of all possible assignments satisfying all 
of the bidirectional, the domain and the pre-assignment 
constraints. Note that the interference constraints are 
relaxed in S. Only the interference constraints are re-
laxed because these are the most difficult constraint to 
be satisfied. The cost function CF is defined as the 
number of broken interference constraints, also known 
as the number of violations. This configuration has been 
used previously in the literature e.g. [6, 8, 15]. One of 
the advantages of using this configuration is that, in 
effect, the number of requests is halved because each 
request is linked with another request based on the bidi-
rectional constraints (see Equation 1). As a result, here 
requests and frequencies are considered as pairs (instead 
of individuals). A pair of requests is denoted 
as {𝑟2𝑖−1, 𝑟2𝑖}, where 𝑖 = 1, . . . , 𝑁𝑅/2, and a pair of fre-
quencies is denoted as {𝑓𝑘 , 𝑓𝑘

′} throughout this study.  
A further approach is also considered where the bidi-

rectional constraints are not enforced and the solution 
space consists of solutions that satisfy only the domain 
and the pre-assignment constraints, while cost function 
counts the number of broken bidirectional and interfer-
ence constraints. This configuration has been used pre-
viously in the literature e.g. [7, 13]. 

The solution space could have been defined as the set 
of all possible feasible assignments, that is, satisfy all of 
the constraints, and the corresponding cost function is 
the number of used frequencies. However, it may be 
difficult to move from one feasible solution to another. 
Furthermore, there is a weakness in the definition of 
cost function. This weakness can be seen when a large 
number of neighbor solutions with the same cost may 
differ greatly in their quality [16]. Therefore, this type 
of solution space is not considered in this study. 

𝑟872 

Bidirectional 
constraint                                                      

Do-
main Do-

𝑟200 

𝑟899 

𝑟1 

𝑟871 
 

Interference 
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Based on the definition of the above solution space 
which relaxes some constraints, a sub-problem is de-
fined as minimizing the number of violations with a 
fixed number of used frequencies 𝑛𝑓 to help us find a 
feasible solution. If a feasible solution is found, then the 
number of used frequencies is reduced to 𝑛𝑓 − 2 in the 
creating violations phase (described in Section 6.3) and 
the sub-problem is reconsidered. The process is repeat-
ed until a feasible solution can no longer be found. This 
process is similar to [17] for the GCP, and [6, 8] for the 
MO-FAP.  

5.3 Structure of the Dynamic Multiple 

Neighborhood Structures 

the DMNS algorithm consists of three phases, namely 
the initial solution phase, the creating violations phase 
and the improvement phase. The initial solution phase 
(described in Section 6.2) generates an initial solution 
that we assume is feasible and uses 𝑛𝑓 frequencies. 
Then, the creating violations phase (described in Sec-
tion 6.3) reduces the number of used frequencies 𝑛𝑓 by 
removing a pair of used frequencies  {𝑓𝑘, 𝑓𝑘

′} from the 
current solution. Then, all pairs of requests that are 
assigned to {𝑓𝑘, 𝑓𝑘

′} are re-assigned to another pair of 
used frequencies, which may result in some violations. 
The improvement phase (described in Section 6.4) aims 
to find a feasible solution by reducing the number of 
violations to zero, using three neighborhood structures. 
If it results in a feasible solution within a specified 
number of iterations, then the creating violation phase is 
revisited to remove another pair of used frequencies. 
After that, the process continues until either, no feasible 
solution can be found, at which time the process is ter-
minated, and the feasible solution in the previous itera-
tion with 𝑛𝑓 + 2 frequencies is returned or the optimal 
solution is found. Note that if the initial solution is not 
feasible, the violating phase can be omitted and the 
search moves immediately to the improvement phase.  

The overall structure of the DMNS algorithm for the 
MO-FAP is illustrated in Figure 2. 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

Fig. 2. Overall structure of the DMNS algorithm for the MO-
FAP. 

6 Components of the DMNS 

This section presents the components of the DMNS 
algorithm in turn. Throughout, all the constraints except 
the interference constraints are regarded as hard con-
straints.   

6.1 Neighborhood Structures  

Three different neighborhood structures are considered, 
namely move, swap and diversification neighborhood 
structures. These are defined as follows: 

Y
es 

Initial Solution Phase                                                                            
Set  𝑛𝑓 = the number of used fre-

quencies 

N
o Is the number of violations equal 

to 0? 

Creating Violation Phase 
Set  𝑛𝑓 ←  𝑛𝑓 - 2 

Improvement Phase 

Is 𝑛𝑓 equal to the lower 
bound of the number of 

frequencies?   

No 
 Y

es 

Stop                                                     
Return the current 
feasible solution 
with  𝑛𝑓 frequen-

cies. 

Y
es 

N
o 

Ye
s 

N
o 

Is the previous solution 
with  𝑛𝑓 + 2 frequencies 

feasible? 
 

Stop                                                  
Return the feasible 

solution 
with  𝑛𝑓 + 2 frequen-

cies 

Stop                                                     
Return the 

current                     
infeasible 
solution 

Is the number of violations equal 
to 0? 

Y
es 

Y
es 

5.2 Second problem in the MO-FAP 
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 Move Neighborhood Structure (MNS): this structure 
is defined as the set of solutions obtained from the 
current solution by selecting a pair of re-
quests  {𝑟2𝑖−1, 𝑟2𝑖} , where  𝑖 = 1, . . . , NR/2 , and re-
assigning them to a different pair of used frequen-
cies {𝑓𝑘, 𝑓𝑘

′} while satisfying all the hard constraints. 
Hence, this neighborhood investigates all the possi-
ble moves for all pairs of requests and used frequen-
cies (the maximum possible number of such moves 
is NR × 𝑛𝑓) and ensures that the number of used fre-
quencies  𝑛𝑓  does not increase. This structure is sim-
ple and most commonly used for TS algorithms in 
the literature e.g. [6, 7, 8].  
 

 Swap Neighborhood Structure (SNS): this structure 
is defined as the set of solutions obtained from the 
current solution by swapping the frequencies of a 
pair of requests  {𝑟2𝑖−1, 𝑟2𝑖} , where   𝑖 = 1, . . . , NR/2 . 
SNS proves to be quick as it contains a small number 
of neighbors (the maximum possible size is NR/2). 
Nevertheless, it can improve the solution quality.  

 

 Diversification Neighborhood Structure (DNS): this 
structure, unlike the previous structures, is intended 
to diversify the search and to moves to a different 
part of the solution space. It consists of the set of so-
lutions obtained from the current solution by replac-
ing a pair of used (old) frequencies with a pair of un-
used (new) frequencies. Given a pair of old frequen-
cies, another pair of frequencies is accepted if it can 
be assigned to all pairs of requests which were as-
signed to the old pair without breaking any hard con-
stants, although violation may incur. After pairs of 
old and new frequencies are selected, then all pairs of 
requests that are assigned to the pair of old frequen-
cies will be re-assigned to the pair of new frequen-
cies. However, any re-assignment that causes the 
number of used frequencies to drop below the lower 
bound for some domains (see Section 3) is not con-
sidered. This is in fact unlikely as the pair of new 
frequencies have to be valid for all pairs of requests 
assigned to the pair of old frequencies. However, as 
some frequencies occur in more than one domain, the 
lower bounds on other domains may be breached.  

6.2 The Initial Solution Phase   

A greedy heuristic algorithm is used to generate an 
initial solution as follows: a pair of requests which has 
the smallest number of feasible pairs of frequencies is 
selected. Then, among those pairs of frequencies, the 
one which is feasible for most pairs of requests is as-
signed to the selected pair of requests. In case there are 
no feasible pairs of frequencies, then a pair of frequen-
cies is randomly selected. If the initial solution is infea-
sible, then a descent method with MNS (described in 
Section 6.1) is used to reduce the number of violations.  

6.3 The Creating Violations Phase 

This phase aims to reduce the number of used frequen-
cies in a feasible solution by removing a pair of fre-
quencies based on the bidirectional constraints. The 
removed pair must satisfy the following conditions: 
firstly, neither of the frequencies should be required to 
satisfy any pre-assignment constraints. Secondly, the 
lower bound on the number of frequencies that are re-
quired from each domain based on the underlying graph 
coloring model must be satisfied after deleting these 
frequencies. If there is more than one candidate pairs of 
frequencies, then the one which is assigned to the least 
number of pairs is selected. If there is still more than 
one such pair, then one of them is selected randomly. 
After that, the pairs of requests which are assigned to 
the candidate pair of frequencies will be re-allocated to 
a feasible pair of used frequencies. If there is no feasible 
pair of used frequencies, then these requests will be re-
allocated to an infeasible pair of used frequencies at 
random. If this process leads to a feasible solution, then 
a further pair is removed. Otherwise, the improvement 
phase is executed to attempt to find a feasible solution, 
which is described in Section 5.6. The concept of the 
creating violations phase was used previously in the 
literature e.g. [8]. 

6.4  The Improvement Phase  

Ordering of Neighborhood Structures. The iterative 
procedure of the DMNS algorithm starts in the im-
provement phase. The objective of this phase is to find a 
feasible solution, i.e. a solution with zero violations. 
The improvement phase consists of three neighborhood 
structures (MNS, SNS and DNS). In MNS and SNS, 
only used frequencies are considered, while DNS con-
siders only unused frequencies. MNS is explored first 
because it contains a large number of neighbors. The 
SNS structure, which covers a limited number of neigh-
bors, is then considered. Therefore, this structure is 
intended to support the MNS. DNS aims to jump from 
the current position in the solution space to a new posi-
tion by removing a pair of used frequencies and adding 
a new one from the set of pair of unused frequencies to 
the current solution. Therefore, DNS is intended to 
diversify the search rather than reduce the number of 
violations, which reflects the reason for leaving it as the 
last structure.   

Implementation of the Improvement Phase. Each 
iteration involves one of the three neighborhood struc-
tures by attempting them consecutively until some crite-
ria are satisfied. The search begins with MNS. If this 
structure results in a better solution, then it is executed. 
Otherwise, it is repeated until the structure is executed 
for given number of times consecutively without im-
provement. Following this, the search enters SNS. If 
this structure leads to a better or equally good solution, 
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then the search goes back to MNS. Otherwise, it ap-
pears there is little prospect of finding a better solution 
in the current region of the solution space and so the 
search enters DNS. A solution from DNS is selected 
and the search returns to MNS.  

It was found that on occasions, it is not possible to 
find any diversification move using DNS because all 
options are tabu. This is because a significant number of 
diversifications will not be allowed due to the pre-
assignment constraints as well as the information from 
the lower bound on the number of frequencies that are 
required from each domain based on the underlying 
graph coloring model. If this happens, the criteria of 
selecting a pair of new frequencies in DNS will be mod-
ified. A pair of frequencies is accepted as a pair of new 
frequencies if it can be allocated to at least one pair 
(instead of all pairs) of requests assigned to the pair of 
old frequencies. Although the pair of new frequencies 
will not be allowed to be removed because of the diver-
sification tabu list, the pair of old frequencies will be 
allowed to return to the solution because of a limited 
number of neighbors in this structure. DNS is executed 
for a given number of times.  

The output of the improvement phase can be a feasi-
ble or an infeasible solution. If it is a feasible, but not 
optimal solution, then the algorithm will direct the pro-
cess to the creating violations phase. On the other hand, 
if the output is an infeasible solution, then the algorithm 
will return to MNS. This continues until either the stop-
ping criteria are satisfied or the optimal solution is 
found.  

6.5 Stopping Criteria 

the DMNS algorithm has three different stopping crite-
ria described as follows: (i) the feasible solution whose 
number of frequencies is equal to the lower bound is 
found, as this is the optimal solution, (ii) the number of 
iterations is equal to the maximum number of iterations, 
(iii) the DNS is executed for a certain number of times.  

7 Experiments and Results 

This section provides the results of the DMNS algo-
rithm for the MO-FAP using CELAR and GRAPH 
datasets (available on the FAP website2). Moreover, the 
process of the DMNS algorithm is discussed and ana-
lyzed. Finally, the performance of the DMNS algorithm 
is compared with other algorithms in the literature.  
     Table 2 presents details of the MO-FAP datasets 
considered in this study including the numbers of re-
quests and constraints for each instance. 

Table 2. Details of the CELAR and the GRAPH datasets. 
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N
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m
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t 

C
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ts 

To
ta

l N
o.

 o
f 

C
on

st
ra

in
ts 

CELA
R 01 

CELA
R 02 

CELA
R 03 

CELA
R 04 

CELA
R 11 

GRAP
H 01 

GRAP
H 02 

GRAP
H 08 

GRAP
H 09 

GRAP
H 14 

916 458 5,090 916 0 6,46
4 

200 100 1,135 200 0 1,43
5 

400 200 2,560 400 0 3,16
0 

680 340 3,627 400 280 4,64
7 

680 340 3,763 680 0 4,78
3 

200 100 1,034 200 0 1,33
4 

400 200 2,045 400 0 2,64
5 

680 340 3,417 680 0 4,43
7 

916 458 4,788 916 0 6,16
2 

916 458 4,180 916 0 5,55
4 

Based on experimentations, the parameters of the 
DMNS algorithm are set as follows: 

 The maximum number of iterations is 10,000.  
 The maximum number of accepting worst solution 

consecutively in MNS is 100.  
 The maximum number of executing DNS is 20.     
 
In this study, the algorithm was coded using FORTRAN 
95 and all experiments were conducted on a 3.0 GHz 
Intel Core I3-2120 Processor (2nd Generation) with 
8GB RAM and a 1TB Hard Drive. 

7.1 Results Comparison of the DMNS algorithm 

This section provides the results of the DMNS algo-
rithm for the MO-FAP. Five runs are performed for 
each instance, and each run uses a different random 
number stream. The results include the number of used 
frequencies in the best, the worst and the average solu-
tions (with the optimal ones shown in bold), the average 
run time for each instance and the optimal solutions 
(known and available on the FAP website2). Note that 
the run time includes the run time of finding the lower 
bound of the number of frequencies for each domain 
(Table 1). 
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Table 3. Results of the DMNS algorithm for the MO-FAP. 

Instance Best 
Found 

Worst 
Found 

Average 
Solution 

Average 
Time 

Optimal 
Solution 

CELAR 01 16 16 16 3.63 min 16 
CELAR 02 14 14 14 0.52 sec 14 
CELAR 03 14 16 14.8 1.00 min 14 
CELAR 04 46 46 46 54.34 sec 46 
CELAR 11 38 40 38.4 8.81 min 22 
GRAPH 01 18 18 18 5.43 sec 18 
GRAPH 02 14 14 14 2.16 sec 14 
GRAPH 08 18 18 18 24.28 sec 18 
GRAPH 09 18 18 18 3.01 min 18 
GRAPH 14 8 8 8 4.81 min 8 

 
Table 3 shows that the DMNS algorithm achieved op-
timal solution for all the instances except CELAR 11 
and the solutions were obtained in a reasonable time, 
mostly less than 5 minutes.  

A further approach is considered where the bidirec-
tional constraints are not enforced and the solution 
space consists of solutions that satisfy only the domain 
and the pre-assignment constraints, and cost function 
counts the number of broken bidirectional and interfer-
ence constraints. This approach was tried but did not 
lead to good results compared with the former one. This 
shows that enforcing bidirectional constraints is an im-
portant factor in improving the search efficiency for this 
application. 

7.2 Analysis of Implementation Process 

In this section, the process of the DMNS algorithm is 
discussed and analyzed. Figure 3 shows the number of 
used frequencies and the number of violations during a 
run using the CELAR 01 instance. 

 

 

  

 

 

 

 

 

Fig. 3. The number of used frequencies and violations in each 
iteration in CELAR 01. 

Figure 3 shows that the DMNS algorithm start with 
an initial feasible solution using 22 frequencies and this 
number was reduced to 16 frequencies. Although all 
neighborhood structures have been involved during the 

process of this algorithm, the most executed structure is 
MNS, which is represented by the red color. This justi-
fies the fact that this structure is the most successful and 
commonly used. SNS came as a second most executed 
structure. This reflects the limitation of this structure 
and its objective, which is to support MNS. DNS is 
executed in a limited number of times and most of the 
times it results in an increase in the number of viola-
tions. This agrees with the aim of this structure, which 
is to diversify the search rather than optimize it.  

7.3 Results Comparison with Other Algorithms  

The results of the DMNS algorithm and other algo-
rithms in the literature are compared. Table 4 shows the 
best found results; where the result shown in bold 
means these reach the optimal solution and a dash “-” 
means that the result is not available.  

Table 4. Results comparison of the DMNS algorithm with 
other algorithms in the literature. 

In-
stance 

GA[3
] 

E
S 
[4
] 

S
A 
[6] 

T
S 
[6
] 

T
S 
[9
] 

DMN
S 

Opti-
mal 

Solu-
tion 

CELA
R 01 20 - 16 16 18 16 16 

CELA
R 02 14 14 14 14 14 14 14 

CELA
R 03 16 14 14 14 14 14 14 

CELA
R 04 46 - 46 46 46 46 46 

CELA
R 11 32 - 24 22 24 24 22 

GRAP
H 01 20 18 - 18 18 18 18 

GRAP
H 02 16 14 - 14 16 14 14 

GRAP
H 08 - - - 20 24 18 18 

GRAP
H 09 28 - - 22 22 18 18 

GRAP
H 14 14 - - 10 12 10 8 

 
It can be seen from Table 4 that DMNS achieved 

competitive results compared with those of other algo-
rithms in the literature.  In fact, it achieved the optimal 
solution for all the instances except for CELAR 11and 
GRAPH 14. Moreover, it is the only algorithm in Table 4 
that achieved the optimal solution for GRAPH 08 and 
GRAPH 09. Note that the results of GA [3] are less 
satisfactory than of the other algorithms, where only 
two instances obtained the optimal solutions. Overall, 
DMNS showed competitive results compared with 
those of other algorithms in the literature. Furthermore, 
this study suggests that solving the static problem in 
dynamic process by modeling it as a dynamic problem 
leads to competitive results by using multiple neighbor-
hood structures. 
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8 Conclusions and Future work  

In this paper, we presented a novel approach for solving 
the static MO-FAP by multiple neighborhood structures 
algorithm. This approach solves this problem by model-
ing it as a dynamic problem through dividing this prob-
lem into smaller sub-problems, which are then solved in 
turn in a dynamic process using DMNS algorithm. Sev-
eral techniques have been used to improve the perfor-
mance of this algorithm. These include using a lower 
bound for each domain based on the underlying graph 
coloring model. Moreover, based on the definition of 
the solution space which relaxes some constraints, a 
second problem of minimizing the number of violations 
is considered to find a feasible solution with a fixed 
number of used frequencies after the creating violations 
phase. Based on the results comparison, the DMNS 
algorithm show competitive results comparing with 
other algorithms in the literature. Clearly, there are 
many other variants of DMNS that could have been 
assessed. For example, a more advanced neighborhood 
structure could be used such as swapping pairs of re-
quests with each other or forming chains similar to 
Kempe Chains in the GCP. Further investigations of 
these are left as future work.  
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