
Dynamic Multiple Neighborhood Structures for the Static Frequency

Assignment Problem

 KHALED ALRAJHI

King Khaled Military Academy, Riyadh, SAUDI ARABIA

Abstract. This study proposes a dynamic multiple neighborhood structures to solve a variant of the frequency assignment problem
known as the minimum order frequency assignment problem. This problem involves assigning frequencies to a set of requests while
minimizing interference and the number of used frequencies. Several novel and existing techniques are used to improve the efficiency
of this algorithm and make it different from other applications of multiple neighborhood structures in the literature. This includes
solving the static problem by modeling it as a dynamic problem through dividing this static problem into smaller sub-problems, which
are then solved in turn in a dynamic process using multiple neighborhood structures. Moreover, applying technique that aims to deter-
mine a lower bound on the number of frequencies required from each domain for a feasible solution to exist for each sub-problem,
based on the underlying graph coloring model. These lower bounds ensure that the search focuses on parts of the solution space that
are likely to contain feasible solutions. This study considers real and randomly generated benchmark datasets of the static problem and
our approach achieved competitive results.

Keywords: multiple neighborhood structures, minimum order frequency assignment problem.

Received: October 5, 2022. Revised: September 5, 2023. Accepted: October 7, 2023. Published: November 2, 2023.

1 Introduction

The frequency assignment problem (FAP) is related to
wireless communication networks, which are used in
many applications such as mobile phones, TV broad-
casting and Wi-Fi. The aim of the FAP is to assign fre-
quencies to wireless communication connections (also
known as requests) while satisfying a set of constraints,
which are usually related to prevention of a loss of sig-
nal quality. Note that the FAP is not a single problem.
Rather, there are variants of the FAP that are encoun-
tered in practice. The minimum order FAP (MO-FAP)
is the first variant of the FAP that was discussed in the
literature, and was brought to the attention of research-
ers by [1]. In the MO-FAP, the aim is to assign frequen-
cies to requests in such a way that no interference oc-
curs, and the number of used frequencies is minimized.
As the MO-FAP is NP-complete [2], it is usually solved
by meta-heuristics.

Many meta-heuristics have been proposed to solve
the MO-FAP including genetic algorithm (GA) [3],
evolutionary search (ES) [4], ant colony optimization
(ACO) [5], simulated annealing (SA) [6] and tabu
search (TS) [6, 7, 8, 9]. It can be seen from the literature
that TS is a popular meta-heuristic for solving difficult
combinatorial optimization problems. This generally
applicable algorithm has proved to be an efficient way
of finding a high quality solution for a variety of opti-
mization problems e.g. [10]. However, existing algo-
rithms in the literature are unable to find optimal solu-
tions in some datasets for the MO-FAP.

In this paper, we present a dynamic multiple neigh-
borhood structures (DMNS), one of which is used as a
diversification technique. The concept of using multiple
neighborhood structures is inherited from the variable

neighborhood search algorithm, introduced by [11]. In
contrast, [6, 7, 8, 9] implemented only a single neigh-
borhood structure in their TS algorithms. Moreover,
DMNS algorithm applies the good starting point strate-
gy by starting with a good initial solution using a
greedy heuristic associated with a descent method. This
should lead to more efficient solution method [12]. In
contrast, an initial solution is randomly generated in [7,
13]. Another technique used in DMNS algorithm is
applying a lower bound on the number of frequencies
that are required from each domain for a feasible solu-
tion to exist for each sub-problem, based on the under-
lying graph coloring model. These lower bounds ensure
that the search focuses on parts of the solution space
that are likely to contain feasible solutions. Experiments
were carried out on the CELAR and GRAPH datasets,
and the results show that our TS algorithm outperforms
other algorithms in the literature.

This paper is organized as follows: the next section
gives an overview of the MO-FAP. Section 3 explains
how to model the static MO-FAP to a dynamic prob-
lem. Section 4 explains how the underlying graph color-
ing model for the MO-FAP can be used to provide a
lower bound on the number of frequencies for each
instance and how this information can then be used to
assist the search. In Sections 5 and 6, the overall struc-
ture of the DMNS algorithm for the static MO-FAP is
outlined. In Section 7, the results of this algorithm are
given and compared with those of other algorithms in
the literature before this study finishes with conclusions
and future work.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 185 Volume 5, 2023

2 Overview of the MO-FAP

The main concept of the MO-FAP is assigning a fre-
quency to each request while satisfying a set of con-
straints and minimizing the number of used frequencies.
The MO-FAP can be defined formally as follows: given

 a set of requests R = {𝑟1, 𝑟2, … , 𝑟NR}, where NR is the
number of requests,

 a set of frequencies F = {𝑓1, 𝑓2, … , 𝑓NF} ⊂ ℤ+, where NF

is the number of frequencies,
 a set of constraints related to the requests and frequen-

cies (described below),

the goal is to assign one frequency to each request so
that the given set of constraints are satisfied and the
objective function is minimized, where the objective
function is minimizing the number of used frequencies.
Note that the frequency that is assigned to requests 𝑟𝑖 is
denoted as 𝑓𝑟𝑖 throughout of this study. The MO-FAP
has four variants of constraints as follows:

1. Bidirectional Constraints: this type of constraint
forms a link between each pair of re-
quests {𝑟2𝑖−1, 𝑟2𝑖} , where 𝑖 = 1, . . . , 𝑁𝑅/2 . In these
constraints, the frequencies 𝑓𝑟2𝑖−1

 and 𝑓𝑟2𝑖
that are as-

signed to 𝑟2𝑖−1 and 𝑟2𝑖 , respectively, should be dis-
tance 𝑑𝑟𝑖𝑟𝑗

 apart. In the datasets considered here,
𝑑𝑟𝑖𝑟𝑗

 is always equal to a constant value (238). These
constraints can be written as follows:

| 𝑓𝑟𝑖
− 𝑓𝑟𝑗

|

= 𝑑𝑟𝑖𝑟𝑗

for 𝑖 = 1, … , NR/2 (1)

2. Interference Constraints: this type of constraint forms
a link between a pair of requests {𝑟𝑖 , 𝑟𝑗}, where the
pair of frequencies 𝑓𝑟𝑖 and 𝑓𝑟𝑗

 that is assigned to the
pair of requests 𝑟𝑖 and 𝑟𝑗 , respectively, should be
more than distance 𝑑𝑟𝑖𝑟𝑗 apart. These constraints can
be written as follows:

| 𝑓𝑟𝑖
− 𝑓𝑟𝑗

|

> 𝑑𝑟𝑖𝑟𝑗

for 1 ≤ 𝑖 < 𝑗 ≤ NR (2)

3. Domain Constraints: the available frequencies for
each request 𝑟𝑖 are denoted by the domain 𝐷𝑟𝑖 ⊂ 𝐹,
where ∪𝑟𝑖∈𝑅 𝐷𝑟𝑖 = 𝐹. Hence, the frequency which is
assigned to 𝑟𝑖 must belong to 𝐷𝑟𝑖 . For the datasets
considered in this study, there are 7 available do-
mains.

4. Pre-assignment Constraints: for certain requests, the
frequencies have already been pre-assigned to given
values i.e. 𝑓𝑟𝑖

= 𝑝𝑟𝑖 , where 𝑝𝑟𝑖 is given value.

3 Modeling the Static MO-FAP as a
Dynamic Problem

In the DMNS algorithm, the static MO-FAP is broken
down into smaller sub-problems, each of which is con-
sidered at a specific time period. To achieve this, each
request is given an integer number between 0 and 𝑛
(where 𝑛 is a positive integer) indicating the time period
in which it becomes known. In effect, the problem is
divided into 𝑛 + 1 smaller sub-problems 𝑃0 , 𝑃1, … , 𝑃𝑛 ,
where n is the number of sub-problems after the initial
sub-problem 𝑃0. Each sub-problem 𝑃𝑖 contains a subset
of requests which become know at time period 𝑖. The
initial sub-problem 𝑃0 is solved first at time period 0.
After that, the next sub-problem 𝑃1 is considered at time
period 1 and the process continues until all the sub-
problems are considered. In this study, we found that
the number of sub-problems does not impact on the
performance of the DTS approach for solving the static
MO-FAP, so the number of sub-problems is fixed at 21
(i.e. n = 20).

Based on the number of the requests known at time
period 0 (belonging to the initial sub-problem 𝑃0), 10
different versions of a dynamic problem are generated.
These versions are named using percentages which
indicate the number of requests known at time period 0.
These 10 versions are named 0%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90% (note that 100%
means all the requests are known at time period 0 and
so corresponds to the static MO-FAP).

4 Graph Coloring Model for the MO-
FAP

The graph coloring problem (GCP) is an underlying
model to the MO-FAP [14]. The GCP involves allocat-
ing a color to each vertex such that no adjacent vertices
are in the same color class and the number of colors is
minimized. The MO-FAP can be represented as a GCP
by representing each request as a vertex and a bidirec-
tional or an interference constraint as an edge joining
the corresponding vertices.

One useful concept of graph theory is the idea of
cliques. A clique in a graph can be defined as a set of
vertices in which each vertex is linked to all other verti-
ces. A maximum clique is the largest among all cliques
in a graph. Vertices in a clique have to be allocated to a
different color in a feasible coloring. Therefore, the size
of the maximum clique acts as a lower bound on the
minimum number of colors and therefore, by extension,
as a lower bound on the number of frequencies for the
MO-FAP. For example, the requests 𝑟1, 𝑟200, 𝑟871, 𝑟872
and 𝑟899 form a clique in the CELAR 01 instance (see
Figure 1). All of these requests are linked to each other
by either a bidirectional (see Equation 1) or an interfer-
ence constraint (see Equation 2).

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 186 Volume 5, 2023

Fig. 1. An example of a clique in the CELAR 01 instance in
the graph coloring model.

Figure 1 shows 5 different requests forming a clique,

so at least 5 different frequencies are required. Note that
𝑟1, 𝑟200, 𝑟871 and 𝑟872 belong to domain 1, while 𝑟899
belongs to domain 3. As the requests belong to different
domains, the graph coloring model for each domain can
be considered separately and then a lower bound on the
number of frequencies that is required from each do-
main can also be calculated. Generalizing the clique
problem concept for all datasets gives a lower bound of
the number of frequencies which are required from each
domain as well as an overall lower bound on the total
number of frequencies for a whole instance.

A Branch and Bound algorithm is used to obtain the
set of all maximum cliques for each domain within each
instance. Table 1 gives the minimum number of fre-
quencies that is required in each domain and the size of
the maximum clique for the overall instance, together
with the run time (in seconds) and the optimal number
of used frequencies, which are known and are available
from the FAP website1.

Table 1. The lower bound of the number of frequencies for
each domain.

In-
stance

Domain Ma
x.

Cliq
ue

Ru
n
Ti
me

Op-
timal
Solu-
tion

1 2 3 4 5 6 7

CELA
R 01

CELA
R 02

CELA
R 03

CELA
R 04

CELA
R 11

GRAP
H 01

GRAP
H 02

GRAP
H 08

1
0 9 1

0 4 4 7 2 12 1.5
0 16

1
0 0 1

0 0 0 0 2 14 0.0
2 14

1
0 0 1

0 0 2 0 2 12 0.0
6 14

1
0 0 1

0 4 2 0 2 44 0.3
4 46

2
0 0 1

4 4 2 0 2 20 0.3
4 22

8 3 6 2 4 4 2 18 0.0
3 18

6 2 4 0 2 4 0 14 0.1
2 14

1
0 2 6 2 3 8 3 16 0.2

8 18

GRAP
H 09

GRAP
H 14

6 2 1
0 2 2 8 2 18 0.4

8 18

6 2 4 2 0 2 2 8 0.4
8 8

5 Overview of the Dynamic Multiple

Neighborhood Structures

A key decision when designing the DMNS algorithm is
the definition of the solution space and the correspond-
ing cost function.

5.1 Solution Space and Cost Function

In most cases, it has been found to be relatively straight-
forward to find solutions that satisfy the bidirectional,
the domain and the pre-assignment constraints, as well
as to define a neighborhood operator that moves be-
tween such solutions. Here the solution space S is de-
fined as the set of all possible assignments satisfying all
of the bidirectional, the domain and the pre-assignment
constraints. Note that the interference constraints are
relaxed in S. Only the interference constraints are re-
laxed because these are the most difficult constraint to
be satisfied. The cost function CF is defined as the
number of broken interference constraints, also known
as the number of violations. This configuration has been
used previously in the literature e.g. [6, 8, 15]. One of
the advantages of using this configuration is that, in
effect, the number of requests is halved because each
request is linked with another request based on the bidi-
rectional constraints (see Equation 1). As a result, here
requests and frequencies are considered as pairs (instead
of individuals). A pair of requests is denoted
as {𝑟2𝑖−1, 𝑟2𝑖}, where 𝑖 = 1, . . . , 𝑁𝑅/2, and a pair of fre-
quencies is denoted as {𝑓𝑘 , 𝑓𝑘

′} throughout this study.
A further approach is also considered where the bidi-

rectional constraints are not enforced and the solution
space consists of solutions that satisfy only the domain
and the pre-assignment constraints, while cost function
counts the number of broken bidirectional and interfer-
ence constraints. This configuration has been used pre-
viously in the literature e.g. [7, 13].

The solution space could have been defined as the set
of all possible feasible assignments, that is, satisfy all of
the constraints, and the corresponding cost function is
the number of used frequencies. However, it may be
difficult to move from one feasible solution to another.
Furthermore, there is a weakness in the definition of
cost function. This weakness can be seen when a large
number of neighbor solutions with the same cost may
differ greatly in their quality [16]. Therefore, this type
of solution space is not considered in this study.

𝑟872

Bidirectional
constraint

Do-
main Do-

𝑟200

𝑟899

𝑟1

𝑟871

Interference

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 187 Volume 5, 2023

http://fap.zib.de/problems/CALMA/%20(last
http://fap.zib.de/problems/CALMA/%20(last

Based on the definition of the above solution space
which relaxes some constraints, a sub-problem is de-
fined as minimizing the number of violations with a
fixed number of used frequencies 𝑛𝑓 to help us find a
feasible solution. If a feasible solution is found, then the
number of used frequencies is reduced to 𝑛𝑓 − 2 in the
creating violations phase (described in Section 6.3) and
the sub-problem is reconsidered. The process is repeat-
ed until a feasible solution can no longer be found. This
process is similar to [17] for the GCP, and [6, 8] for the
MO-FAP.

5.3 Structure of the Dynamic Multiple

Neighborhood Structures

the DMNS algorithm consists of three phases, namely
the initial solution phase, the creating violations phase
and the improvement phase. The initial solution phase
(described in Section 6.2) generates an initial solution
that we assume is feasible and uses 𝑛𝑓 frequencies.
Then, the creating violations phase (described in Sec-
tion 6.3) reduces the number of used frequencies 𝑛𝑓 by
removing a pair of used frequencies {𝑓𝑘, 𝑓𝑘

′} from the
current solution. Then, all pairs of requests that are
assigned to {𝑓𝑘, 𝑓𝑘

′} are re-assigned to another pair of
used frequencies, which may result in some violations.
The improvement phase (described in Section 6.4) aims
to find a feasible solution by reducing the number of
violations to zero, using three neighborhood structures.
If it results in a feasible solution within a specified
number of iterations, then the creating violation phase is
revisited to remove another pair of used frequencies.
After that, the process continues until either, no feasible
solution can be found, at which time the process is ter-
minated, and the feasible solution in the previous itera-
tion with 𝑛𝑓 + 2 frequencies is returned or the optimal
solution is found. Note that if the initial solution is not
feasible, the violating phase can be omitted and the
search moves immediately to the improvement phase.

The overall structure of the DMNS algorithm for the
MO-FAP is illustrated in Figure 2.

Fig. 2. Overall structure of the DMNS algorithm for the MO-
FAP.

6 Components of the DMNS

This section presents the components of the DMNS
algorithm in turn. Throughout, all the constraints except
the interference constraints are regarded as hard con-
straints.

6.1 Neighborhood Structures

Three different neighborhood structures are considered,
namely move, swap and diversification neighborhood
structures. These are defined as follows:

Y
es

Initial Solution Phase
Set 𝑛𝑓 = the number of used fre-

quencies

N
o Is the number of violations equal

to 0?

Creating Violation Phase
Set 𝑛𝑓 ← 𝑛𝑓 - 2

Improvement Phase

Is 𝑛𝑓 equal to the lower
bound of the number of

frequencies?

No
 Y

es

Stop
Return the current
feasible solution
with 𝑛𝑓 frequen-

cies.

Y
es

N
o

Ye
s

N
o

Is the previous solution
with 𝑛𝑓 + 2 frequencies

feasible?

Stop
Return the feasible

solution
with 𝑛𝑓 + 2 frequen-

cies

Stop
Return the

current
infeasible
solution

Is the number of violations equal
to 0?

Y
es

Y
es

5.2 Second problem in the MO-FAP

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 188 Volume 5, 2023

 Move Neighborhood Structure (MNS): this structure
is defined as the set of solutions obtained from the
current solution by selecting a pair of re-
quests {𝑟2𝑖−1, 𝑟2𝑖} , where 𝑖 = 1, . . . , NR/2 , and re-
assigning them to a different pair of used frequen-
cies {𝑓𝑘, 𝑓𝑘

′} while satisfying all the hard constraints.
Hence, this neighborhood investigates all the possi-
ble moves for all pairs of requests and used frequen-
cies (the maximum possible number of such moves
is NR × 𝑛𝑓) and ensures that the number of used fre-
quencies 𝑛𝑓 does not increase. This structure is sim-
ple and most commonly used for TS algorithms in
the literature e.g. [6, 7, 8].

 Swap Neighborhood Structure (SNS): this structure
is defined as the set of solutions obtained from the
current solution by swapping the frequencies of a
pair of requests {𝑟2𝑖−1, 𝑟2𝑖} , where 𝑖 = 1, . . . , NR/2 .
SNS proves to be quick as it contains a small number
of neighbors (the maximum possible size is NR/2).
Nevertheless, it can improve the solution quality.

 Diversification Neighborhood Structure (DNS): this
structure, unlike the previous structures, is intended
to diversify the search and to moves to a different
part of the solution space. It consists of the set of so-
lutions obtained from the current solution by replac-
ing a pair of used (old) frequencies with a pair of un-
used (new) frequencies. Given a pair of old frequen-
cies, another pair of frequencies is accepted if it can
be assigned to all pairs of requests which were as-
signed to the old pair without breaking any hard con-
stants, although violation may incur. After pairs of
old and new frequencies are selected, then all pairs of
requests that are assigned to the pair of old frequen-
cies will be re-assigned to the pair of new frequen-
cies. However, any re-assignment that causes the
number of used frequencies to drop below the lower
bound for some domains (see Section 3) is not con-
sidered. This is in fact unlikely as the pair of new
frequencies have to be valid for all pairs of requests
assigned to the pair of old frequencies. However, as
some frequencies occur in more than one domain, the
lower bounds on other domains may be breached.

6.2 The Initial Solution Phase

A greedy heuristic algorithm is used to generate an
initial solution as follows: a pair of requests which has
the smallest number of feasible pairs of frequencies is
selected. Then, among those pairs of frequencies, the
one which is feasible for most pairs of requests is as-
signed to the selected pair of requests. In case there are
no feasible pairs of frequencies, then a pair of frequen-
cies is randomly selected. If the initial solution is infea-
sible, then a descent method with MNS (described in
Section 6.1) is used to reduce the number of violations.

6.3 The Creating Violations Phase

This phase aims to reduce the number of used frequen-
cies in a feasible solution by removing a pair of fre-
quencies based on the bidirectional constraints. The
removed pair must satisfy the following conditions:
firstly, neither of the frequencies should be required to
satisfy any pre-assignment constraints. Secondly, the
lower bound on the number of frequencies that are re-
quired from each domain based on the underlying graph
coloring model must be satisfied after deleting these
frequencies. If there is more than one candidate pairs of
frequencies, then the one which is assigned to the least
number of pairs is selected. If there is still more than
one such pair, then one of them is selected randomly.
After that, the pairs of requests which are assigned to
the candidate pair of frequencies will be re-allocated to
a feasible pair of used frequencies. If there is no feasible
pair of used frequencies, then these requests will be re-
allocated to an infeasible pair of used frequencies at
random. If this process leads to a feasible solution, then
a further pair is removed. Otherwise, the improvement
phase is executed to attempt to find a feasible solution,
which is described in Section 5.6. The concept of the
creating violations phase was used previously in the
literature e.g. [8].

6.4 The Improvement Phase

Ordering of Neighborhood Structures. The iterative
procedure of the DMNS algorithm starts in the im-
provement phase. The objective of this phase is to find a
feasible solution, i.e. a solution with zero violations.
The improvement phase consists of three neighborhood
structures (MNS, SNS and DNS). In MNS and SNS,
only used frequencies are considered, while DNS con-
siders only unused frequencies. MNS is explored first
because it contains a large number of neighbors. The
SNS structure, which covers a limited number of neigh-
bors, is then considered. Therefore, this structure is
intended to support the MNS. DNS aims to jump from
the current position in the solution space to a new posi-
tion by removing a pair of used frequencies and adding
a new one from the set of pair of unused frequencies to
the current solution. Therefore, DNS is intended to
diversify the search rather than reduce the number of
violations, which reflects the reason for leaving it as the
last structure.

Implementation of the Improvement Phase. Each
iteration involves one of the three neighborhood struc-
tures by attempting them consecutively until some crite-
ria are satisfied. The search begins with MNS. If this
structure results in a better solution, then it is executed.
Otherwise, it is repeated until the structure is executed
for given number of times consecutively without im-
provement. Following this, the search enters SNS. If
this structure leads to a better or equally good solution,

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 189 Volume 5, 2023

then the search goes back to MNS. Otherwise, it ap-
pears there is little prospect of finding a better solution
in the current region of the solution space and so the
search enters DNS. A solution from DNS is selected
and the search returns to MNS.

It was found that on occasions, it is not possible to
find any diversification move using DNS because all
options are tabu. This is because a significant number of
diversifications will not be allowed due to the pre-
assignment constraints as well as the information from
the lower bound on the number of frequencies that are
required from each domain based on the underlying
graph coloring model. If this happens, the criteria of
selecting a pair of new frequencies in DNS will be mod-
ified. A pair of frequencies is accepted as a pair of new
frequencies if it can be allocated to at least one pair
(instead of all pairs) of requests assigned to the pair of
old frequencies. Although the pair of new frequencies
will not be allowed to be removed because of the diver-
sification tabu list, the pair of old frequencies will be
allowed to return to the solution because of a limited
number of neighbors in this structure. DNS is executed
for a given number of times.

The output of the improvement phase can be a feasi-
ble or an infeasible solution. If it is a feasible, but not
optimal solution, then the algorithm will direct the pro-
cess to the creating violations phase. On the other hand,
if the output is an infeasible solution, then the algorithm
will return to MNS. This continues until either the stop-
ping criteria are satisfied or the optimal solution is
found.

6.5 Stopping Criteria

the DMNS algorithm has three different stopping crite-
ria described as follows: (i) the feasible solution whose
number of frequencies is equal to the lower bound is
found, as this is the optimal solution, (ii) the number of
iterations is equal to the maximum number of iterations,
(iii) the DNS is executed for a certain number of times.

7 Experiments and Results

This section provides the results of the DMNS algo-
rithm for the MO-FAP using CELAR and GRAPH
datasets (available on the FAP website2). Moreover, the
process of the DMNS algorithm is discussed and ana-
lyzed. Finally, the performance of the DMNS algorithm
is compared with other algorithms in the literature.
 Table 2 presents details of the MO-FAP datasets
considered in this study including the numbers of re-
quests and constraints for each instance.

Table 2. Details of the CELAR and the GRAPH datasets.

In-
stance N

o.
 o

f
R

eq
ue

st
s

N
o.

 o
f

B
id

ire
ct

io
na

l
C

on
st

ra
in

ts

N
o.

 o
f

In
te

rf
er

en
ce

C

on
st

ra
in

ts

N
o.

 o
f D

om
ai

n
C

on
st

ra
in

ts

N
o.

 o
f

Pr
e-

as
si

gn
m

en
t

C
on

st
ra

in
ts

To
ta

l N
o.

 o
f

C
on

st
ra

in
ts

CELA
R 01

CELA
R 02

CELA
R 03

CELA
R 04

CELA
R 11

GRAP
H 01

GRAP
H 02

GRAP
H 08

GRAP
H 09

GRAP
H 14

916 458 5,090 916 0 6,46
4

200 100 1,135 200 0 1,43
5

400 200 2,560 400 0 3,16
0

680 340 3,627 400 280 4,64
7

680 340 3,763 680 0 4,78
3

200 100 1,034 200 0 1,33
4

400 200 2,045 400 0 2,64
5

680 340 3,417 680 0 4,43
7

916 458 4,788 916 0 6,16
2

916 458 4,180 916 0 5,55
4

Based on experimentations, the parameters of the
DMNS algorithm are set as follows:

 The maximum number of iterations is 10,000.
 The maximum number of accepting worst solution

consecutively in MNS is 100.
 The maximum number of executing DNS is 20.

In this study, the algorithm was coded using FORTRAN
95 and all experiments were conducted on a 3.0 GHz
Intel Core I3-2120 Processor (2nd Generation) with
8GB RAM and a 1TB Hard Drive.

7.1 Results Comparison of the DMNS algorithm

This section provides the results of the DMNS algo-
rithm for the MO-FAP. Five runs are performed for
each instance, and each run uses a different random
number stream. The results include the number of used
frequencies in the best, the worst and the average solu-
tions (with the optimal ones shown in bold), the average
run time for each instance and the optimal solutions
(known and available on the FAP website2). Note that
the run time includes the run time of finding the lower
bound of the number of frequencies for each domain
(Table 1).

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 190 Volume 5, 2023

http://fap.zib.de/problems/CALMA/%20(last

Table 3. Results of the DMNS algorithm for the MO-FAP.

Instance Best
Found

Worst
Found

Average
Solution

Average
Time

Optimal
Solution

CELAR 01 16 16 16 3.63 min 16
CELAR 02 14 14 14 0.52 sec 14
CELAR 03 14 16 14.8 1.00 min 14
CELAR 04 46 46 46 54.34 sec 46
CELAR 11 38 40 38.4 8.81 min 22
GRAPH 01 18 18 18 5.43 sec 18
GRAPH 02 14 14 14 2.16 sec 14
GRAPH 08 18 18 18 24.28 sec 18
GRAPH 09 18 18 18 3.01 min 18
GRAPH 14 8 8 8 4.81 min 8

Table 3 shows that the DMNS algorithm achieved op-
timal solution for all the instances except CELAR 11
and the solutions were obtained in a reasonable time,
mostly less than 5 minutes.

A further approach is considered where the bidirec-
tional constraints are not enforced and the solution
space consists of solutions that satisfy only the domain
and the pre-assignment constraints, and cost function
counts the number of broken bidirectional and interfer-
ence constraints. This approach was tried but did not
lead to good results compared with the former one. This
shows that enforcing bidirectional constraints is an im-
portant factor in improving the search efficiency for this
application.

7.2 Analysis of Implementation Process

In this section, the process of the DMNS algorithm is
discussed and analyzed. Figure 3 shows the number of
used frequencies and the number of violations during a
run using the CELAR 01 instance.

Fig. 3. The number of used frequencies and violations in each
iteration in CELAR 01.

Figure 3 shows that the DMNS algorithm start with
an initial feasible solution using 22 frequencies and this
number was reduced to 16 frequencies. Although all
neighborhood structures have been involved during the

process of this algorithm, the most executed structure is
MNS, which is represented by the red color. This justi-
fies the fact that this structure is the most successful and
commonly used. SNS came as a second most executed
structure. This reflects the limitation of this structure
and its objective, which is to support MNS. DNS is
executed in a limited number of times and most of the
times it results in an increase in the number of viola-
tions. This agrees with the aim of this structure, which
is to diversify the search rather than optimize it.

7.3 Results Comparison with Other Algorithms

The results of the DMNS algorithm and other algo-
rithms in the literature are compared. Table 4 shows the
best found results; where the result shown in bold
means these reach the optimal solution and a dash “-”
means that the result is not available.

Table 4. Results comparison of the DMNS algorithm with
other algorithms in the literature.

In-
stance

GA[3
]

E
S
[4
]

S
A
[6]

T
S
[6
]

T
S
[9
]

DMN
S

Opti-
mal

Solu-
tion

CELA
R 01 20 - 16 16 18 16 16

CELA
R 02 14 14 14 14 14 14 14

CELA
R 03 16 14 14 14 14 14 14

CELA
R 04 46 - 46 46 46 46 46

CELA
R 11 32 - 24 22 24 24 22

GRAP
H 01 20 18 - 18 18 18 18

GRAP
H 02 16 14 - 14 16 14 14

GRAP
H 08 - - - 20 24 18 18

GRAP
H 09 28 - - 22 22 18 18

GRAP
H 14 14 - - 10 12 10 8

It can be seen from Table 4 that DMNS achieved

competitive results compared with those of other algo-
rithms in the literature. In fact, it achieved the optimal
solution for all the instances except for CELAR 11and
GRAPH 14. Moreover, it is the only algorithm in Table 4
that achieved the optimal solution for GRAPH 08 and
GRAPH 09. Note that the results of GA [3] are less
satisfactory than of the other algorithms, where only
two instances obtained the optimal solutions. Overall,
DMNS showed competitive results compared with
those of other algorithms in the literature. Furthermore,
this study suggests that solving the static problem in
dynamic process by modeling it as a dynamic problem
leads to competitive results by using multiple neighbor-
hood structures.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 191 Volume 5, 2023

8 Conclusions and Future work

In this paper, we presented a novel approach for solving
the static MO-FAP by multiple neighborhood structures
algorithm. This approach solves this problem by model-
ing it as a dynamic problem through dividing this prob-
lem into smaller sub-problems, which are then solved in
turn in a dynamic process using DMNS algorithm. Sev-
eral techniques have been used to improve the perfor-
mance of this algorithm. These include using a lower
bound for each domain based on the underlying graph
coloring model. Moreover, based on the definition of
the solution space which relaxes some constraints, a
second problem of minimizing the number of violations
is considered to find a feasible solution with a fixed
number of used frequencies after the creating violations
phase. Based on the results comparison, the DMNS
algorithm show competitive results comparing with
other algorithms in the literature. Clearly, there are
many other variants of DMNS that could have been
assessed. For example, a more advanced neighborhood
structure could be used such as swapping pairs of re-
quests with each other or forming chains similar to
Kempe Chains in the GCP. Further investigations of
these are left as future work.

References

[1]. Metzger, B. (1970), Spectrum Management
Tech-nique, Presentation at 38th National
ORSA meeting (Detroit, MI).

[2]. Garey, M. and Johnson, D. (1979),
Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman
W.H. and Company, San Francisco,
California.

[3]. Kapsalis, A., Chardaire, P., Rayward-
Smith, V. and Smith, G. (1995), The Radio
Link Frequency As-signment Problem: A
Case Study Using Genetic Al-gorithms,
Lecture Notes on Computer Science, pp.
117-131.

[4]. Crisan, C. and Mühenbein, H. (1998), The
Frequen-cy Assignment Problem: A Look
at the Perfor-mance of Evolutionary
Search, Lecture Notes in Computer
Science, Vol. 1363, pp. 263-274.

[5]. Parsapoor, M. and Bilstrup, U. (2013), Ant
Colony Optimization for Channel
Assignment Problem in a Clustered Mobile
Ad Hoc Network, International Conference
on Swarm Intelligence (ICSI), Vol. 1, pp.
314-322.

[6]. Tiourine, S., Hurkens, C. and Lenstra, J. K.
(1999), Local Search Algorithm for the
Radio Link Fre-quency Assignment
Problem, Telecommunication System, Vol.
13, pp. 293-314.

[7]. Bouju, A., Boyce, J., Dimitropoulos, C.,
Vom Scheidt, G. and Taylor, J. (1995),
Tabu Search for the Radio Links Frequency
Assignment Problem, In Applied Decision
Technologies, London, [ADT'95].
UNICOM Conference.

[8]. Hao, J., Dorne, R. and Galinier, P. (1998),
Tabu Search for Frequency Assignment in
Mobile Radio Networks, Journal of
Heuristics Vol. 4, pp. 47-62.

[9]. Bouju, A., Boyce, J., Dimitropoulos, C.,
Vom Scheidt, G. and Taylor, J. (1995),
Intelligent Search for the Radio Links
Frequency Assignment Prob-lem,
Proceedings of the International
Conference on Digital Signal Processing.

[10]. Glover, F. and Laguna, M. (1997),
Tabu Search Applications, In Tabu Search,
pp. 267-303.

[11]. Mladenovic, N. and Hansen, P.
(1997), Variable Neighborhood Search,

[12]. Yu-Bin, Z., Yu-Cai, Z., Hui, X.
(2009), A Tabu Search Algorithm for
Frequency Assignment Prob-lem in
Wireless Communication Networks,
WiCO-M'09 Proceedings of the 5th
International Confer-ence on Wireless
Communications, Networking and Mobile
Computing, pp. 2848-2851.

[13]. Hao, J. and Perrier, L. (1996), Tabu
Search for the Frequency Assignment
Problem in Cellular Radio Networks,
Technical Report LG12P, EMA-EERIE,
Parc Scientifique Georges Besse, Names
France.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 192 Volume 5, 2023

[14]. Hale, W. (1980), Frequency
Assignment: Theory and Applications,
Proc. IEEE Vol. 68, pp. 1497-1514.

[15]. Dorne, R. and Hao, J. (1996),
Constraint Handling in Evolutionary
Search: A Case Study on Frequen-cy
Assignment, 4th International Conference
on Parallel Problem solving from Nature,
Lecture Note in Computer Science 1141,
pp. 801-810, Springer-Verlag.

[16]. Dowsland, K., Thompson, J.
(2008), An Improved Ant Colony
Optimisation Heuristic for Graph Color-
ing, Discrete Applied Mathematics, Vol.
156, No. 3, pp. 313-324.

[17]. Hertz, A. and de Werra, D. (1987),
Using Tabu Search Techniques for Graph
Coloring, Computing Vol. 39, pp. 345-351.

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed in the present

research, at all stages from the formulation of the

problem to the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING
DOI: 10.37394/232026.2023.5.17 Khaled Alrajhi

E-ISSN: 2766-9823 193 Volume 5, 2023

	Blank Page
	Blank Page

