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Abstract: - In this paper, we propose to study some nonlinear boundary problems for the dynamically modified 
operator by adding a viscosity term −𝛼𝛥𝑢′′ to the nonlinear vibrations of the plates. The field of application for 
vibrating plates is extensive. To meet user needs, we have considered the geometric shape, the density of the 
material constituting the plate, the plate thickness, and Poisson's ratio. Once the problems have been posed, our 
approach then consists of transforming them into nonlinear problems of the hyperbolic type. In this work, we 
study six boundary value problems and we prove for each problem an existence and uniqueness theorem. 
Finally, we demonstrate the existence of a solution to the stationary problem using a variant of Brouwer's fixed 
point theorem. 
 
Key-Words: - Airy function, Coupled problem, Elliptic-Hyperbolic, Existence and uniqueness, Faedo-Galerkin 

method, vibrating plate, nonlinear vibrations, Weak Solutions. 
 
Received: February 19, 2023. Revised: November 12, 2023. Accepted: December 13, 2023. Published: January 30, 2024.  
 
 
1   Introduction 
The field of application for vibrating plates is very 
wide. This includes, among others, the following 
areas: 

 Individual use at home, beauty salons, well-
being, relaxation, and massage. 

 Sports and fitness halls, sports clubs, health, 
and rehabilitation professionals. 

 Machines designed for soil compaction, 
trench back-filling, and the paving or 
flagging of surfaces. 

In this paper, we consider a series of six 
boundary problems governed by the nonlinear, 
dynamical, and stationary modifying operator, 
incorporating the viscosity term  −𝛼𝛥𝑢′′ into the 
nonlinear plate vibration equations. 

To respond to the needs of users, we will take 
into account the geometric shape, the density of the 
material constituting the plate, the thickness of the 
plate, and the Poisson's ratio. Once the problems 
have been posed, our approach consists of 
transforming them into nonlinear problems of the 
hyperbolic type. In [1], the author studied the first 
problem (Dirichlet) by proving an existence and 
uniqueness theorem. In this work, we extend the 
study of [1], to five other boundary problems and 
prove for each problem an existence and uniqueness 
theorem for the dynamic case. Finally, we 
demonstrate the existence of a solution to the 

stationary problem using a variant of Brouwer's 
fixed-point theorem. The techniques used here are 
those of [1]. More precisely, the techniques of the 
famous Faedo-Galerkin method, used in [2], [3], [4], 
[5] and [6], to study nonlinear boundary value 
problems of the elliptic and hyperbolic type. 

Although new techniques have appeared since 
then (such as homogenization or compensated 
compactness which are taught more recently) these 
techniques have retained their interesting properties. 
Remember that these techniques are currently taught 
in most major universities in the world; let us cite as 
examples [7] and [8]. 

The bibliography quoted here does not claim to 
be exhaustive, and this incompleteness must be 
attributed to the author's ignorance and not to the 
author's ill will. 

The various problems being coupled, between 
the Airy function and the transverse displacement, 
the approach consists of reducing the problems 
governed by equations of the hyperbolic type. For 
this, we eliminate the Airy function from the system 
and prove, for each problem, by the techniques of 
the famous method cited above, an existence and 
uniqueness theorem for these modified evolution 
equations. These presented models play an 
important role in the design of artificial intelligence. 
In other words, mathematics makes it possible to 
design the basic rules of artificial intelligence. It is 
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based on four fundamental pillars of mathematics 
(linear algebra, probability, statistics, and 
calculations). 
   Consider an isotropic homogeneous vibrating 
plate occupying an open domain Ω ⊂ ℝ² on 
lipschitzian boundary Γ made up of two measurable 
and disjoint parts Γ0 and Γ1. 
The normal and tangential derivatives are given by: 
 

 
 

where Mi(u) and  Ni(u), i=0, denote the following 
differential boundary operators: 

and 

 
where 𝛾𝑖  is the trace map on  𝛤𝑖 , 𝑖 = 0,1 . We will 
denote by 𝑎𝑖, 𝑖 = 1 to 3, the following positive 
constants  

 
 

where 𝐸 is Young's modulus, 𝜎 ∈⦎0,1⦍ is the 
Poisson's ratio, ρ is the density of the material 
constituting the plate and  ℎis the thickness of the 
plate. In what follows, we will set for  𝑢  and 𝑣 as 
two functions in Ω: 
 

 
 
   We denote by 𝐴𝜎  the iterated Laplacian  𝛥2  in 
the variable 𝑥, decomposed according to the 
Poisson's ratio  𝜎 , as follows, ([9]): 
 

 
 
 
2   Formulation of Problems (𝑷𝒌) 
We consider here a family of six problems governed 
by the dynamic equations of non-linear vibrations of 
the plates, that is to say for 𝑓 ∈ 𝐿2(𝑄), which we are 
looking for a couple of functions  (𝑢, 𝐹) defined in  

 ,,0 TQ  of boundary 𝛴 = 𝛤 ×]0, 𝑇[, solution 
of the problem   

 

Where the different notations are specified as 
follows: for 𝛼 > 0, -𝛼𝛥𝑢′′  is a viscosity term, [10], 
for 𝑎𝑖, 𝑖 = 1 to 3, see (4), for 𝐴𝜎  see (6) and for  
𝐿(𝑢, 𝐹)  see (5). 

The boundary operators 𝐵0
𝑘  and 𝐵1

𝑘, 𝑘 = 1 to  6, 
are given by: 
 

1) Boundary conditions on the unknown u: 

 
 

2) Boundary conditions on the unknown  𝐹 : 

 
 
Physical interpretation: 

𝑓 is the given volumetric force density, 𝑢 is the 
transverse displacement, 𝐹 is the normal 
displacement or Airy function, 𝑀(𝑢) is the bending 
moment and 𝑁(𝑢) is the transverse force composed 
of the shear force and the twisting moment. The 
boundary conditions (8) to (9) mean that the plate is: 
- recessed at the boundary , for the first problem, 
- recessed at the edge 𝛴0 and simply supported at the 
edge 𝛴1, for the second problem, 
- recessed at the edge 𝛴0 and free at the edge  𝛴1, for 
the third problem, 
- simply supported at the boundary 𝛴, for the fourth 
problem, 
- simply supported at the boundary 𝛴0 and free at 
the boundary 𝛴1, for the fifth problem, 
- free at the boundary 𝛴, for the sixth problem. 
 

Remark 2.1. In (𝑃𝑘) there is no initial condition 
on 𝐹, it depends on the fact that the system of partial 
differential equations does not contain a derivative 
in terms𝑡 of 𝐹. The system (𝑃𝑘) being coupled can 
reduce in the following way, by elimination of 𝐹. 
Indeed, the domain 𝛺  is bounded and with a 
lipschitzian boundary, there is no particular problem 
in the application of the variational method to the 
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resolution of the elliptic equation with the 
corresponding boundary conditions, [11].         
     Furthermore, the famous regularity theorems of 
[12] and [13], make it possible to prove that 𝐹 is 
regular, that is to say that )(4 HF . When it 
comes to the problem of Neumann problem, for  
𝑘 = 6  and  0  , we assume the necessary 
existence condition is verified: 
 

 
 

   So, if 𝐺𝑘 denotes the Green operator, i.e. the 
inverse operator of  𝐴𝜎  in 𝛺, of the problem: 
 

 
 
then 
 

 
 
and the first equation of (7) becomes  
 

 
 
and therefore the problem  (𝑃𝑘), 𝑘 = 1  to  6,  
becomes of the hyperbolic type, that said, we have 
the following: 
 

 
 

Theorem 2.1. We assume 𝑓, 𝑢0, 𝑢1  given with  
 

 
 
 

 
Then, there exists a unique solution  (𝑢, 𝐹) of (𝑃𝑘) ,  
𝑘 = 1  to  6,  such that  
 

 
 
 
 
 

 

where the 𝑉𝑘  are the variational spaces of the 
problems (𝑃𝐴𝜎

), 𝑘 = 1 to 6, ([11], Chapter IV): 
 

 
 
We have 
 

 
 
The 𝑉𝑘 , 𝑘 = 1 to 6, are closed subspaces of 
𝐻2(𝛺), hence Hilbert spaces containing 𝐻0

2(𝛺).  
 
Remark 2.2. 
It follows from (16) and (18) and from the definition 
(5) that  𝐿(𝑢, 𝐹) ∈ 𝐿∞(0, 𝑇; 𝐿1(𝛺)) and so the first 
equation of (13) implies that  

𝑢′′ ∈ 𝐿∞(0, 𝑇; 𝑉𝑘
′), 

and hence the initial conditions in  (𝑃𝑘), 𝑘 = 1  to 
6,  make sense. Indeed, to show that, it suffices to 
remark that 𝐿1(𝛺) ⊂ 𝑉𝑘

′ ⊂ 𝐻−2(𝛺). Indeed, if  𝑔 ∈
𝐿1(𝛺),  we have 
 

 
 

Remark 2.3. In this remark, we consider the spaces  
𝐻𝑠(𝛺),  where  𝑠  is non-integer, developed in [14], 
the function 𝐹 in Theorem 2.1. satisfies 
 

 
 
In fact, let  𝜀 > 0  arbitrarily small. So 
 

 
 
In fact, if  𝑔 ∈ 𝐿1(𝛺),  we have: 
 

 
 
seen that 𝐻1+𝜀(𝛺) ⊂ 𝐿∞(𝛺) for 𝑛 = 2  and  𝜀 > 0; 
[11]. Then  
 

𝐿(𝑢, 𝑢) ∈ 𝐿∞(0, 𝑇; 𝐻−1−𝜀(𝛺)) 
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and as  𝐹 = −
1

𝑎3
𝐺𝑘𝐿(𝑢, 𝑢),  we deduce (21) using 

the solution of the problems  (𝑃𝑘), 𝑘 = 1  to 6, and 
the fact that send 𝐻𝑠(𝛺) in  
  

𝐻𝑠+4(𝛺) ∩ 𝑉𝑘, 𝑠 ≥ 0. 
 
 
3    Proof of Existence 
In the proof of Theorem 2.1, we use the following 
lemma: 
 
Lemma 3.1. We have 

1) The application  

  ),(,
6  to1 ,

vuLvu

kVVV kkk



 

 

is bi-linear and continuous. 
2) The form (𝑢, 𝑣, 𝑤) → (𝐿(𝑢, 𝑣), 𝑤) is tri-

linear and continuous on 𝑉𝑘. 
Proof: Analogous to that of [1]. 
 
i) Definition of approximate solutions. 
The space Vk, k=1, to 6, is identified, by the 
application 

𝑣 → {𝑣,
𝜕𝑣

𝜕𝑥1
,...,

𝜕𝑣

𝜕𝑥2
}, 

 
to a closed subspace of 
 

𝐿2(𝛺) × ... × 𝐿2(𝛺) 
 

 which is separable and uniformly convex, so that 
one can project a dense countable set onto the 
subspace  𝑉𝑘. So let  {𝑤1,..., 𝑤𝑚}  be a basis of  𝑉𝑘,  
(for example we have 𝑉1 = 𝐻0

2(𝛺)), and let 
𝑢𝑚(𝑡)  be such that  

 
the 𝑔im being to be determined by the conditions:  
 

 
 
Where 

dx
x

v

x

u
vua

iii 






  



2

1

),(  

 
where we use the notations of (11) and (12), with  
 

 
 

 
 

If we define  𝐹𝑚(𝑡)  by  
 

or by 
 

 
 
then (24) reads 
 

 
 
     Of course 𝐹𝑚(𝑡) is not (in general) valued 
in [𝑤1,..., 𝑤𝑚]. According to the general results on 
the theory of systems of differential equations, one 
is assured of the existence of 𝑢𝑚(𝑡), and therefore 
of 𝐹𝑚(𝑡), on an interval [0, 𝑡𝑚], for some 𝑡𝑚 > 0. 
 
ii) A priori estimates 
We multiply (29) by )(tg jm



  and we sum in 𝑗. He 
comes: 
 

 
 
But according to Lemma 3.1, we have  
 
   

,)()),(),((
4
1

)()),(),(()()),(),((














tFtutuL
dt

d

tFtutuLtutFtuL

mmm

mmmmmm

 
and by (28) this is equal to  
 

.)()1()(
2

))(),((
2

233 tFtF
dt

da
tFtFA

a
mmmm  

 
So (30) is written again: 
 

 
 
and so 
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But according to (25) 
 

constant.)1( 2
002

2
1

2
11  mmmm uuauua 

 
By definition (27), we have 
 

 
 
and since  𝐿(𝑢0𝑚, 𝑢0𝑚)  remains in a bounded 
subset of  𝐿1(𝛺),  hence of  𝑉𝑘

′ ⊂ 𝐻−2(𝛺), 𝑘 =
1 to 6,  then  𝐹𝑚(0)  remains in a bounded subset of  
𝑉𝑘  and therefore in (32)  
|𝜎𝛥𝐹𝑚(0) + (1 − 𝜎)𝛥𝐹𝑚(0)| ≤ constant. 
So (32) implies that  𝑡𝑚 = 𝑇  and  
 

 

 
 

iii) Passage to the limit 
From (34) and (35), we can extract a sequence  
𝑢𝜇 , 𝐹𝜇  such that 
 

 
 
Let  𝜙𝑗, 1 ≤ 𝑗 ≤ 𝑗0  be functions of  𝐶1([0, 𝑇]),  
such that  𝜙𝑗(𝑇) = 0,  and  
 

 
 
   We deduce from (29), by integration by parts of 
the first term, for  𝑚 = 𝜇 > 𝑗0  that 
 

 
 
     But according to Lemma 3.1: 
 

 
 

(𝜓, 𝐹𝜇) → 𝐿(𝜓, 𝐹) in 𝐿2(𝑄)  weakly, 
 

for example and so since 𝑢𝜇 → 𝑢 strongly in  𝐿2(𝑄), 
we see that  

,)),,(()),,()),,((
000

dtFuLdtuFLdtFuL

TTT

  

and 

dtuadtwua

T

j

T

),(),(
00

   . 

 
     Therefore, (38) implies by passage to the limit: 
 

 
 
and this is ∀𝜓  of the form (37). 
 
      By passing to the limit we deduce that (40) still 
holds for all 𝜓 ∈ 𝐿2(0, 𝑇; 𝑉𝑘), 𝑘 = 1to6,  such as  
𝜓′ ∈ 𝐿2(0, 𝑇; 𝐿2(𝛺))  and 𝛹(𝑇) = 0. 

This shows that  𝑢  and  𝐹  are related by the 
first equation of (𝑃𝑘), 𝑘 = 1 to 6,  and  𝑢′(0) =
𝑢1. It remains only to show the second equation of  
(𝑃𝑘), 𝑘 = 1  to  6 .  We can go directly to the limit 
on (28) (for  𝑚 = 𝜇  noting that  𝐿(𝑢𝜇 , 𝑢𝜇) →

𝐿(𝑢, 𝑢)  in  𝐷′(𝑄)  for example; indeed we have   
   

,)),,(()),,((
00

dtuuLdtuuL

TT

    )(QD    

and we pass to the limit as above. 
 
 
4   Proof of Uniqueness 

Let   Fu,   and    Fu ,   be two solutions, let us 
say: 
 

 
 
Then we have the algebraic relations 
 

 
 

 
 
obviously with 
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a) Estimates for 𝑣2 
We use remark 2.3 here. From (22) and (43) we 
have: 
 

 
However,  
 
‖𝐿(𝑢, 𝑣1)‖𝐿1(𝛺) ≤ 𝐶2‖𝑢‖𝑉𝑘

‖𝑣1‖𝑉𝑘
, 

 
And since  
 

(𝑢, 𝑣1) ∈ 𝐿∞(0, 𝑇; 𝑉𝑘) ⊂ 𝐿∞(0, 𝑇; 𝐻2(𝛺)), 
 
we have  
 

‖𝐿(𝑢, 𝑣1)‖𝐿1(𝛺) ≤ 𝐶2‖𝑢‖𝐻2(𝛺)‖𝑣1‖𝐻2(𝛺) 
 

 
 
We remark that |𝛥𝑣1| is a norm equivalent to  
‖𝑣1‖𝐻2(𝛺)  over  𝑉𝑘, 𝑘 = 1  to  6,  so that (46) 
defines a norm and is equivalent to  
 

 
 
For  𝐷2 = 𝐷𝑖

2   we have  
 

𝐷2𝑣2 ∈ 𝐿∞(0, 𝑇; 𝐻1−𝜀(𝛺)) 
 
(This holds obviously for  𝐷𝑖𝐷𝑗) and, [15]   

𝐻1−𝜀(𝛺) ⊂ 𝐿
2

𝜀(𝛺), 
 So 
 

 
 
and according to (47) 
 

 
 
In (42), let  
 

 
 
let us show that  
 

 
 
Indeed let 𝜙 ∈ 𝐻0

1(𝛺). Then, still according to the 
fractional Sobolev Theorem, [15], we have, for 
fixed  𝜀 > 0  : 
 

 
But 
 

 
 
This is true according to (49), (52) and  𝑢 ∈
𝐿∞(0, 𝑇; 𝑉𝑘), 𝑘 = 1  to  6.  Then 
 

 
whence (51). 
 
b) Equality of energy 

From (42), (50) and (51), we deduce by setting 
 

 
 
Indeed, the method of Theorem 1.6. of [1] leads to 
 

.everywherealmost  ,),(),(
))()1()()()((

110

2
112

2

1

2

112
1

dsvKdsvK

tvtvatvtva
t 













 
But 

,),(

))()1()()()((
2
1

10

2
112

2

1

2

11

dsvK

vvavva













 

 
for almost all  𝜏  and  𝑡. 
According to (44), we can extend  𝑣1  by  0  for  𝑡 <
0  and  𝐾  being also extended 𝑡 < 0. In (56), we do 
the same thing for 𝜏 < 0.  Therefore, we obtains 
(55). 
 
c) Uniqueness 
We complete the proof easily from (55) and (51); In 
fact  
 

 
 
and then, we deduce from (55) that 
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Thanks to Gronwall’s inequality, we obtain 𝑣1 = 0. 
Consequently, from (47) we deduce that 𝑣2 = 0. 
 
 
5 Stationary Problems (𝑺𝒌), 𝒌 = 𝟏 𝒕𝒐 𝟔 
We now propose to prove an existence theorem for a 
solution, using a variant of Brouwer's fixed-point 
theorem [1], for stationary problems corresponding 
to problems (7). Therefore we are looking for a pair 
of functions 𝑢, 𝐹 ∈ 𝑉𝑘, k=1 to 6, such that 
 

 
 
Where the different notations are those of the 
previous paragraphs 1 and 2. 
We will need the following lemma: 
 
Lemma 5.1. ([1]). Let  𝜉 → 𝑃(𝜉)  be a continuous 
map from ℝm to it self, such that, for a suitable  𝜌 >
0 , we have: 
 

 
 
where if  𝜉 = {𝜉𝑖}, 𝜂 = {𝜂𝑖} ∈ 𝑅𝑚 : 
 

 
Then there exists  , ||    , such that 

)(P .0  
We use Lemma 5.1. to show the following theorem: 
 
Theorem 5.1. Let 𝑓 be in 𝑉𝑘

′,  then the problem 
is (𝑆𝑘), 𝑘 = 1 to 6, admit a solution. 
Proof. 

 

1) Approximate solutions. 

Let  𝑤1,..., 𝑤𝑚  ... a « base » de  𝑉𝑘, 𝑘 = 1  à  6, 
formed for example, by functions of  𝐷(𝛺)  as in the 
dynamic case. We are looking for 𝑢𝑚 ∈ [𝑤1,..., 𝑤𝑚], 

i.e. ii

m

i

m wu 



1

, such that 

 
 
If we define  𝐹𝑚  by 
 

 
 
Then (62) is equivalent to 
 

 
 
   We have to show that (62) admits a solution. We 
use Lemma 5.1 for this as follows. To  𝜉 = {𝜉𝑖}  we 

associate ii

m

i

m wu 



1

  then  

 
and we put 
 

So, 
 

 
 
But by Lemma 3.1 and by (64), 
 
(𝐿(𝑢𝑚, 𝐹𝑚), 𝑢𝑚) = (𝐿(𝑢𝑚, 𝑢𝑚), 𝐹𝑚) = −𝑎3|𝛥𝐹𝑚|2, 
 
so that (49) gives 
 

 
But 
 
|(𝑓, 𝑢𝑚)| ≤ ‖𝑓‖𝑉𝑘

′‖𝑢𝑚‖𝑉𝑘
𝑐1|𝛥𝑢𝑚|, 

 
and so 
 

 
 
So (𝑃(𝜉), 𝜉) ≥ 0 if |∆um| ≥ 𝑐1

𝑎2
  (where 𝑎2 =

Eh3

12(1−𝜎2)
, see (4)) condition fulfilled if  ,||     

large enough. We can therefore use Lemma 5.1; 
there thus exists  𝑢𝑚 ∈ [𝑤1,..., 𝑤𝑚]a solution of (62), 
or, which comes to the same thing, of (64). 
Moreover, if  𝑢𝑚  is a solution, we have  𝑃(𝜉) = 0  
and (68), (69) give 
 

 
 

2) Passing to the limit. 

We deduce from (70) that  
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   We can therefore extract two sequences  𝑢𝜇 , 𝐹𝜇  
such that 
 

 
 
and, the injection of 𝑉𝑘 ⊂ 𝐻2(𝛺) → 𝐿2(𝛺)   
being compact, 
 

 
 
Let i be fixed,   i ; we have: 

  

but 
(𝐿(𝑢𝜇 , 𝐹𝜇), 𝑤𝑖) = (𝐿(𝑢𝜇 , 𝑤𝑖), 𝐹𝜇) 

 
and 

𝐿(𝑢𝜇 , 𝑤𝑖) → 𝐿(𝑢, 𝑤𝑖)  in  𝐿2(𝛺)  weak, 
 
which, with (73), gives 
 

(𝐿(𝑢𝜇 , 𝑤𝑖), 𝐹𝜇) → (𝐿(𝑢, 𝑤𝑖), 𝐹) 
 
Consequently 
 

 
 
We derive the first equation of (59) and extend the 
same procedure to the limit in the second equation 
of (64). 
 
 
6   Conclusion and Perspectives 
In the first part of this work, within the framework 
of solid mechanics, and more precisely in plate 
theory, we have established an existence theorem 
for various dynamic problems governed by the 
operator of non-linear vibration plates. Additionally, 
we have proven an existence and uniqueness 
theorem for modified evolution equations using the 
compactness method.  
As future perspectives, it would be interesting to 
extend this work in cases where 
- The Sobolev W1,p (Ω), [16], spaces with a constant 
or variable exponents. 
- The plates have polygonal borders. 
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