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Abstract: - The proposed work, starting from some basic principles of In Memory Computing, aims to describe 
how some relatively complex calculus, such as equation solving, can have a fast answer with a simple HW. be 
performed in a fast and accurate way through a very simple hardware structure, avoiding complex nonlinear 
operators, without involving processors and providing a huge reduction of computation time and consumption. 
This fact opens the way to an alternative way to solve distributed tasks e.g. in microrobotics or other real time 
applications. 
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1 Introduction 

Computation time is a topic that is continuously 
investigated in order to increase the processor’s 
speed and optimize the overall performance. This is 
also strictly related to power consumption, meaning 
that, according to studies in [1][2][9], 95% of 
energy consumption is in data movement among 
processors and memory (the “memory wall” 
problem). In Memory Computing (IMC) [10] aims 
to perform some operations still inside the memory 
without involving the processor and limiting the 
crossing of the “memory wall” (see Figure 1) 

 
Figure 1.  Von Neumann Architecture limitation: Memory Wall 

A Phase Changing Memory (PCM) could be a 
good technological basis for IMC, allowing matrix 
products of data while they are stored [3]. This fact 
may open the way to the solution of some nontrivial 
problems, if they can be expressed through a 
suitable matrix product chain. 

2 In Memory Computing with PCM 
Phase-change materials are typically compounds 

of Ge or Sb that can be switched reversibly between 
amorphous and crystalline phases of different 
electrical resistivity. The amorphous phase tends to 
have high electrical resistivity, while the crystalline 
phase exhibits a low resistivity, sometimes three or 
four orders of magnitude lower. A PCM device [3] 
[11] consists of a certain volume of this phase 
change material sandwiched between two 
electrodes. An access device such as a field effect 
transistor (FET) is typically placed in series with a 
PCM device to constitute a complete PCM cell, 
modulating the crystallization in the material. This 
allows it to store an analogue resistive value until 
the next rewriting. By putting PCM cells in a 
suitable grid structure (see Fig. 2) and assuming as 
input an array of voltages, it can be calculated the 
output currents through the matrix product GV=I.  

 
Figure 2.  PCM-based In Memory Computing matrix product. 
Colors of parameters identify the matrices involved in the product 
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The conductance matrix G allows the calculation of 
multiple products and sums, if voltages are taken as 
inputs and currents as outputs: 
 
I1= G11v1 + G12v2  I2= G21v1 + G22v2  I3= G31v1 +G32v2 

(1)  

Inverting this assumption, divisions can also be 
implemented. By forcing unitary values to currents, 
it is possible to have as output voltages the inverse 
values of each conductance: 

v1 =1/ G11 ,      v2=1/G22  ,        v3=1/G33                 (2) 

An example is given in Figure 3. 

 
Figure 3.  Circuit implementing simple inversion of values stored 
in the Conductance Matrix. Here I1=1 , I2=1 I3=1 are forced to obtain 
v1=1/G11 , v2=1/G22  v3=1/G33 

Cascade connections of structure as in Figure 2 and 
3 can simultaneously perform all these operations at 
the same time in which the related parameters are 
stored, guaranteeing immediate results for a wide 
class of linear problems. One of this is the solution 
of linear algebraic systems: 

AX=B     →       X=A-1B                    (3) 

The evaluation of inverse matrix A-1 can be reduced 
to a routine performing few matrix sums and 
products and one scalar divisions, e.g. by using the 
Cayley-Hamilton formula: 

A-1= (-a1 I- a2A -…..-an-1A
n—2-An—1)/a0     (4)   

(n = dim(A))    

The values a0, a1, ….an-1 are the coefficient of 
characteristic polynomial of A, easily derivable with 
well-known sums and products of its coefficients 
(e.g. an-1 = -Tr(A), a0 =det(A)…). 

In the next section we  will see how this approach 
can be able to solve other nontrivial problems that 
would usually require more complex operators and 
the use of a processor. 
 

 

3 How can polynomial equations be 

solved only via matrix products? 
Polynomial Equations are fundamental in a wide 

variety of problems, being also the basis of 
differential equations solutions and very often it is a 
nontrivial task for processors due to the several 
iterations that are needed in some cases when 
required solutions are more than two. If we focus 
our attention to polynomial equations whose degree 
is less than four, these ones, according to Galois 
experience, can be solved directly through radicals 
without trial-and-error routines and could be good 
candidates to be implemented via In Memory 
Computing. However, radicals seem to be a huge 
task to perform if dealing only with sums and 
products. Let us consider for example the second 
order equation: 

λ2 +b λ +c =0                             (5) 

Using methods explained in [4] and [5] and 
assuming for the moment that Δ>0, factorizing Δ/4 
as Δ/4 =g∙h, a good approximation of the square root 
is an intermediate value between the positive 
numbers g and h . This could be an average among 
arithmetic mean and harmonic mean: 

√𝑔ℎ ≈ (
𝑔+ℎ

2
+

2𝑔ℎ

𝑔+ℎ
) /2                   (6) 

It must be noted that formally the same could be 
applied also if Δ<0. In fact it can be written: 

√∆/4 = 𝑖√−∆/4 = 𝑖√𝑔ℎ ≈ 𝑖 (
𝑔+ℎ

2
+

2𝑔ℎ

𝑔+ℎ
) /2       

(7) 

Let us consider for simplicity the case Δ>0: one 
simple candidate for  g is a perfect square 
sufficiently close to Δ/4= b2/4-c . If we add the 
positive quantity c2/b2 (b ≠0), it holds: 

∆

4
<

𝑏2

4
− 𝑐 +

𝑐2

𝑏2 = (
𝑏

2
−

𝑐

𝑏
)

2

             (8) 

Noting that (8) is never zero if Δ>0, it is possible to 
assume: 
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𝑔 = |
𝑏

2
−

𝑐

𝑏
| ;             ℎ =

𝑏2

4
−𝑐

|
𝑏

2
−

𝑐

𝑏
|
                   (9) 

Considering the general solution of (5), absolute 
value can be omitted due to ± operator needed for 
the two solutions: 

λ1,2 =
−𝑏

2
± (

𝑔

4
+

ℎ

4
+

𝑔ℎ

𝑔+ℎ
)                       (10) 

 
In matrix form, g and h can be given by: 

[

1

2
−1

1

2
−1 −

2𝑐

𝑏2−2𝑐

] [
𝑏

𝑐/𝑏
] = [

𝑔
ℎ
]                  (11) 

And from g and h, solutions are:  

[
1 1/(𝑔 + ℎ) −1

−1 −1/(𝑔 + ℎ) −1
] [

1/4
ℎ
1

  ℎ/4

  0

  𝑐/𝑏

] [
𝑔
1
] = [

λ1

λ2
]    

(12) 

It can be proven that, in order to cover also the cases 
in which Δ<0 (complex roots), the choice of g and h 
should be the following: 

     𝑔 =𝑏

2
−

𝑠𝑖𝑔𝑛(𝛥)𝑐

𝑏
            and 

ℎ =
𝑏

2
−

𝑠𝑖𝑔𝑛(𝛥)𝑐

𝑏
−  

2(1−𝑠𝑖𝑔𝑛(𝛥))𝑏4+2𝑐2

𝑏3−𝑠𝑖𝑔𝑛(𝛥)2𝑏𝑐
            (13) 

It must be noted that (13) becomes (9) if sign(Δ)=1 
(Δ>0). General solution depends also on sign(Δ) as 
follows: 

[
 
 
 
 𝑖

1−𝑠𝑖𝑔𝑛(𝛥)

2
𝑖
1−𝑠𝑖𝑔𝑛(𝛥)

2

𝑔+ℎ
−1

−𝑖
1−𝑠𝑖𝑔𝑛(𝛥)

2 −
𝑖
1−𝑠𝑖𝑔𝑛(𝛥)

2

𝑔+ℎ
−1]

 
 
 
 

[
 
 
 
 1

4

ℎ
1

  ℎ

4

  0

 
𝑠𝑖𝑔𝑛(𝛥)𝑐

𝑏 ]
 
 
 
 

[
𝑔
1
] = [

λ1

λ2
]    

(14) 

4 Hardware implementation 
In this section it will be described how to 

implement the previous section method. Using the 
same approach seen in section 2, Figure 2, let us 
consider the quantities b, g and h as conductance. 
This means that g+h and gh/(g+h) are respectively 
parallel and series connections of g with h. In order 
to also cover the complex roots case, four current 
values should be the circuit output, indicating the 
real and imaginary part of each of the two solutions, 

and two switches driven by sign(Δ) should be 
included. Input voltages should be v1 and - v1 due 
to the sign change between first and second 
solution. A possible dedicated implementation is in 
Fig. 4. 

 

Figure 4.  PCM-based HW structure implementing all the solutions 
of a second grade equation, knowing b,g and h. Here I1=Re(λ1) , 
I2=Im(λ1) , I3=Re(λ2) and I4=Im(λ2).   

However, it could be better in some case to evaluate 
first the quantities b/2, g/4, h/4 and gh/(g+h) (e.g. 
using (11)) and adopting a more general matrix 
approach with constant parameters stored in the 
final matrix like in Fig. 5. This can be useful in 
particular when all the quantities in (10) can be 
easily calculated by a simple network (e.g when 
c<<b, meaning g+h≅b, gh/(g+h)≅b/4-c/b). 

 
Figure 5.  Alternative approach started from the separate 
evaluation of b/2,  g/4, h/4 and gh/(g+h)  

In both cases, equation solutions are obtained via 
elementary operations, involving the evaluation of 
auxiliary parameters g and h, according to the flow 
(b,c)→(g,h)→(λ2,λ3). This approach will be 
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followed also to extend the method to higher grade 
equations. 
 
5 Extension to third and fourth grade 

polynomial equations 
If in the second grade formula the only “critical” 

operator is square root, further ones must be 
considered when complexity increases. For 
example, cubic root and sin(arcsin(.)/3) are also 
involved in the third (and fourth) grade formula, 
making the approach previously described no more 
sufficient. However, due to parameter constraints 
and formula format, simple and efficient 
approximations will be used, like the following ones 
coming from classical literature [6]: 

√𝑎3 + 𝑏
3

≈ 𝑎 +
𝑏

3𝑎2
 

√𝑎 − 𝑥
3

+ √𝑎 + 𝑥3 ≈ √𝑎
3

(2 −
2𝑥2

9𝑎2
−

20𝑥4

243𝑎4) 

sin (
sin−1(𝑥)

3
) ≈

𝑥

3
(1 +

13

81
𝑥2 −

1

324
𝑥4)                (15) 

Let us briefly describe how the routine can be 
extended to these more complex cases, keeping, 
when possible, a modular structure to algorithms 
and implementation. 
 

5.1 The 3rd degree equation solution 
The general form of the equation is in this case 

the following:  

λ3 +b λ2 +c λ +d =0                      (16) 

with one additional parameter and one more 
solution with respect to the previous case. To solve 
it, the auxiliary variables p, q and of course Δ 
should be found. These are fundamental to find the 
three solutions (one real, the other two real or 
complex, depending on the sign of Δ). Examples of 
matrix chains able to evaluate them can be:  

[
1 0 0
0 𝑏 1

] [
−3𝑏 9 0
2𝑏 −9 0
0 0 27

] [
𝑏
𝑐
𝑑
] = [

𝑝
𝑞]           (17) 

[𝑝 1] [
𝑝/27 0

0 𝑞/4
] [

𝑝
𝑞] = 𝛥                (18) 

Finding one of the solutions reduces the problem to 
the previous section second grade case. To this aim, 

it could be structured in a modular structure 
according to the flow: 

(b,c,d)→(p,q)→(λ1, B(λ1), C(λ1)) → (g,h)→(λ2 ,λ3) 

meaning that p and q help to calculate the first (real) 
solution λ1 and the coefficients B(λ1) and C(λ1) of a 
new second grade equation, to be solved with 
methods described in Section 3. It can be easily 
demonstrated from polynomial division that 

B(λ1) = b+ λ1  ;   C(λ1) = λ1
2+b λ1+c     (19) 

The solution λ1 depends even in this case from the 
sign of Δ 

λ1 =
1

3
√−

𝑞

2
− √∆

3
+

1

3
√−

𝑞

2
+ √∆

3
−

𝑏

3
     (∆≥ 0) 

λ1 = −
2

3
√

−𝑝

3
 sin (

1

3
sin−1 3𝑞√3

2𝑝√−𝑝
) −

𝑏

3
        (∆< 0)  

(20)   

Using approximation formulas in (15), (20) can 
be written as: 

 
λ1 = (

𝑐

2𝑏
−

3𝑑

2𝑏2 −
𝑏

3
) (2 −

8∆

9𝑞2 −
320∆2

243𝑞4) −
𝑏

3
   (∆≥ 0)  

λ1 = −
𝑞

3𝑝
(1 −

13𝑞2

12𝑝3 −
9𝑞4

64𝑝6) −
𝑏

3
                     (∆< 0)  

(21)   

Many different matrix representations (and therefore 
hardware implementations) can be used to calculate 
(21). An example for Δ>0 could be: 

[1 1    1 1]

[
 
 
 
 
 
 

𝑐

𝑏
−

4𝑐

9𝑏
−

160𝑐

243𝑏

−
3𝑑

𝑏2

4𝑑

3𝑏2

160𝑑

81𝑏2

−
2𝑏

3

8𝑏

27

320𝑏

729

−
𝑏

3
     0       0    ]

 
 
 
 
 
 

[

1
∆/𝑞2

∆2/𝑞4
] = λ1         

(22) 

This can be implemented in hardware in a very 
similar way to the one described in fig. 5.  
 
A representation for Δ<0 is simpler and given by:  
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[1 1    1 1]

[
 
 
 
 
 
 −

𝑞

3𝑝
0 0

0
13𝑞

36𝑝
0

0 0
3𝑞

64𝑝

−
𝑏

3
   0   0    ]

 
 
 
 
 
 

[

1
𝑞2/𝑝3

𝑞4/𝑝6
] = λ1         

(23) 

with the same procedure for hardware 
implementation.  
 
5.2 The 4th degree equation solution 

Let now us consider the equation: 

λ4 +bλ3 +c λ2 +d λ +e = 0                             (24) 

This is the highest degree equation that is solvable 
by formulas and is very common in a wide variety 
of applications, such as the observer problem in 
Field Oriented Control of motors and kinematic 
description of robotic arm motion. The solution 
method can be summarized in five steps, using 
partially the previously described routines. 
 
Step 1: Matrix calculation of auxiliary variables p, 

q, r. A compact formulation for them can be the 
following: 

 

(25) 

Step 2: Solve the auxiliary third degree equation      
s3 +2ps2 +(p2-4r)s - q2 = 0 with method described in 
section 5.1. 

Step 3: Using p, q and the positive solution s, 
calculate the following auxiliary values: 

(26) 

(note: α can be evaluated using (6) with suitable 
values)  

Step 4: Solve the two second order equations 
𝑥2+α𝑥+𝛽=0 and 𝑥2-α𝑥+γ=0   with method described 
in section 3. Here we have two parallel flows: 

(α, 𝛽)→(g1,h1)→(x1, x2)  &  (-α, γ)→(g2,h2)→(x3, x4) 

Step 4: Final solutions are given by the linear 
relation:  

 λ𝑖=(𝑥𝑖-b)/4                         (27) 

 

 
 

6 A case study: Field Oriented 

Control motor observer 
Many applicative areas may benefit from an 

immediate solution of algebraic equations, but one 
the most consistent boost can be given to the 
observer problem in the mainframe of the electrical 
motor control. A linear observer [7] is an artificial 
system able to estimate as fast as possible the state 
variables of the main system (here, the motor) in 
order to arrange an optimal control of it. This task is 
performed to mimic the behavior of the system by 
choosing the suitable values of variable gain vector 
H of the observer. Taking into account that the 
FOC-based state variables [8][12] of a motor lead to 
a fourth order dynamical system, a block diagram of 
the whole controlled system is depicted in Figure 6 

 
Figure 6.  State observer of a PMSM motor. 

 

From the theory, the observer matrix is defined as 
follows: 
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(28) 

where rs, Ls, p and ωr are the parameters of the 
motor. The observer dynamics is established by the 
solutions of characteristic polynomial of (28), which 
has exactly the same form of (24). The coefficients 
can be obtained by the product 

 (29) 

and the related equation can be solved as described 
in the previous section. It must be noted that these 
coefficients depend on the gains h1 and h2 of the 
observer: this means that it is possible to see the 
effect of their changes immediately on the 
eigenvalues, allowing a sort of real-time tuning of 
the gains. 

6.1 Numerical simulation 
Let us consider a motor with the following 

parameters: rs=2Ω Ls=0.1mH, p=3 and ωr=16rad/s. 
Formula (29) becomes: 

(30) 
Stability of the observer (Re(λi)<0) requires that all 
terms in (30) should be positive. It can be easily 
shown that if d >0, this is always true. The search 
space could be restricted to all h1 and h2 satisfying 
h2 <0.46+ 2.3∙10-4 h1 (roughly, h1 >0 and h2 <0) 

Moreover, from matrix A in (28), it can be easily 
seen that the fastest dynamics of the motor is given 
by the (double) eigenvalue λ1= λ2= -rs/ Ls=-2∙104. 

This means that the observer eigenvalues must be 
five times this quantity to have a fast and accurate 
estimation of state variables [8][12]. Solutions of the 
equation represented by (30) can be immediately 
calculated, focusing on the couples h1, and h2 giving 
solutions with real part < -105  (Re(-λmax)> 105). 
From Fig. 7, it can be seen that a good choice of the 
gains of the observer can be h1 =2∙105 and h2 =-5∙106 

(top area in the graphics) 

 
Figure 7.  Evolution of the slowest eigenvalue of the observer for 
different values of h1 and h2 . Absolute values >100000 (on the top) 
identify the area of good choice of the gains.  

 
 
7 Conclusions 

In this paper, it has been described how the same 
mechanism of In Memory Computing can be used in 
order to build very simple hardware structures, able 
to perform nontrivial tasks such as polynomial 
equation solving. It has been also shown how can be 
removed the obstacles of having complex operators 
in the resolution formulas by using suitable 
approximations that are more than acceptable in 
most cases. Moreover, the presented approach is 
modular, meaning that the problem is decomposed 
in subproblems needing lower-level routines. A case 
study in which it is required the solution of a fourth 
order equation continuously updated has been also 
presented.  

The advantage of avoiding some nontrivial 
computations to the processor may offer fast and 
low-consumption solutions to some real-time tasks, 
for example those dealing with complex control 
problems. Further investigations will involve an 
additional module to solve differential equations for 
robotic application, in order to provide a cheap and 
at the same time powerful computation unit locally 
to every link of a multi-armed robot or to a 

[

𝑏
𝑐
𝑑
𝑒

] =

[
 
 
 
 2                     0

2 ∙ 104 + 2ℎ1            48
             

2         0

ℎ1         −2 ∙ 104
 

4608 − 2 ∙ 104ℎ2  0

4608 ∙ 104  19 ∙ 105ℎ1

   
4608 −2 ∙ 104ℎ1

2304ℎ1 104ℎ2 ]
 
 
 
 

[

2 ∙ 104

48
ℎ1

ℎ2

]  

=

[
 
 
 
 

4 ∙ 104 + 2ℎ1

ℎ1
2 + 4 ∙ 104ℎ1 − 2 ∙ 104ℎ2 + 4 ∙ 108

4608ℎ1 − 2 ∙ 108ℎ2 + 9216 ∙ 104

2304ℎ1
2 + 912 ∙ 105ℎ1+104ℎ2

2
+ 9216 ∙ 108]

 
 
 
 

 

  

[

𝑏
𝑐
𝑑
𝑒

] =

[
 
 
 
 
 2         0

𝑟𝑠

𝐿𝑠
+ 2ℎ1         𝑝𝜔𝑟

          
2             0

ℎ1             −
2

𝐿𝑠

 

2𝑝2𝜔𝑟
2−

2

𝐿𝑠
ℎ2 0

𝑟𝑠

𝐿𝑠
𝑝2𝜔𝑟

2 2𝑟𝑠

𝐿𝑠
𝑝𝜔𝑟ℎ1

   
2𝑝2𝜔𝑟

2 −
2

𝐿𝑠
ℎ1

ℎ1𝑝
2𝜔𝑟

2 ℎ2

𝐿𝑠 ]
 
 
 
 
 

[

𝑟𝑠/𝐿𝑠

𝑝𝜔𝑟

ℎ1

ℎ2

]  
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distributed environment of robots cooperating for a 
target task.  

Even if HW implementation will benefit for sure 
of future technological evolution of PCM cells (i.e. 
increased storage capability), the Conductance 
matrix approach seems to be promising, in a shorter 
time frame, also with traditional resistive networks 
that could be highly performant for fixed-structure 
problems solving, like PID controllers tuning or 
parametric system identification [13]. 
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