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Abstract: - Estimation algorithms using Kalman filter gain are proposed. Kalman filter gain is computed at each 

iteration through auxiliary quantities. The proposed estimation algorithm is faster than the traditional Kalman 

filter for time invariant systems, is equal fast to the traditional Kalman filter for steady state case and can be 

faster than the traditional Kalman filter for time varying systems, depending on the model dimensions. 
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1 Introduction 
The importance of Kalman filter [1] is undoubtable: 

it has been widely and successfully used to solve 

estimation and prediction problems in a vast range 

of applications: object detection and tracking [2], 

robotic applications [3], electric load estimation [4], 

industrial applications [5], stock price prediction [6], 

weather forecasts [7], satellite orbit determination 

[8], power generation prediction [9], cases 

prediction of Covid-19 [10], multi-observation 

fusion applications related to timescale [11], 

structural parameter tracking [12], dynamic tracking 

of the uncertainties associated with the underlying 

data and prior knowledge [13], Kalman filter-based 

tracking-by-detection (KFTBD) tracker [14].  

Consider the discrete time (k = 0,1, …) linear 

model of the form [15]: 

x(k + 1) = F(k + 1, k)x(k) + w(k)               (1) 

z(k) = H(k)x(k) + v(k)                (2) 

where the state x(k) has dimension n, the 

measurement has dimension m. The model 

describes the relation between two successive states 

through F(k + 1, k) and the relation between the 

state and the measurement through H(k). In 

addition, the state noise w(k) and measurement 

noise v(k) are Gaussian with zero means and 

covariances Q(k) and R(k). The initial state x(0) is 

Gaussian with mean  x0 and covariance P0. 

The traditional Kalman filter computes the 

estimation x(k/k) with the corresponding 

covariance P(k/k) and the prediction x(k + 1/k) 

with the corresponding covariance P(k + 1/k) 

using the Kalman filter gain K(k), as it is shown in 

Figure 1. 

 

 

 

 

 

 

 

 

Fig. 1: Kalman filter iterative calculations 

 

In this work, we derive estimation algorithms 

using Kalman filter gain but avoiding the 

computation of the estimation covariance matrix. 

The system parameters determine when these 

algorithms are valid.  

The novelty of this paper consists in developing 

estimation algorithms (a) using Kalman filter gain 

computed through auxiliary quantities, (b) avoiding 

the estimation error covariance computation.  

Kalman filter equations are briefly presented in 

section 2, the proposed estimation algorithms are 

derived in section 3, the algorithms are compared in 

section 4 and conclusions are presented in section 5.  

 

2 Kalman Filter 
For time varying systems, the Time Varying Kalman 

Filter (TVKF) is derived: 

 
Time Varying Kalman Filter (TVKF) 

K(k) = P(k/k − 1)HT(k) 

[H(k)P(k/k − 1)HT(k) + R(k)]−1 

x(k/k) = [I − K(k)H(k)]x(k/k − 1) + K(k)z(k) 

P(k/k) = [I − K(k)H(k)]P(k/k − 1)  

x(k + 1/k) = F(k + 1, k)x(k/k)  

P(k + 1/k) = Q(k) 

+F(k + 1, k)P(k/k)FT(k + 1, k) 
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The initialization (k = 0) is: 

x(0/−1) = x0  

P(0/−1) = 𝑃0 

Note that I is the identity matrix and MT is the 

transpose of matrix M.  

Remark. In the case where no measurement is 

exact, the inverse of  H(k)P(k/k − 1)HT(k) + R(k) 

exist, since R(k) is p.d. (positive definite). 

For time invariant systems where F = F(k +
1, k), H = H(k), Q = Q(k), R = R(k), the Time 

Invariant Kalman filter (TIKF) is derived: 

 
Time Invariant Kalman Filter (TIKF) 

K(k) = P(k/k − 1)HT[HP(k/k − 1)HT + R]−1  

x(k/k) = [I − K(k)H]x(k/k − 1) + K(k)z(k)  

P(k/k) = [I − K(k)H]P(k/k − 1)  

x(k + 1/k) = Fx(k/k)  

P(k + 1/k) = Q + FP(k/k)FT 

The initialization (k = 0) is: 

x(0/−1) = x0  
P(0/−1) = P0. 

It is known [15] that in the steady state case the 

prediction and estimation covariances remain 

constant; then the Steady State Kalman Filter 

(SSKF) is derived: 

 
Steady State Kalman Filter (SSKF) 

x(k/k) = (I − KH)Fx(k − 1/k − 1) + Kz(k)  

The initialization (k = 1) is:  

x(0/−1) = x0  

P(0/−1) = P0 

K(0) = P0HT[HP0HT + R]−1 

x(0/0) = [I − K(0)H]x0 + K(0)z(0) 

The coefficients [(I − KH)F] and [K] are off-line 

computed by solving the algebraic Riccati equation:  

P = Q + FPFT − FPHT[HPHT + R]−1HPFT        (3) 

where P is the steady state prediction covariance and 

then computing the steady state Kalman filter gain 

K as:  

K = PHT[HPHT + R]−1                 (4) 

Remark. There exists significant bibliography 

concerning the algebraic and the iterative solutions 

of the Riccati equation; see for example [15]-[20]. 

 

 

3 Estimation Algorithms based on 

Kalman Filter Gain 
The main idea is the use of the Kalman filter gain 

and the non-use of the estimation covariance. We 

are going to derive the Kalman filter gain via 

auxiliary quantities as in [21] and we are not going 

to compute the estimation error covariance.  

 

 

3.1 Time Varying Algorithms 

 
3.1.1 Time varying algorithm with 𝐦 > 𝐧 

Working as in [21] we use the auxiliary matrices 

G(k) = K(k)H(k)            (5) 

and  

ξ(k) = [HT(k)H(k)]−1HT(k)                 (6) 

and we derive the following algorithm: 

 
Time Varying Kalman Filter using Gain (TVKFG) 

S(k) = HT(k)R−1(k)H(k) 

A(k) = [Q(k) + S−1(k)]F−T(k + 1, k)S(k) 

B(k) = F(k + 1, k) 

C(k) = Q(k)F−T(k + 1, k)S(k) 

D(k) = F(k + 1, k) 

G(k + 1) = [C(k) + D(k)G(k)] 
                    [A(k) + B(k)G(k)]−1 

ξ(k + 1) = [HT(k + 1)H(k + 1)]−1HT(k + 1)  

K(k + 1) = G(k + 1)ξ(k + 1) 

x(k + 1/k + 1) = [I − G(k + 1)] 
                             F(k + 1, k)x(k/k) 

+K(k + 1)z(k + 1) 

The initialization (k = 0) is: 

x(0/−1) = x0  

P(0/−1) = P0 

K(0) = P0HT(0)[H(0)P0HT(0) + R(0)]−1 

G(0) = K(0)H(0) 

x(0/0) = [I − G(0)]x0 + K(0)z(0) 

Remark. S(k) is symmetric positive semidefinite 

matrix of dimension n × n  and S(k) is p.d.  

(positive definite) matrix if rank(H(k)) = n.  This 

means that S(k) is nonsingular when rank(H(k)) =
n with m ≥ n [22]. 

 

3.1.2 Time varying algorithm with 𝐦 = 𝐧 

When m = n we derive the following algorithm: 

 
Time Varying Kalman Filter using Gain with equal 

dimensions (TVKFGe) 

S(k) = HT(k)R−1(k)H(k) 

a(k) = H(k)[Q(k) + S−1(k)] 
                         F−T(k + 1, k)HT(k)R−1(k) 

b(k) = H(k)F(k + 1, k) 

c(k) = Q(k)F−T(k + 1, k)HT(k)R−1(k) 

d(k) = F(k + 1, k) 

K(k + 1) = [c(k) + d(k)K(k)]  
                       [a(k) + b(k)K(k)]−1 

x(k + 1/k + 1) = [I − K(k + 1)H(k + 1)] 
                  F(k + 1, k)x(k/k) 

                      +K(k + 1)z(k + 1) 

The initialization (k = 0) is: 
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x(0/−1) = x0  

P(0/−1) = P0 

K(0) = P0HT(0)[H(0)P0HT(0) + R(0)]−1 

x(0/0) = [I − K(0)H]x0 + K(0)z(0) 
 

3.2 Time Invariant Algorithms 
 

3.2.1 Time invariant algorithm with 𝐦 > 𝐧 

Working as in [23] we use the auxiliary matrices 

G(k) = K(k)H                   (7) 

and  

ξ = [HTH]−1HT                 (8) 

and we derive the following algorithm: 

 
Time Invariant Kalman Filter using Gain (TIKFG) 

G(k + 1) = [C + DG(k)][A + BG(k)]−1  

K(k + 1) = G(k + 1)ξ 

x(k + 1/k + 1) = [I − G(k + 1)]Fx(k/k) 

                      +K(k + 1)z(k + 1) 

The initialization (k = 0) is: 

x(0/−1) = x0  

P(0/−1) = P0 

K(0) = P0HT[HP0HT + R]−1 

G(0) = K(0) 

x(0/0) = [I − K(0)H]x0 + K(0)z(0) 

Here, the following matrices are computed off-line: 

ξ = [HTH]−1HT  

S = HTR−1H 

A = [Q + S−1]F−TS 

B = F 

C = QF−TS 

D = F 
 

3.2.2 Time invariant algorithm with 𝐦 = 𝐧 

When m = n we derive the following algorithm: 

 
Time Invariant Kalman Filter using Gain with equal 

dimensions (TIKFGe) 

K(k + 1) = [c + dK(k)][a + bK(k)]−1  

x(k + 1/k + 1) = [I − K(k + 1)H]Fx(k/k) 

                           +K(k + 1)z(k + 1)     

The initialization (k = 0) is: 

x(0/−1) = x0  

P(0/−1) = P0 

K(0) = P0HT[HP0HT + R]−1 

x(0/0) = [I − K(0)H]x0 + K(0)z(0) 

Here, the following matrices are computed off-line: 

S = HTR−1H 

a = H[Q + S−1]F−THTR−1 

b = HF 

c = QF−THTR−1 

d = F 
 

 

 

3.3 Steady State Algorithms 
 

3.3.1 Steady state algorithm with 𝐦 > 𝐧 
Steady State Kalman Filter using Gain (SSKFG) 

x(k/k) = [I − G]Fx(k − 1/k − 1) + Kz(k) 

The initialization (k = 1) is: 

x(0/−1) = x0  

P(0/−1) = P0 

K(0) = P0HT[HP0HT + R]−1 

x(0/0) = [I − K(0)H]x0 + K(0)z(0) 

The coefficients [(I − G)F] and [K] are off-line 

calculated by solving the equation 

G = [C + DG][A + BG]−1     (9) 

using techniques derived in [21] 

and then calculating K as:  

K = Gξ                 (10) 

using (8). 

 

3.3.2 Steady state algorithm with 𝐦 = 𝐧 

When m = n we derive the following algorithm: 

 
Steady State Kalman Filter using Gain with equal 

dimensions (SSKFGe) 

x(k/k) = [I − KH]Fx(k − 1/k − 1) + Kz(k) 

The initialization (k = 1) is: 

x(0/−1) = x0  

P(0/−1) = P0 

K(0) = P0HT[HP0HT + R]−1 

x(0/0) = [I − K(0)H]x0 + K(0)z(0) 

The coefficients [(I − KH)F] and [K] are off-line 

calculated by computing K solving the equation 

K = [c + dK][a + bK]−1               (11) 

using techniques derived in [21]. 

 

 

4 Comparison of Algorithms 
 

4.1. Per Iteration Calculation Burden 
It is established that the estimation algorithms are 

derived using the Kalman filter equations. Thus the 

estimation algorithms and the traditional Kalman 

filter are equivalent filters with respect to their 

behavior, since they calculate theoretically the same 

estimates. Since all the filters are iterative, we 

assume that they compute the estimation executing 

the same number of iterations. So, the algorithms 

will be compared with respect to their per iteration 

calculation burden (CB) required for the (on-line) 

calculations. Table 1 summarizes the CB of needed 

matrix operations; see details in [23].   
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Table 1. Matrices Operations Calculation Burden 
Matrix Operation Calculation Burden 

M1 + M2 = M 

(d1 × d2) + (d1 × d2) 
d1d2 

M1 + M2 = S 

(d × d) + (d × d) 

S symmetric 

1

2
d2 +

1

2
d 

I + M1 = M 

(d × d) + (d × d) 
d 

M1 ∙ M2 = M 
(d1 × d2) ∙ (d2 × d3) 

2d1d2d3 − d1d3 

M1 ∙ M2 = S 

(d1 × d2) ∙ (d2 × d1) 

S symmetric 

d1
2d2 + d1d2 −

1

2
d1

2 −
1

2
d1 

M−1 

(d × d) 
{

1

6
(16d3 − 3d2 − d), d ≥ 2

1,                                 d = 1 
 

 

The per iteration calculation burdens of the 

traditional Kalman Filter – KF (time varying, time 

invariant and steady state) have been calculated in 

[23]. The per iteration calculation burdens of the 

proposed estimation algorithms – KFG (time 

varying, time invariant and steady state) are 

calculated in the Appendix and summarized in 

Table 2. 

 

Table 2. Per iteration CB of estimation algorithms 
Time Varying Algorithms 

KF m ≥ n ≥ 2 CBTVKF =
1

2
(8n3 + 7n2 − 3n) 

              +4n2m + nm + 3nm2 

              +1

6
(16m3 − 3m2 − m) 

 m > n = 1 CBTVKF1 =
1

6
(16m3 + 15m2 + 29m + 36) 

 m = n ≥ 2 CBTVKFe =
1

3
(41n3 + 12n2 − 5n) 

 m = n = 1 CBTVKF1 = 15 

KFG m ≥ n ≥ 2 CBTVKFG =
1

6
(136n3 − 15n2 − 13n) 

                +6n2m + nm + 2nm2 

                +1

6
(16m3 − 3m2 − m) 

 m > n = 1 CBTVKFG1 =
1

6
(84m3 + 9m2 + 41m + 84) 

 m = n ≥ 2 CBTVKFGe =
1

3
(95n3 − 9n2 − 5n) 

 m = n = 1 CBTVKFG1 = 23 

Time Invariant Algorithms 

KF m ≥ n ≥ 2 CBTIKF =
1

2
(8n3 + 7n2 − 3n) 

             +4n2m + nm + 3nm2 

             +1

6
(16m3 − 3m2 − m) 

 m > n = 1 CBTIKF1 =
1

6
(16m3 + 15m2 + 29m + 36) 

 m = n ≥ 2 CBTIKFe =
1

3
(41n3 + 12n2 − 5n) 

 m = n = 1 CBTIKF1 = 15 

KFG m ≥ n ≥ 2 CBTIKFG =
1

6
(52n3 + 15n2 − 7n) 

               +2n2m + nm 

 m > n = 1 CBTVKFG1 = 3m + 9 

 m = n ≥ 2 CBTIKFGe =
1

6
(64n3 + 21n2 − 7n) 

 m = n = 1 CBTIKFG1 = 12 

Steady State Algorithms 

KF m ≥ n CBSSKF = 2n2 + 2nm − n 

 m = n CBSSKFe = 4n2 − n 

KFG m ≥ n CBSSKFG = 2n2 + 2nm − n 

 m = n CBSSKFGe = 4n2 − n 

 

 

4.2. The Faster Algorithm Determination 
Concerning Time Varying Algorithms, from Table 

2 it results that the proposed algorithm may be faster 

than the traditional Kalman filter, depending on the 

model dimensions. Figure 2 depicts the faster 

algorithm with respect to the state dimension n and 

the measurement dimension m. Recall that the 

proposed algorithm holds for m ≥ n. It is clear that 

the proposed algorithm is faster than the traditional 

Kalman filter when m ≥ 5.5n, while the the 

traditional Kalman filter is faster that the proposed 

algorithm when 5.5n > m ≥ n. Thus, the proposed 

algorithm is faster than the traditional Kalman filter 

when the rule of thumb holds: 

m ≥ 5.5n                  (12) 

 
Fig. 2: Faster time varying algorithm determination 

 

Concerning Time Invariant Algorithms, from 

Table 2 it results that the proposed algorithm is 

always faster than the traditional Kalman filter. 

Concerning Steady State Algorithms, from 

Table 2 it results that the proposed algorithm is as 

fast is the traditional Kalman filter. 

Example. A seismic deconvolution example 

taken from [24] is considered. The (time invariant) 

wavelet used to describe the signal received by the 

seismic sensors is of dimension n = 4. In order to 

capture the seismic trace, m = 1000 sensors are 

used. Then the proposed algorithm is faster than the 

traditional one: speedup =
CBTIKF

CBTIKFG
= 70.909 ∙ 103 

 

 

5 Conclusion 
The traditional Kalman filter uses the Kalman filter 

gain in order to compute the estimation of the state. 

We proposed a new Kalman filter variant which 

holds when the measurements dimension m is 

greater or equal to the state dimension n, i.e. m ≥ n. 
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Estimation algorithms have been developed for the 

cases: time varying, time invariant and steady state. 

The proposed estimation time varying and time 

invariant algorithms compute the Kalman filter gain 

at each iteration through auxiliary quantities, 

without computing the estimation error covariance. 

The proposed estimation algorithm for the steady 

state case, requires the off-line computation of the 

steady state Kalman filter gain. 

Comparing the developed estimation algorithm 

to the traditional Kalman filter with respect to their 

computational burdens, we have concluded that: (a) 

in the time invariant case, the developed estimation 

algorithm is always faster than the traditional 

Kalman filter, (b) in the steady state case, the two 

algorithms have equal calculation burdens, (c) in the 

time varying case, the developed estimation 

algorithm is faster than the traditional Kalman filter 

when m ≥ 5.5n. Thus, the proposed estimation 

algorithm outperforms the classical Kalman filter 

(1) for time invariant problems with m ≥ n, (2) for 

time varying problems with m ≥ 5.5n. This means 

that the proposed estimation algorithms take 

advantage of multi-sensors problems. 

Future research may investigate how to apply the 

derived algorithms to LQR (Linear Quadratic 

Regulator) [25]. Another subject of future research 

is to use the main idea of this work in order to 

derive information filters that use the inverses of the 

covariance matrices. 

 

 

Appendix 
The calculation burdens of the proposed algorithms 

are analytically presented.  
 

TVKFG 

Matrix Operation Calculation Burden 

R−1(k) 
1

6
(16m3 − 3m2 − m), m ≥ 2

1,                                 m = 1 
 

HT(k)R−1(k) 2nm2 − nm  

S(k) = HT(k)R−1(k)H(k) n2m + nm −
1

2
n2 −

1

2
n  

S−1(k) 
1

6
(16𝑛3 − 3𝑛2 − 𝑛), 𝑛 ≥ 2

1,                                 𝑛 = 1 
 

Q(k) + S−1(k) 
1

2
n2 +

1

2
n   

F−T(k + 1, k) 
1

6
(16n3 − 3n2 − n) 

F−T(k + 1, k)S(k) 2n3 − n2  

A(k) = [Q(k) + S−1(k)]F−T(k + 1, k)S(k) 2n3 − n2  

C(k) = Q(k)F−T(k + 1, k)S(k) 2n3 − n2  

D(k)G(k) 2n3 − n2  

C(k) + D(k)G(k) n2  

B(k)G(k) 2n3 − n2  

A(k) + B(k)G(k) n2  

[A(k) + B(k)G(k)]−1 
1

6
(16𝑛3 − 3𝑛2 − 𝑛), 𝑛 ≥ 2

1,                                 𝑛 = 1 
 

G(k + 1) = [C(k) + D(k)G(k)] 
                    [A(k) + B(k)G(k)]−1 

2n3 − n2  

HT(k + 1)H(k + 1) n2m + nm −
1

2
n2 −

1

2
n  

[HT(k + 1)H(k + 1)]−1 
1

6
(16𝑛3 − 3𝑛2 − 𝑛), 𝑛 ≥ 2

1,                                 𝑛 = 1 
 

ξ(k + 1) = [HT(k + 1)H(k + 1)]−1 

                     HT(k + 1)  
2n2m − nm  

K(k + 1) = G(k + 1)ξ(k + 1) 2n2m − nm  

I − G(k + 1) n  

F(k + 1, k)x(k/k) 2n2 − n  

[I − G(k + 1)]F(k + 1, k)x(k/k) 2n2 − n  

K(k + 1)z(k + 1) 2nm − n  

x(k + 1/k + 1) = K(k + 1)z(k + 1) 

            +[I − G(k + 1)]F(k + 1, k)x(k/k) 
n  

 

 

TVKFGe 

Matrix Operation Calculation Burden 

R−1(k) 
1

6
(16m3 − 3m2 − m), m ≥ 2

1,                                 m = 1 
 

HT(k)R−1(k) 2n3 − n2 

S(k) = HT(k)R−1(k)H(k) n3 +
1

2
n2 −

1

2
n  

S−1(k) 
1

6
(16n3 − 3n2 − n), n ≥ 2

1,                                 n = 1 
 

Q(k) + S−1(k) 
1

2
n2 +

1

2
n   

F−T(k + 1, k) 
1

6
(16n3 − 3n2 − n), n ≥ 2

1,                                 n = 1 
 

F−T(k + 1, k)S(k) 2n3 − n2  

[Q(k) + S−1(k)]F−T(k + 1, k)S(k) 2n3 − n2  

a(k) = H(k)[Q(k) + S−1(k)] 
                     F−T(k + 1, k)S(k) 

2n3 − n2  

b(k) = H(k)F(k + 1, k) 2n3 − n2  

c(k) = Q(k)F−T(k + 1, k)S(k) 2n3 − n2  

d(k)K(k) 2n3 − n2  

c(k) + d(k)K(k) n2  

b(k)K(k) 2n3 − n2  

a(k) + b(k)K(k) n2  

[a(k) + b(k)K(k)]−1 
1

6
(16n3 − 3n2 − n), n ≥ 2

1,                                 n = 1 
 

K(k + 1) = [c(k) + d(k)K(k)] 
                    [a(k) + b(k)K(k)]−1  

2n3 − n2  

K(k + 1)H(k + 1) 2n3 − n2  

I − K(k + 1)H(k + 1) n  

F(k + 1, k)x(k/k) 2n2 − n  

[I − K(k + 1)H(k + 1)]F(k + 1, k)x(k/k) 2n2 − n  

K(k + 1)z(k + 1) 2n2 − n  

x(k + 1/k + 1) = K(k + 1)z(k + 1) 

+[I − K(k + 1)H(k + 1)]F(k + 1, k)x(k/k) 
n  
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TIKFG 

Matrix Operation Calculation Burden 

D(k)G(k) 2n3 − n2  

C(k) + D(k)G(k) n2  

B(k)G(k) 2n3 − n2  

A(k) + B(k)G(k) n2  

[A(k) + B(k)G(k)]−1 
1

6
(16n3 − 3n2 − n), n ≥ 2

1,                                 n = 1 
 

G(k + 1) = [C(k) + D(k)G(k)] 
                       [A(k) + B(k)G(k)]−1 

2n3 − n2  

K(k + 1) = G(k + 1)ξ 2n2m − nm  

I − G(k + 1) n  

Fx(k/k) 2n2 − n  

[I − G(k + 1)]Fx(k/k) 2n2 − n  

K(k + 1)z(k + 1) 2nm − n  

x(k + 1/k + 1) = [I − G(k + 1)]Fx(k/k) 

                            +K(k + 1)z(k + 1) 
n  

 
 

TIKFGe 

Matrix Operation Calculation Burden 

dK(k) 2n3 − n2  

c + dK(k) n2  

bK(k) 2n3 − n2  

a + bK(k) n2  

[a + bK(k)]−1 
1

6
(16n3 − 3n2 − n), n ≥ 2

1,                                 n = 1 
 

K(k + 1) = [c + dK(k)] 
                       [a + bK(k)]−1  

2n3 − n2  

K(k + 1)H 2n3 − n2  

I − K(k + 1)H n  

Fx(k/k) 2n2 − n  

[I − K(k + 1)H]Fx(k/k) 2n2 − n  

K(k + 1)z(k + 1) 2n2 − n  

x(k + 1/k + 1) = [I − K(k + 1)H]Fx(k/k) 

                           +K(k + 1)z(k + 1) 
n  

 
 

SSKFG 

Matrix Operation Calculation Burden 

[I − KH]Fx(k − 1/k − 1) 2n2 − n  

Kz(k) 2nm − n  

x(k/k) = [I − KH]Fx(k − 1/k − 1) + Kz(k) n  

 
 

SSKFGe 

Matrix Operation Calculation Burden 

[I − KH]Fx(k − 1/k − 1) 2n2 − n  

Kz(k) 2n2 − n  

x(k/k) = [I − KH]Fx(k − 1/k − 1) + Kz(k) n  
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