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Abstract: - The problem of magneto-convection in viscoelastic fluid saturated anisotropic porous layer under 
local thermal non-equilibrium (LTNE) effect is investigated. Extended Darcy model with time derivative term 
for viscoelastic fluid of the Oldroyd type with an externally imposed vertical magnetic field is used to model 
the momentum equation. The entire investigation has been split into two parts: (i) linear stability analysis (ii) 
weakly non-linear stability analysis. We perform normal mode technique to examine linear stability analysis 
while truncated representation of Fourier series method is used for weakly non-linear stability analysis. The 
onset of convection is set in through oscillatory rather than stationary mode due to competition between the 
processes of thermal, magnetic effect and viscoelasticity. A comparative study between anisotropic and 
isotropic porous medium is made as a function of Q (Chandrasekhar number), 𝛤 (non dimensional inter phase 
heat transfer coefficient), 𝜆1 (Relaxation time) and λ2 (Retardation time). Apart from this, Q, 𝛤 and λ2 stabilize 
the system in oscillatory case while  𝜆1 destabilize the system. Furthermore 𝜉 (mechanical anisotropic 
parameter), 𝜂s (thermal anisotropic parameter for solid phase), destabilizes the system and 𝜂f (thermal 
anisotropic parameter for fluid phase) stabilizes the system. The effect of Q, 𝜆1, λ2, 𝛤, 𝜉,  𝜂f and 𝜂s on heat 
transfer is also examined. 
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1. Introduction 

Thermal convection in porous medium is still a 
captivating area of research due to various 
applications in geophysics ([1], [2]). Classical 
Rayleigh Bernard convection is often examined due 
to its clarity and well defined controlling non-
dimensional parameters [3]. Abundance of work 
related to thermal convection of Newtonian fluid is 
published and documented. 

But limited work is reported on viscoelastic fluids (a 
non-Newtonian fluid). Possessing the potential to 
acquire both viscous and elastic properties 
simultaneously, viscoelastic fluids surrounded a 
wide variety of physical systems. It can be found in 
a wide range of liquids, colloids, polymers, organic 
and polymer alloys, and biological materials. 
Regardless of the considered specific chemical 
composition, intriguing and original dynamics 
generally originates from the property of these 
fluids to retain stresses even in the absence of a 

gradient of velocity and the ensuing ability to 
produce highly non-linear behaviour; while an 
initial flow can produce long-chain molecules 
stretching, the deformation of the molecules 
(evolving with a characteristic time that does not 
match that of the main flow) can cause secondary 
flows which further stretch them, thereby allowing 
the amplification of an initial small disturbance 
through an iterative cause and effect coupling 
mechanism. Thermal instability in viscoelastic fluid 
was introduced by [4]. Rudraiah et al. [5] developed 
a linear stability theory for a viscoelastic fluid in a 
porous media. According to them, the effect of 
elasticity of the fluid causes the system to become 
unstable. Kim et al. [6] have studied thermal 
instability of a viscoelastic fluid saturated porous 
layer. They discovered that over stability is a 
favoured mode for a specific parameter range using 
linear stability analysis. They also discovered that 
the onset of convection takes the form of a 
supercritical and stable bifurcation, regardless of the 
elastic parameter values. Malashetty et al. [7], is 
investigated the linear stability of a viscoelastic 
fluid saturated densely packed horizontal porous 
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layer heated from below and cooled from above 
with LTNE model. According to their analysis, the 
processes of viscous relaxation and thermal 
diffusion compete, causing the first convective 
instability to be oscillatory rather than stationary. In 
a viscoelastic fluid saturated rotating porous layer 
heated from below, kang et al. [8] investigated 
linear and weakly nonlinear stability analysis of 
thermal convection. They found that rotation 
reduces the heat transfer capacity for both stationary 
and over stable convection modes. 

Most of the work related to thermal convection in 
viscoelastic fluid saturated porous medium is 
examined under local thermal equilibrium (LTE) 
condition. But in a situation where hot fluid flow 
into a cold porous matrix there will exist a 
difference in the average local temperature of the 
two phases, then the phases are not in LTE. Then 
single energy equation is replaced by two equations, 
one for each phase. Initially, Combarnous and 
Bories [9] studied the effect of LTNE on nonlinear 
Darcy-Bernard convection. A detailed review of the 
effect of LTNE on natural convection in porous 
media is given by [10]. In (2016), Srivastava and 
Bhadauria [11] investigated the LTNE effect on 
fingering instability in a porous medium with cross 
diffusion effect under magnetic field. They 
concluded that the inter-phase heat transfer 
coefficient stabilizes the system that delay the onset 
of convection. Recently most of the work related to 
LTNE model is done with nano-fluid saturated 
porous medium and well documented in [12]. 

Not much attention is devoted the combined effects 
of magneto-convection and LTNE effects of fluid 
saturated porous medium. The study of magneto-
convection has great importance in petroleum 
reservoir [13]. In (2011), Srivastava et al. [14], 
investigated the onset of magneto convection in an 
electrically conducting fluid saturated anisotropic 
porous medium under LTNE effect. They showed 
that increasing heat transfer coefficient and 
magnetic effect parameter stabilizes the system.  

For including many practical situations, porous 
medium is considered to be anisotropic rather than 
isotropic for their mechanical and thermal 
properties. Asymmetric geometric of porous matrix 
leads to anisotropic characteristic and it seems in 
numerous systems in industry and in nature. 
Castinel and Combarnous [15] was the first to 
explore the onset of thermal convection in a 
horizontal porous layer with anisotropic 

permeability. Later on Epherre (1975) [16], 
extended the stability analysis to porous media with 
anisotropic thermal diffusivity. Neild and Bejan [17] 
has written a comprehensive review on convective 
flow across anisotropic porous media. 

While there is no doubt that each of the above-
mentioned studies on the subject enlightened that 
field but recognized challenge in pushing the current 
knowledge to investigate the combined effect of 
these parameters for linear as well as non-linear 
stability analysis. Here we focus the linear and non-
linear stability analysis of a viscoelastic fluid 
saturated anisotropic porous medium under LTNE 
effect. The following is a summary of the paper. In 
Sect. 2, a brief mathematical formulation of the 
physical problem is presented. Linear stability 
analysis in oscillatory convection and a weakly non-
linear theory with heat and mass transfer for F/F 
case are reported in Sect. 3. Sect. 4. contains the 
results and discussion. Finally, in Sect. 5., some key 
aspects of the analysis are summarised.  

2. Mathematical model 

2.1. The physical domain 
We consider a non-Newtonian fluid saturating 
anisotropic porous layer of depth d, which is heated 
from below, and confined between two parallel 
horizontal planes, z = 0 and z = d, as shown in     
Fig. 1. A constant magnetic field 𝑯𝒃 = 𝐻𝑏�̂� is 
maintained externally in vertically upward direction. 
Taking a cartesian coordinates with origin at bottom 
of the porous medium, horizontal coordinate x and 
vertical coordinate z increases upwards. The 
surfaces are extended infinitely in x and y directions 
and constant temperature gradient ∆T is maintained 
across the porous layer. We are assuming that 
temperature of porous matrix and fluid is different 
that is LTNE is maintained through the porous 
matrix.
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Fig. 1: Schematic of the problem considered. 
 

2.2.  Governing equation  
The modified Darcy law for the viscoelastic fluid of 
the Oldroyd type is used to model momentum 
equation, [7]. The balance equations for mass, 
momentum and two energy equations, can be cast in 
dimensional form a 
(1 + 𝜆1

𝜕

𝜕𝑡
) (

𝜌0

𝜀

𝜕𝒒

𝜕𝑡
− 𝜇𝑚(𝑯. ∇)𝑯) + (1 +

 𝜆2
𝜕

𝜕𝑡
) 𝜇𝐾−1. 𝒒 =  (1 + 𝜆1

𝜕

𝜕𝑡
) (−∇𝑃 +  𝜌𝒈),       (1) 

following [4], heat flow in fluid saturated porous 
matrix is described by two-phase heat equations 
(first for fluid and second for solid) 

𝜀(𝜌0𝑐)𝑓
𝜕𝑇𝑓

𝜕𝑡
+ (𝜌0𝑐)𝑓(𝒒. ∇)𝑇𝑓 = 𝜀𝜅𝑓∇

2𝑇𝑓 +

ℎ(𝑇𝑠 − 𝑇𝑓 ),                                                            (2)   
                                                   
(1 − 𝜀)(𝜌0𝑐)𝑠

𝜕𝑇𝑠

𝜕𝑡
= (1 − 𝜀)𝜅𝑠∇

2𝑇𝑠 − ℎ(𝑇𝑠 − 𝑇𝑓 ),     
                                                                               (3)  
                                                                                                         
𝜕𝑯

𝜕𝑡
+ 𝒒.∇𝑯 − 𝑯.∇𝒒 = Λ∇2𝑯,                               (4)  

                                                                                                                            
∇. 𝒒 = 0,                                                                 (5)  
                                                                                                                                                                                  
∇.𝑯 = 0,                                                                (6) 
                                 
here q = (u, v, w) is velocity of the fluid, H = (Hx, 

Hy, Hz) is magnetic field, 𝜇𝑚 is magnetic 
permeability, 𝜆1 is relaxation time, 𝜆2 is retardation 
time, P is pressure, 𝜌 is fluid density, 𝜀 is porosity, 
Tf is temperature of fluid, TS is temperature of solid, 
𝜂𝑓 is thermal diffusivity of fluid and 𝜂𝑠 is thermal 
diffusivity of solid respectively. The relation 

between the reference density and temperature is 
assumed to be,   
 𝜌 = 𝜌0[1 − 𝛽(𝑇𝑓 − 𝑇0)].                                     (7)                                      
 
The appropriate boundary conditions for 
temperature and magnetic field are: -  
   
𝑇𝑓 = 𝑇𝑠 = 𝑇0 + Δ𝑇 𝑎𝑡 𝑧 = 0   𝑎𝑛𝑑  𝑇𝑓 = 𝑇𝑠 =

𝑇0  𝑎𝑡 𝑧 = 𝑑 ,                                                         (8) 
                                                      
𝑯 × �̂� = 0  𝑎𝑡 𝑧 = 0, 𝑑.                                        (9)                     
 

2.3.  Basic state 

The basic state of the fluid is assumed to be 
quiescent, and is given by, 
 
 𝒒𝒃 = (0,0,0), 𝑃 = 𝑃𝑏(𝑧), 𝑇𝑓 = 𝑇𝑓𝑏(𝑧), 𝑇𝑠 =

 𝑇𝑠𝑏(𝑧), 𝜌 = 𝜌𝑏(𝑧), 𝑯 =  𝐻𝑏𝒌.̂                             (10) 
                                                                                        
Using (10) in Eqs. (1) - (7) yield 
 
𝑑𝑝𝑏

𝑑𝑧
= −𝜌𝑏𝑔,

𝑑2𝑇𝑓𝑏

𝑑𝑧2 = 0,   
𝑑2𝑇𝑠𝑏

𝑑𝑧2 = 0.                  (11) 
                                                                                                                     
The basic state solution for temperature and solute 
are given by: - 
 
𝑇𝑓𝑏(𝑧) = 𝑇𝑙 − Δ𝑇

𝑧

𝑑
, 𝑇𝑠𝑏(𝑧) = 𝑇𝑙 − Δ𝑇

𝑧

𝑑
.            (12)                                                                                                                

 

2.4.  Perturbed state 
On the basic state, we superpose infinitesimal 
perturbation in the form, 
𝒒 = 𝒒𝒃(𝑧) + 𝒒′(𝑥, 𝑦, 𝑧, 𝑡), 𝑇𝑓 = 𝑇𝑓𝑏(𝑧) +

 𝑇𝑓
′(𝑥, 𝑦, 𝑧, 𝑡), 𝑇𝑠 = 𝑇𝑠𝑏(𝑧) + 𝑇𝑠

′(𝑥, 𝑦, 𝑧, 𝑡)  
𝑃 = 𝑃𝑏(𝑧) + 𝑃′(𝑥, 𝑦, 𝑧, 𝑡), 𝜌 = 𝜌𝑏(𝑧) +
𝜌′(𝑥, 𝑦, 𝑧, 𝑡), 𝑯 = 𝑯𝒃(𝑧) + 𝑯′(𝑥, 𝑦, 𝑧, 𝑡).            (13) 
 
Where primes indicate perturbations. Introducing 
(13) in Eqs. (1)-(6), and using basic state from Eq. 
(11), we obtain,  
 
(1 + 𝜆1

𝜕

𝜕𝑡
) (

𝜌0

𝜀

𝜕𝒒′

𝜕𝑡
− 𝜇𝑚𝐻𝑏

𝜕𝑯′

𝜕𝑧
) + (1 +

 𝜆2
𝜕

𝜕𝑡
) 𝜇𝐾−1. 𝒒′ =  (1 + 𝜆1

𝜕

𝜕𝑡
) (−∇𝑃′ +  𝛽𝜌0𝒈𝑇𝑓

′),                                      
 

(14) 
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𝜀(𝜌0𝑐)𝑓

𝜕𝑇𝑓
′

𝜕𝑡
+ (𝜌0𝑐)𝑓(𝑞

′. ∇)𝑇𝑓
′ +

(𝜌0𝑐)𝑓𝑤
′ (

𝑑𝑇𝑓𝑏

𝑑𝑧
) = 𝜀𝜅𝑓∇

2𝑇𝑓
′ + ℎ(𝑇𝑠

′ − 𝑇𝑓
′),      (15)                                   

 
(1 − 𝜀)(𝜌0𝑐)𝑠

𝜕𝑇𝑠
′

𝜕𝑡
= (1 − 𝜀)𝜅𝑠∇

2𝑇𝑠
′ − ℎ(𝑇𝑠

′ −

𝑇𝑓
′),                                                                                (16) 
𝜕𝑯′

𝜕𝑡
+ (𝒒′. ∇)𝑯′ − (𝑯′. ∇)𝒒′ − 𝐻𝑏

𝜕𝒒′

𝜕𝑧
= Λ∇2𝑯,   

(17) 
 

∇. 𝒒′ = 0,                                                              (18)  
                                                                                                                 
∇.𝑯′ = 0,                                                             (19)   
                                                                                                                
𝜌′ = −𝜌0𝛽(𝑇𝑓

′).                                                   (20) 
 
We non-dimensionalized the Eqs. (14)-(20) using 
following transformations, 

 
(𝑥, 𝑦, 𝑧) = 𝑑(𝑥∗, 𝑦∗, 𝑧∗), 𝑡 =
(𝜌0𝑐)𝑓𝑑2

Κ𝑓
𝑡∗, (𝑢′, 𝑣′, 𝑤′) =

𝜀Κ𝑓

(𝜌0𝑐)𝑓𝑑
(𝑢∗, 𝑣∗, 𝑤∗), 𝑃′ =

𝜀𝜇Κ𝑓

(𝜌0𝑐)𝑓𝐾
𝑃∗,𝜆1 =

(𝑝0𝑐)𝑓𝑑2

𝛫𝑓
𝜆1

∗, 𝜆2 =
(𝑝0𝑐)𝑓𝑑2

𝛫𝑓
𝜆2

∗, 𝑯′ =

𝐻𝑏𝑯
∗, 𝑇′𝑓 = (𝛥𝑇) 𝑇𝑓

∗, 𝑇′𝑠 = (𝛥𝑇) 𝑇∗
𝑠 .              (21) 

 
We obtained the non-dimensional governing 
equations (after dropping the asterisks for 
simplicity) as 
 
  (1 + 𝜆1

𝜕

𝜕𝑡
) [

1

𝑉𝑎

𝜕𝒒

𝜕𝑡
− 𝑄𝑃𝑚

𝜕𝑯

𝜕𝑧
+ ∇𝑃 − 𝑅𝑎𝑇𝑇𝑓�̂�] +

( 1 + 𝜆2
𝜕

𝜕𝑡
)𝒒𝑎 = 0,                                            (22) 

 
(

𝜕

𝜕𝑡
− 𝜂𝑓∇

2
1 −

𝑑2

𝑑𝑧2)𝑇𝑓 + (𝒒. ∇)𝑇𝑓 = 𝑤 +

 Γ(𝑇𝑠 − 𝑇𝑓),                                                          (23) 
 
𝛼

𝜕𝑇𝑠

𝜕𝑡
= (𝜂𝑠∇1

2 +
𝑑2

𝑑𝑧2)𝑇𝑠 − 𝛾Γ(𝑇𝑠 − 𝑇𝑓),           (24)    
                                                                                
1

𝜀

𝜕𝑯

𝜕𝑡
+ (𝒒. ∇)𝑯 − (𝑯. ∇)𝒒 −

𝜕𝒒

𝜕𝑧
= 𝑝𝑚∇2𝑯.         (25)                                                                                      

 

Where the non-dimensional parameters, 𝑉𝑎 =
𝜀𝜇𝑑2

𝜌0𝜅𝑓𝐾𝑧
 is Vadasz number, 𝑅𝑎𝑇 =

𝛽𝑔(𝜌0𝑐)𝑓𝐾𝑧𝑑∆𝑇

𝜀𝜈𝜅𝑓
 is 

Rayleigh number, 𝜂𝑓 =
𝑘𝑓𝑧

𝑘𝑓𝑥
 is fluid thermal 

conductivity ratio, 𝜂𝑠 =
𝑘𝑠𝑧

𝑘𝑠𝑥
 is solid thermal 

conductivity ratio, 𝑄 =
𝜇𝑚𝐻𝑏

2𝐾𝑧

𝜌0𝜈𝛬
 is Chandershekhar 

number, 𝑃𝑚 =
𝛬(𝜌0𝑐)𝑓

𝜀𝜅𝑓
 is magnetic Prandtl number,  

𝛾 =
𝜀𝑘𝑓𝑧

(1−𝜀)𝑘𝑠𝑧
is specific heat ratio and 𝒒𝑎 = (

𝑢

𝜉
,
𝑣

𝜉
, 𝑤) 

is the anisotropic modified velocity vector. 
Eliminating the pressure term from Eq. (22) by 
taking the curl twice, and get 

(1 + 𝜆1
𝜕

𝜕𝑡
) [

1

𝑉𝑎

𝜕

𝜕𝑡
(∇2𝒒) − 𝑄𝑃𝑚∇2 (

𝜕𝑯

𝜕𝑧
) −

�̂�𝑅𝑎
𝜕2𝑇𝑓

𝜕𝑥𝜕𝑧
− 𝒋̂𝑅𝑎

𝜕2𝑇𝑓

𝜕𝑦𝜕𝑧
+ �̂�𝑅𝑎∇1

2𝑇𝑓] + (1 +

𝜆2
𝜕

𝜕𝑡
)𝐶 = 0.                                                        (26) 

 
Where, 
 𝐶 = (𝐶1, 𝐶2, 𝐶3), 𝐶1 =

1

𝜉

𝜕2𝑣

𝜕𝑦𝜕𝑥
+

𝜕2𝑤

𝜕𝑥𝜕𝑧
−

1

𝜉
(

𝜕2𝑣

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2) , 𝐶2 =
1

𝜉

𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑦𝜕𝑧
−

1

𝜉
(
𝜕2𝑣

𝜕𝑥2 +

𝜕2𝑣

𝜕𝑧2) , 𝐶3 = −(∇1
2 +

1

𝜉

𝜕2

𝜕𝑧2)𝑤. 
      
The boundaries are considered to be impermeable, 
isothermal and perfect electrically conducting; 
therefore we have the following conditions, 
 
𝑤 =

𝜕2𝑤

𝜕𝑧2 = 𝑇𝑓 = 𝑇𝑠 =
𝜕𝐻𝑧

𝜕𝑧
= 0 𝑎𝑡 𝑧 = 0, 1.        (27) 

 
3. Linear Stability Analysis 

 
Taking vertical component and neglecting non-
linear terms from Eqs. (23)-(26), we get, 
 
(1 + 𝜆1

𝜕

𝜕𝑡
) [

1

𝑉𝑎

𝜕(∇2𝑤)

𝜕𝑡
− 𝑄𝑃𝑚∇2 (

𝜕𝐻𝑧

𝜕𝑧
) −

𝑅𝑎∇1
2𝑇𝑓] + (1 + 𝜆2

𝜕

𝜕𝑡
) (𝛻1

2 +
1

𝜉

𝜕2

𝜕𝑧2)𝑤 = 0,    (28) 
 
(

𝜕

𝜕𝑡
− 𝜂𝑓∇1

2 −
𝑑2

𝑑𝑧2) 𝑇𝑓 − 𝑤 − 𝛤(𝑇𝑠 − 𝑇𝑓) = 0,  (29) 
 
(𝛼

𝜕

𝜕𝑡
− 𝜂𝑠∇1

2 −
𝑑2

𝑑𝑧2)𝑇𝑠 + 𝛾𝛤(𝑇𝑠 − 𝑇𝑓) = 0,     (30) 
 
(
1

𝜀

𝜕

𝜕𝑡
− 𝑃𝑚∇2)𝐻𝑧 =

𝜕𝑤

𝜕𝑧
.                                     (31) 

 
Combining Eqs. (28) and (31) 
 
(1 + 𝜆1

𝜕

𝜕𝑡
) [

1

𝑉𝑎
(
1

𝜀

𝜕

𝜕𝑡
− 𝑃𝑚∇2)

𝜕(𝛻2𝑤)

𝜕𝑡
−

𝑄𝑃𝑚∇2 𝜕2𝑤

𝜕𝑧2 ] − (
1

𝜀

𝜕

𝜕𝑡
− 𝑃𝑚𝛻2)𝑅𝑎𝛻1

2𝑇𝑓 +

(1 + 𝜆2
𝜕

𝜕𝑡
) (

1

𝜀

𝜕

𝜕𝑡
− 𝑃𝑚𝛻2) (𝛻1

2 +
1

𝜉

𝜕2

𝜕𝑧2)𝑤 = 0. (32)       
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For predicting the threshold of both marginal and 
oscillatory, applying linear stability theory. 
Assuming the solutions to be periodic waves of the 
forms 
 

(

𝑤
𝑇𝑓

𝑇𝑠

) = (

𝑊(𝑧)
⊝ (𝑧)
𝛷(𝑧)

) 𝑒𝑖(𝑙𝑥+𝑚𝑦)+𝜎𝑡.                       (33) 

 
Where l and m are horizontal wave number and 𝜎 (a 
complex quantity) is growth rate. W, 𝛳and 𝛷are the 
amplitudes of velocity and temperature field 
respectively. Substituting (33) in the Eqs. (29), (30) 
and (32), we get, 
 

[
𝜎(𝐷2−𝑎2)

𝑉𝑎
−

𝑄𝑃𝑚𝐷2(𝐷2−𝑎2)

(
𝜎

𝜀
−𝑃𝑚(𝐷2−𝑎2))

+
(1+𝜆2𝜎)

(1+𝜆1𝜎)
(−𝑎2 +

𝐷2

𝜉
)]𝑊(𝑧) + 𝑅𝑎𝑎2 ⊝ (𝑧) = 0,                         (34) 

                                                             
−𝑊(𝑧) + (𝜎 + 𝜂𝑓𝑎

2 − 𝐷2 + 𝛤) ⊝ (𝑧) − 𝛤𝛷(𝑧) =

0,                                                                         (35) 
 
−𝛾𝛤 ⊝ (𝑧) + (⍺𝜎 + 𝜂𝑠𝑎

2 − 𝐷2 + 𝛾𝛤)𝛷(𝑧) =
0.                                                                            (36) 
 
Where D= 𝑑

𝑑𝑧
𝑎𝑛𝑑 𝑎2 = 𝑙2 + 𝑚2. The corresponding 

boundary condition (27) will be of the form: - 
 
 𝑊 = 𝐷2𝑊 =⊝= 𝛷 = 0    𝑎𝑡 = 0,1.                (37)    
 
We take solution of Eqs. (34) - (36) satisfying the 
boundary condition for free-free case: 
       
[𝑊(𝑧),⊝ (𝑧), 𝛷(𝑧)] =
[𝑊0,⊝0, 𝛷0] sin(𝑛𝜋𝑧) , (𝑛 = 1,2,3,… . ).            (38) 
 
Substituting (38) into (34) – (36), we obtain a matrix 
equation considering n=1 
 

[
 
 
 
𝜎𝛿2

𝑉𝑎
+

𝑄𝑃𝑚𝛿2𝜋2

𝜎

𝜀
+𝑃𝑚𝛿2

+
(1+𝜆2𝜎)

(1+𝜆1𝜎
𝛿1

2 −𝑎2𝑅𝑎 0

 −1 𝜎 + 𝛿2
2 + 𝛤 −𝛤

   0 −𝛾𝛤 𝛼𝜎 + 𝛿3
2 + 𝛾𝛤]

 
 
 

[

𝑊0

⊝0

𝛷0

] =

[
0
0
0
] .                                                                                     

                                                                             (39) 
Where, 

 𝛿2 = 𝑎2 + 𝜋2 , 𝛿1
2 = 𝑎2 +

𝜋2

𝜉
, 𝛿2

2 = 𝜂𝑓𝑎
2 +

𝜋2 𝑎𝑛𝑑 𝛿3
2 = 𝜂𝑠𝑎

2 + 𝜋2.  
 
For non-trivial solution of  𝑊0,⊝0 𝑎𝑛𝑑 𝛷0, we need 
to make the determinant of the above matrix as zero, 
we get, 
 
 𝑅𝑎𝑇 =

1

𝑎2(𝜎𝛼+𝛿3
2+𝛾𝜞)

[(𝜎 + 𝛿2
2 + 𝛤)(𝜎𝛼 + 𝛿3

2 +

𝛾𝛤2]  [
𝜎𝛿2

𝑉𝑎
+

𝑄𝑃𝑚𝛿2𝜋2

𝜎

𝜀
+𝑃𝑚𝛿2

+
(1+𝜆2𝜎)

(1+𝜆1𝜎)
𝛿1

2].                (40) 

                                        
3.1 Stationary state 
For the direct bifurcation (i.e., steady onset), we 
have 𝜎 = 0 at the margin of stability. Then, the 
Rayleigh number at which marginally stable steady 
mode exists, becomes, 
 
𝑅𝑎𝑇

𝑠𝑡 =
1

𝑎2(𝛿3
2+𝛾𝛤)

[(𝛿2
2 + 𝛤)(𝛿3

2 + 𝛾𝛤) −

𝛾𝛤2][𝑄𝜋2 + 𝛿1
2],                                               (41) 

 
in the absence of 𝛤 = 0 the Eq. (41) reduces to 
 

𝑅𝑎𝑇
𝑠𝑡 =

(𝜂𝑓𝑎2+𝜋2)(𝑎2+
𝜋2

𝜉
+𝑄𝜋2)

𝑎2 ,                            (42) 
 
Further if porous media is isotropic in mechanical 
and thermal properties, Eq.(42) reduces to 
    
𝑅𝑎𝑇

𝑠𝑡 =
(𝑎2+𝜋2)(𝑎2+𝜋2+𝑄𝜋2)

𝑎2  ,                               (43) 
 
the above result is same as result of [18]. If the 
magnetic field is absent 
 
𝑅𝑎𝑇

𝑠𝑡 =
(𝑎2+𝜋2)2

𝑎2  .                                                 (44)                                          
 
Which has the critical value 𝑅𝑎𝑇

𝑠𝑡 = 4𝜋2 𝑓𝑜𝑟 𝑎𝑐 =
𝜋 , as obtained by [19] and [20]. 
 
The above calculations clearly states that the 
stationary Rayleigh number for the magneto-
convection for viscoelastic fluid saturated 
anisotropic porous medium under LTNE effect is 
same as for magneto-convection in Newtonian fluid 
saturated porous medium under LTNE effect. 
 
3.2 Oscillatory state 
The growth rate 𝜎 is in general a complex quantity 
such that 𝜎 = 𝜎𝑟 + 𝑖𝜔. The system with 𝜎𝑟 < 0 is 
always stable, while for 𝜎𝑟 > 0 it will become 
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unstable. For natural stability state 𝜎=0. We put 
𝜎𝑟 = 𝑖𝜔(𝜔 𝑖𝑠 𝑟𝑒𝑎𝑙) in Eq. (40) and obtain, 
 
𝑅𝑎𝑇 = 𝛱1 + (𝑖𝜔)𝛱2,                                            (45) 
the expression for 𝛱1 is given by  
 
𝛱1 = 𝑀1 × [𝑀2 + 𝑀3 + 𝑀4 + 𝑀5].  
Where 𝑀1 =

1

𝑎2(𝐿1
2+𝛼2𝜔2)

, 𝑀2 = 𝑇7𝑇8𝜔
2 +

𝑇7𝑇10

(𝑇3+𝜔2)
−

𝑇7𝑇13

𝜀(𝑇3+𝜔2)
𝜔2 +

𝑇7𝑇14

1+𝜆1
2𝜔2 +

𝑇7𝑇16

(1+𝜆1
2𝜔2)

𝜔2, 𝑀3 = 
𝑇7𝑇18

(1+𝜆1
2𝜔2)

𝜔2 − 𝛼𝑇9𝜔
4 −

𝛼𝑇10

(𝑇3+𝜔2)
𝜔2 +

𝛼𝑇13

𝜀(𝑇3+𝜔2)
𝜔4 −

𝛼𝑇14

(1+𝜆1
2𝜔2)

𝜔2 −

𝛼𝑇16

(1+𝜆1
2𝜔2)

𝜔4, 𝑀4 =
𝛼𝑇18

(1+𝜆1
2)

𝜔2 − 𝑇7𝑇8𝜔
2 +

𝑇7𝑇11

(𝑇3+𝜔2)
𝜔2 +

𝑇7𝑇12

𝜀(𝑇3+𝜔2)
𝜔2, 𝑎𝑛𝑑 𝑀5 =

𝑇7𝑇19

(1+𝜆1
2𝜔2)

𝜔2 −

𝑇15𝑇7

(1+𝜆1
2𝜔2)

𝜔2 +
𝑇7𝑇17

(1+𝜆1
2𝜔2)

𝜔2. 

 
Since 𝑅𝑎𝑇 is a physical quantity, it must be real. 
Hence, from Eq. (45) it follows that either 𝜔 =
0(steady onset) or 𝛱2 = 0(𝜔 ≠ 0,oscillatory onset). 
For oscillatory onset 𝛱2 = 0(𝜔 ≠ 0) and this gives 
a dispersion relation of the form 
 
𝑁1(𝜔

2)3 + 𝑁2(𝜔
2)2 + 𝑁3𝜔

2 + 𝑁4 = 0.           (46) 
 
Where the constants 𝑁1 = 𝜀𝑇7𝑇9𝜆1

2 + 𝛼𝜀𝑇19 −
𝛼𝜀𝑇8𝜆1

2, 𝑁2 = 𝜀𝑇7𝑇8𝜆1
2 − 𝜀𝑇7𝑇19 − 𝛼𝜀𝑇8(1 +

𝜆1
2𝑇3) + 𝛼𝜀𝑇11𝜆1

2 + 𝛼𝑇12𝜆1
2 − 𝛼𝜀𝑇15 + 𝜀𝛼𝑇17 +

𝛼𝜀𝑇3𝑇19 + 𝜀𝑇7𝑇9(1 + 𝑇3𝜆1
2) − 𝑇7𝑇13𝜆1

2 +
𝜀𝑇7𝑇16, 𝑁3 = 𝜀𝑇7𝑇8(1 + 𝜆1

2𝑇3) − 𝜀𝑇7𝑇11𝜆1
2 −

𝑇7𝑇12𝜆1
2 + 𝜀𝑇7𝑇15 − 𝜀𝑇7𝑇17 − 𝜀𝑇3𝑇7𝑇19 −

𝜀𝛼𝑇3𝑇8 + 𝛼𝜀𝑇11 + 𝛼𝑇12 − 𝜀𝛼𝑇3𝑇15 + 𝜀𝛼𝑇3𝑇17 +
𝜀𝑇3𝑇7𝑇9 + 𝜀𝑇7𝑇10𝜆1

2 − 𝑇7𝑇13 + 𝜀𝑇7𝑇14 +
𝜀𝑇3𝑇7𝑇16 𝑎𝑛𝑑 𝑁4 = 𝜀𝑇3𝑇7𝑇8 − 𝜀𝑇7𝑇11 − 𝑇7𝑇12 +
𝜀𝑇3𝑇7𝑇15 − 𝜀𝑇3𝑇7𝑇17 + 𝜀𝑇7𝑇14 + 𝑇3. 
 
Now Eq. (45) with 𝛱2 = 0, gives oscillatory 
Rayleigh number 𝑅𝑎𝑇

𝑜𝑠𝑐 at the margin of stability as 
 
𝑅𝑎𝑇

𝑜𝑠𝑐 = 𝛱1.                                                        (47)                       
 
Also, for the oscillatory convection to occur, 
𝜔2 must be positive. The symbols 𝐿1 − 𝐿6, 𝑇1 − 𝑇17 
and 𝛱2 are defined in Appendix-I. 
 
4. Weakly non-linear analysis 
 
In this section, we consider the non-linear analysis 
using a truncated representation of Fourier series 

considering two terms. Although the linear stability 
analysis is sufficient for obtaining the stability 
condition of the motionless solution and the 
corresponding eigen functions describing 
qualitatively the convective flow, it cannot provide 
information about the values of the convection 
amplitudes, nor regarding the rate of heat transfer. 
In order to obtain this additional information, we 
perform the non-linear analysis, which is useful to 
understand the physical mechanism with minimum 
amount of mathematical analysis and is a step 
forward toward understanding full non-linear 
problem. 
 
Introducing stream function 𝜓 𝑎𝑠 𝑢 =

𝜕𝜓

𝜕𝑧
, 𝑤 =

−
𝜕𝜓

𝜕𝑥
 𝑎𝑛𝑑 𝐻𝑥 =

𝜕𝜙

𝜕𝑧
, 𝐻𝑧 = −

𝜕𝜙

𝜕𝑥
 into vertical 

component of Eq. (26) and Eqs. (23-25), we obtain, 
 
(1 + 𝜆1

𝜕

𝜕𝑡
) [

1

𝑉𝑎

𝜕

𝜕𝑡
(

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2)𝜓 − 𝑄𝑃𝑚
𝜕

𝜕𝑧
(

𝜕2

𝜕𝑥2 +

𝜕2

𝜕𝑧2)𝜙 + 𝑅𝑎
𝜕𝑇𝑓

𝜕𝑥
] + (1 + 𝜆2

𝜕

𝜕𝑡
) (

𝜕2

𝜕𝑥2 +
1

𝜉

𝜕2

𝜕𝑧2)𝜓 =

0,                                                                         (48) 
 
𝜕𝜓

𝜕𝑥
+ (

𝜕

𝜕𝑡
− 𝜂𝑓

𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑧2)𝑇𝑓 −
𝜕(𝜓,𝑇𝑓)

𝜕(𝑥,𝑧)
−

𝛤(𝑇𝑠 − 𝑇𝑓) = 0,                                                  (49) 
 
𝛼

𝜕𝑇𝑠

𝜕𝑡
− (𝜂𝑠

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2)𝑇𝑠 + 𝛾 𝛤(𝑇𝑠 − 𝑇𝑓) = 0,    (50) 
 
1

𝜀

𝜕𝜙

𝜕𝑡
−

𝜕(𝜓, 𝜙)

𝜕(𝑥, 𝑧)
−

𝜕𝜓

𝜕𝑧
 − 𝑃𝑚 (

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑧2)𝜙 = 0.               (51)   

    
A minimal double Fourier series which describes 
the finite amplitude steady-state convection is given 
by, 
 
𝜓 = 𝐴1(𝑡) sin( 𝜋𝑎𝑥) sin(𝜋𝑧),                                               (52)                              
𝑇𝑓 = 𝐵1(𝑡) cos( 𝜋𝑎𝑥) sin(𝜋𝑧) + 𝐵2(𝑡) sin( 2𝜋𝑧)                (53) 
𝑇𝑠 = 𝐶1(𝑡) cos( 𝜋𝑎𝑥) sin(𝜋𝑧) + 𝐶2(𝑡) sin( 2𝜋𝑧),                (54) 
𝜙 = 𝐷1(𝑡) sin( 𝜋𝑎𝑥) cos(𝜋𝑧) + 𝐷2(𝑡) sin( 2𝜋𝑎𝑥).              (55)                        
 
Where the amplitude 𝐴1(𝑡),  𝐵1(𝑡),  𝐵2(𝑡), 𝐶1(𝑡),
𝐶2(𝑡), 𝐷1(𝑡) 𝑎𝑛𝑑 𝐷2(𝑡) are to be determined  from 
the dynamics of the system. Substituting Eqs. (52) - 
(55) into Eqs.  (48)-(51) and equating the 
coefficients of like terms, we obtain the following 
non-linear autonomous system of differential 
equations, 
 
𝑑𝐴1

𝑑𝑡
  =  𝐸1,                                                           (56) 

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS,  
COMPUTATIONAL SCIENCE AND SYSTEMS ENGINEERING 
DOI: 10.37394/232026.2024.6.13 Atul K Srivastava, Monal Bharty, Hrishikesh Mahato

E-ISSN: 2766-9823 149 Volume 6, 2024



𝑑𝐵1

𝑑𝑡
  =  −(𝜋𝑎)𝐴1 − (𝜂𝑓𝜋

2𝑎2 + 𝜋2 + 𝛤)𝐵1 +

𝛤𝐶1 − 𝜋2𝑎𝐴1𝐵2,                                                  (57) 
 
𝑑𝐵2

𝑑𝑡
  =  −(4𝜋2 + 𝛤)𝐵2 + 𝛤𝐶2 +

𝜋2𝑎

2
𝐴1𝐵1, (58)                                       

𝑑𝐶1

𝑑𝑡
  =   

𝛾𝛤

𝛼
𝐵1 −

(2𝜋2+𝑎2+𝛾𝛤)

𝛼
 𝐶1,                         (59) 

 
𝑑𝐶2

𝑑𝑡
  =     

𝛾𝛤

𝛼
𝐵2 − (

4𝜋2+𝛾𝛤

𝛼
) 𝐶2,                           (60) 

 
𝑑𝐷1

𝑑𝑡
  = −𝜀𝑃𝑚(𝜋2𝑎2 + 𝜋2)𝐷1 + 𝜀𝜋2𝑎𝐴1𝐷2,     (61) 

 
𝑑𝐷1

𝑑𝑡
  = −𝜀𝑃𝑚𝜋2𝑎2𝐷2 − 𝜀

𝜋2𝑎

2
𝐴1𝐷2,                 (62) 

𝑑𝐸1

𝑑𝑡
  =

 
[𝜋2𝑎2𝑅𝑎𝑇𝜆1−(𝜋2𝑎2+

𝜋2

𝜉
)−𝜆1𝜋2𝜀𝑄𝑃𝑚(𝜋2𝑎2+𝜋2)]

(
𝜋2𝑎2+𝜋2

𝑉𝑎
)𝜆1

𝐴1 +

 
𝜋𝑎𝑅𝑎𝑇𝜆1(𝜂𝑓𝜋2𝑎2+𝜋2+𝛤)−𝜋𝑎𝑅𝑎𝑇

(
𝜋2𝑎2+𝜋2

𝑉𝑎
)𝜆1

𝐵1 −  
𝜋𝑎𝑅𝑎𝑇𝜆1

(
𝜋2𝑎2+𝜋2

𝑉𝑎
)𝜆1

𝐶1 −

[𝑄𝑃𝑚2𝜋𝜆1𝜀(𝜋2𝑎2+𝜋2)
2
−𝑄𝑃𝑚𝜋(𝜋2𝑎2+𝜋2)]

(
𝜋2𝑎2+𝜋2

𝑉𝑎
)𝜆1

𝐷1 −

  

(𝜋2𝑎2+𝜋2)

𝑉𝑎
+(𝜋2𝑎2+

𝜋2

𝜉
)𝜆2

(
𝜋2𝑎2+𝜋2

𝑉𝑎
)𝜆1

𝐸1 −

𝑄𝑃𝑚𝜋3𝜆1𝜀𝑎(𝜋2𝑎2+𝜋2)

(
𝜋2𝑎2+𝜋2

𝑉𝑎
)𝜆1

𝐴1𝐷2 +  
𝜋3𝑎2𝑅𝑎𝑇𝜆1

(
𝜋2𝑎2+𝜋2

𝑉𝑎
)𝜆1

𝐴1𝐵2. (63) 

 
Qualitative predictions of above autonomous 
differential equations are discussed and stated as. 
Eqs. (56)-(63) represent a system which is 
uniformly bounded in time and possesses many 
properties of the full problem. They are same as the 
original Eqs. (14)-(20), and therefore Eqs. (56)-(63) 
must be dissipative. This shows that volume in the 
phase space must contract. For proving this 
statement that, the volume contraction, it is 
necessary to show that velocity field has a constant 
negative divergence. Indeed, 
 
∇. 𝑉 =   

𝜕�̇�1

𝜕𝐴1
+

𝜕�̇�1

𝜕𝐵1
+

𝜕�̇�2

𝜕𝐵2
+

𝜕�̇�1

𝜕𝐶1
+

𝜕�̇�1

𝜕𝐷1
+

𝜕�̇�2

𝜕𝐷2
+

𝜕�̇�1

𝜕𝐸1
  

= − [
𝑃1 + 𝜆2𝑃2

𝑃1𝜆1
+ 𝑃3 + 𝑃4 + 𝑃5 + 𝑃6 + 𝑃7 + 𝑃8] . 

Where 𝑃1 =
𝜋2𝑎2+𝜋2

𝑉𝑎
, 𝑃2 = 𝜋2𝑎2 +

𝜋2

𝜉
, 𝑃3 =

𝜂𝑓𝜋
2𝑎2 + 𝜋2 + 𝛤, 𝑃4 = 4𝜋2 + 𝛤 , 𝑃5 =

𝜂𝑓𝜋2𝑎2+𝜋2+𝛤

𝛼
, 𝑃6 =

4𝜋2+𝛤

𝛼
 , 𝑃7 = 𝜀𝑃𝑚(𝜋2𝑎2 +

𝜋2)𝑎𝑛𝑑 𝑃8 = 4𝜀𝑃𝑚𝜋2𝑎2 . 
 

Here over dot represent a time derivative. 
All physical parameter used in above expression 
inside the square bracket is non-negative, therefore 
overall right-hand quantity is negative and therefore 
system is bounded and dissipative. So, the 
trajectories are attracted to a set of measure zero in 
the phase space, or anyone say that they may be 
attracted to a fixed point, a limit cycle or, perhaps, a 
strange attractor. 
 

4.1. Heat transport 
It is known fact that for higher value of Rayleigh 
number the onset of convection is generally 
governed by heat transfer within system. 
Consequently, here we are defining the Nusselt 
number (following Srivastava and Bera [21]) as 
below. The Nusselt number is defined by, 
 
𝑁𝑢 =

𝐻′

𝐷𝑍
∆𝑇

𝑑

= (1 − 2𝜋𝐵2).                                   (64) 

 
Where, B2 are found in terms of A1. Calculating B2, 
in the steady case, which is independent of 
viscoelastic parameters, so complete calculation is 
not given in this paper. 
 
5. Result and Discussion 
 
We selected a range of parameters from several 
published papers and experimental data presented in 
Neild and Bejan [17] book to explore the sensitivity 
of the system regarding various regulating 
parameters. We have attempted to construct a 
picture of LTNE (dimensionless inter-phase heat 
transfer coefficient) using linear and weakly non-
linear stability theories affects the onset of magneto-
convection in viscoelastic fluid saturated anisotropic 
porous medium. Because the critical Rayleigh 
number characterises the stability of a system, we 
computed the equations for stationary and 
oscillatory critical Rayleigh numbers analytically. In 
the stationary case, the critical Rayleigh number is 
found to be independent of the viscoelastic 
parameters. It is because of absence of base flow in 
present case. The critical Rayleigh number for the 
oscillatory mode is calculated as a function of 
Chandrasekhar number, viscoelastic parameters, 
dimensionless inter phase heat transfer coefficient, 
mechanical and thermal (fluid and solid both) 
anisotropic parameters. It is clearly noted that the 
over stable motions are possible prior to the steady 
motion. The oscillatory neutral stability curves in (a, 
RaT)-plane for different values of parameters is 
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shown in Figs. 2-8. In these figures, we have 
presented the variation of RaT as a function for 
different values of parameters when other 
parameters are fixed. These neutral curves are 
topologically connected which consent to the linear 
stability criteria expressed in terms of critical 
Rayleigh number (RaT

C). By this, one can conclude 
that below critical Rayleigh number system is stable 
and above critical Rayleigh number it is unstable.  
The characteristic curves for different value of Q 
have been presented in Fig. 2. We can see from this 
graph that when the Chandrashekhar number 
(magnetic field) rises, the lowest value of Rayleigh 
number rises as well, indicating that the effect of Q 
is to stabilize the system. This can be explained by 
recalling the definition of Q. When the magnetic 
field strength permeating the medium is 
considerably strong, it induces viscosity into the 
fluid, and the magnetic lines are distorted by 
convection. Then these magnetic lines hinder the 
growth of disturbances, leading to the delay in the 
onset of instability. Same patterns have been shown 
in isotropic case. We also find that curves 
corresponding to the isotropic lies above the 
anisotropic case for same values of Q. 

 
Fig. 2: Oscillatory neutral stability curves for 
different values of Chandrasekhar number (Q). 
 
The influence of the relaxation parameter (𝜆1) on 
the neutral stability curve is seen in Fig. 3. We can 
see that increasing 𝜆1 reduces the critical value of 
the Rayleigh number, implying that 𝜆1 has 
destabilizing effect on magneto-convection in 
viscoelastic fluid saturated porous medium. 

 
Fig. 3: Oscillatory neutral stability curves for 
different values of stress relaxation parameter (𝜆1). 
 
The effect of retardation parameter (𝜆2) on the 
neutral curves is shown in Fig. 4. We discovered 
that when the value of 𝜆2 increases, the minimum of 
the Rayleigh number increases, enhancing stability 
of the system. It is also note that the minimum 
Rayleigh number shift toward the larger values of 
the wave number with increase in the value of 𝜆2, 
indicating that the cell width decreases with 
increasing 𝜆2. The behaviour of viscoelastic 
parameters is obvious and similar to as reported by 
[8].  

 
Fig. 4: Oscillatory neutral stability curves for 
different values of retardation parameter (𝜆2). 
 
It can be pointed out from Fig. 5 that increasing the 
value of dimensionless inter phase heat transfer 
coefficient (𝛤) , increases the value of critical 
Rayleigh number thus stabilize the system. For 
explaining this effect, we recall the definition of 
dimensionless inter-phase heat transfer coefficient 

(𝛤 =
ℎ𝑑2

𝜀𝜅𝑓𝑧
)  . Increasing the value of Γ means only 

increasing the values of inter-phase heat transfer 
coefficient as d, 𝜅𝑓𝑧 and 𝜀 are fixed parameters. 
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Increasing inter-phase heat transfer coefficient 
means heat transfer between solid and fluid 
increases that is heat involving in transferring one 
phase to other phase not in onset of convection, 
delay the convection that is stabilizes the system. 

 
 
Fig. 5: Oscillatory neutral stability curves for 
different values of dimensionless inter-phase heat 
transfer coefficient (𝛤). 
 
Fig. 6, show the effect of mechanical anisotropic 
parameter on onset of convection in oscillatory 
mode. We discovered that when the value of 𝜉 
increases, the minimum of the Rayleigh number 
drops, implying that increasing the value of 𝜉 
destabilises the system. This effect of 𝜉 can be 
understood by the fact that it is ratio of horizontal 
permeability (Kx) to the vertical permeability (Kz) 
(which is also involve in another controlling 
parameter so fixed). So, increasing the value of 𝜉 
means increasing the value of horizontal 
permeability, enhances the fluid mobility in the 
vertical direction and hence reduce the critical 
Rayleigh number and destabilize the system.  

 

Fig. 6: Oscillatory neutral stability curves for 
different values of mechanical anisotropic parameter 
(𝜉). 
 
Fig. 7 depicts the influence of the thermal 
anisotropic parameter 𝜂𝑓. It has been discovered that 
increasing the value of 𝜂𝑓 raises the critical 
Rayleigh number, reduces the onset of convection, 
hence stabilizes the system. It can be understand by 
the fact that 𝜂𝑓 =

𝜅𝑓𝑥

𝜅𝑓𝑧
, so increasing the value of  

𝜂𝑓 depends on increasing thermal permeability in x 
direction that is 𝜅𝑓𝑥, as 𝜅𝑓𝑧 is fixed using in the 
other controlling parameters. As 𝜅𝑓𝑥  increases, heat 
defuse horizontally and delay the onset of 
convection.  

 
Fig. 7: Oscillatory neutral stability curves for 
different values of thermal anisotropic parameter for 
fluid (𝜂𝑓). 
 
In Fig. 8, the effect of thermal anisotropic parameter 
(𝜂𝑠) for solid matrix is shown on onset of 
convection. It is observed that increasing value of 
𝜂𝑠, decreases the minimum value of Rayleigh 
number, indicating that increasing the value of 𝜂𝑠 
destabilizes the system. It can be explained as: 𝜂𝑠 =
𝜅𝑠𝑥

𝜅𝑠𝑧
 which clearly show that increasing the value of 

𝜂𝑠, increasing the value of thermal permeability in 
solid matrix in x direction, so conduction situation is 
increasing, and it enhance the onset of convection. 
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Fig. 8: Oscillatory neutral stability curves for 
different values of thermal anisotropic parameter for 
solid (𝜂𝑠). 
 
The transient behaviour of heat transfer is 
investigated using the Runge-Kutta fourth order 
approach with appropriate initial conditions to solve 
an independent system of differential equations 
numerically. The Nusselt number (Nu) is a time 
dependent quantity. The variation of Nu with time 
(t) for various parameters is shown by Figs. 9(a)-
9(i). It can be easily visualized that although Nu 
oscillates initially but become steady with time. The 
Chandrashekhar number (Q), retardation parameter 
(𝜆2), dimensionless heat transfer coefficient (Γ), 
mechanical anisotropic parameter (𝜉), thermal 
anisotropic parameter for fluid (𝜂𝑓), magnetic 
Prandtl number Pm, is to suppress heat transfer. 
Whereas the effect of increasing the stress relaxation 
parameter (𝜆1), thermal anisotropic parameter for 
solid (𝜂𝑠), ratio of heat capacities on heat transfer 
(𝛾), increases the heat transfer. 
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Fig. 9: Variation of Nusselt number with time t for 
different values of (a) Q (b) 𝜆1(c)𝜆2 (d) Γ (e) 𝜉 (f) 
𝜂𝑓 (g) 𝜂𝑠 (h) 𝛾 (i) Pm. 
 
Finally, streamlines, isotherms for fluid and solid, 
magnetic streamlines are drawn for different value 
of Chandrashekhar number (Q = 20, 201), and for 
other fixed parameters are depicted in Fig. 10a1-
10d2. We see that streamlines are equally divided. 
The effect of increasing the Chandrasekhar number 
Q is to decrease the wavelength of the cells, thereby 
contracting the cells. We observed that isotherms for 
fluid are almost horizontal at the boundaries and 
oscillatory in the middle of the porous layer, thus 
showing conductive nature at the boundaries and 
convective behaviour in the middle of the system. 
The isotherms become more oscillatory in nature on 
increasing the value of Q. We also noted that 
isotherms for solid are horizontal for whole domain 
indicates that heat transfer in solid matrix is move 
through conduction mode. Here also we observed 
that the effect of increase in the magnitude of the 
magnetic field is to contract the cells, thereby 
reducing the wavelength of the cells.  
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Fig. 10: Comparison of streamlines a1, a2, isotherms 
for fluid b1, b2, and solid c1, c2, magnetic streamlines 
d1, d2 for Q = 20 and Q = 201 receptively. 
 
Figs. 11-14 illustrate how the streamline, isotherm, 
and magnetic streamline pattern varies for unsteady 
cases over a range of small times (0.01, 0.009,0.005, 
0.001). 
 
In Fig. 11a-a3, the streamlines pattern is depicted 
for various times. The figure demonstrates how 
streamlines initially lack outlines until they 
gradually evolve with the passage of time. 
Convection is improving as evidenced streamlines 
spread over time.  
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Fig. 11: Unsteady streamlines for different small 
time (a) t = 0.01, (a1) t = 0.009, (a2)t = 0.005, (a3) t 
= 0.001. 
 
Figs. 12a-a3 and 13a-a3 respectively show the 
isotherms for fluid and solid for various times. 
These graphs make it quite clear that convection 
state develops as a contour over time.  
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Fig. 12: Unsteady isotherms for fluid for different 
small time (a) t = 0.01, (a1) t = 0.009, (a2) t = 0.005, 
(a3) t = 0.001. 
 

 
 

 

 
 

 
Fig. 13: Unsteady isotherms for solid for different 
small time (a) t = 0.01, (a1) t = 0.009, (a2) t = 0.005, 
(a3) t = 0.001. 
 

Figs. 14a-a3 shows the magnetic streamlines for the 
unsteady case at various times. 
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Fig. 14: Unsteady magnetic streamlines for different 
small time (a) t = 0.01, (a1) t = 0.009, (a2) t = 0.005, 
(a3) t = 0.001. 
 
6. Conclusion 
 
We have attempted to understand the effect of 
magnetic field on natural convective flow in a 
horizontal porous layer, saturated with viscoelastic 
fluid under LTNE condition. The porous medium is 
assumed to be thermally and mechanically 
anisotropic. To this end, we adopted two phase 
model for heat equations. In this article, linear and 
non-linear stability analysis is performed. Linear 
stability analysis is performed using normal mode 
technique, while for non-linear analysis, minimal 
representation of Fourier series including only two 
terms have been considered. The following 
conclusions are drawn: 
1. It is clear that 𝑅𝑎𝑇

𝑜𝑠𝑐 < 𝑅𝑎𝑇
𝑠𝑡 

2. Effect of increasing Q, 𝜆2, Γ and 𝜂𝑓 is found to 
delay the onset of oscillatory convection. 
3. On increasing the value of 𝜆1, 𝜉 and 𝜂𝑠, the value 
of Rayleigh number corresponding to oscillatory 
convection decrease, thus it advances the onset of 
convection. 
4. The effect of different controlling parameters on 
heat transfer is also shown. 
5. We also discuss the effect of Chandrashekhar 
number (Q) on streamlines, isotherms (fluid and 
solid), and magnetic streamlines as well as unsteady 
streamlines, isotherms (fluid and solid) and 
magnetic streamlines for different small time. 
 
Appendix-I 
𝜋2 = 𝑀1 × [𝑀6 + 𝑀7 + 𝑀8 + 𝑀9], Where, 
𝑀6 = 𝑇7𝑇8 −

𝑇7𝑇11

(𝑇3+𝜔2)
−

𝑇7𝑇12

𝜀(𝑇3+𝜔2)
+

𝑇7𝑇15

(1+𝜆1
2𝜔2)

−

𝑇7𝑇17

(1+𝜆1
2𝜔2)

−
𝑇7𝑇19

(1+𝜆1
2𝜔2)

𝜔2,𝑀7 = −𝛼𝑇8𝜔
2 +

𝛼𝑇11

(𝑇3+𝜔2)
𝜔2 +

𝛼𝑇12

𝜀(𝑇3+𝜔2)
𝜔2 −

𝛼𝑇15

(1+𝜆1
2𝜔2)

𝜔2 +

𝛼𝑇17

(1+𝜆1
2𝜔2)

𝜔2, 𝑀8 =
𝛼𝑇14

(1+𝜆1
2𝜔2)

𝜔4 + 𝑇7𝑇9𝜔
2 +

𝑇7𝑇10

(𝑇3+𝜔2)
−

𝑇7𝑇13

𝜀(𝑇3+𝜔2)
𝜔2,𝑀9 =

𝑇7𝑇14

(1+𝜆1
2𝜔2)

+

𝑇7𝑇16

(1+𝜆1
2𝜔2)

𝜔2 +
𝑇7𝑇18

(1+𝜆1
2𝜔2)

𝜔2.  

 
And other symbols are defined as: 
 

𝐿1 = 𝛿3
2 + 𝛾𝛤, 𝐿2 =

𝛿2

𝑉𝑎
, 𝐿3 = 𝛿2𝑃𝑚,

𝐿4 = 𝑄𝜋2, 𝐿5 = 𝛿2
2 + 𝛤,

𝐿6 = 𝛾𝛤2, 𝑇1 = 𝐿3
2𝐿4𝜀

2,
𝑇2 = 𝐿3𝐿4𝜀

2, 𝑇3 = 𝜀2𝐿3
2 ,

𝑇4 = 𝜆2 − 𝜆1, 𝑇5 = 𝜆1𝜆2,
𝑇6 = 𝐿1𝐿5 − 𝐿6, 𝑇7 = 𝐿1 + 𝛼𝐿5,
𝑇8 = 𝐿1𝐿2, 𝑇9 = 𝛼𝐿2,
𝑇10 = 𝑇1𝐿1, 𝑇11 = 𝛼𝑇1,
𝑇12 = 𝑇2𝐿2, 𝑇13 = 𝛼𝑇2,
𝑇14 = 𝛿1

2𝐿1, 𝑇15 = 𝐿1𝑇4𝛿1
2,

𝑇16 = 𝐿1𝑇5𝛿1
2, 𝑇17 = 𝛼𝛿1

2,
𝑇18 = 𝛼𝛿1

2𝑇4, 𝑇19 = 𝛼𝑇5𝛿1
2. 
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