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Abstract: - This paper continues some recent work in a powerful mathematical domain, with applications in 
connected scientific fields, namely the stability of dynamical systems. In fluid mechanics, stabilizing a 
dynamical system is a challenging task and it can be done by various ways.  

Stabilizing a dynamical system could be often easier if we approach controllable systems, because in this 
form, there can be imposed some bounds on its behavior, by studying the improvement of the operators that 
describe the system. 

In this paper, the mixing flows dynamical systems are taken into account, more exactly the kinematics of 
mixing flows. The stability analysis of the mixing flow is taken into account, in the case of perturbation with 
a logistic term. The results can be extended to some other versions of the model. 
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1 Introduction 
 

1.1. General lines 
In fluid dynamics, the turbulence is a widespread 
phenomena; also, it is a basic feature for most 
systems with few or infinity freedom degrees. It can 
be defined as chaotic behavior of the systems with 
few freedom degrees, which are far from the 
thermodynamic equilibrium. A turbulent flow can 
generally exhibit all of the following features: [1] 
1. random behavior; 
2. sensitivity to initial conditions; 
3. extremely large range of length and time scales; 
4. enhanced diffusion and dissipation; 

In this area two important zones are distinguished: 
[1]  

- The theory of transition from laminar smooth 
motions to irregular motions; 

- Characteristic studies of turbulent systems. 
Osborne Reynolds’ experiments, briefly described 
in [1] and Reynolds’ seminal paper [2] of 1894 are 
among the most important results produced on the 
subject of turbulence.  
 
The Reynolds’ number was identified as the only 
physical parameter involved in transition to 

turbulence in a simple incompressible flow over a 
smooth surface. Moreover, since turbulence is too 
complicated to allow a detailed understanding, 
Reynolds introduced the decomposition of flow 
variables into mean and fluctuating parts. After that, 
a lot of studies were produced to obtain some 
predictable techniques based on his viewpoint. 

In hydrodynamics, the transition problem starts 
at the end of last century, with the pioneering works 
of Reynolds and Lord Rayleigh. The method of 
considering the linear stability of basic laminar flow 
until infinitesimal turbulences was highlighted as a 
good investigation. Nonlinearity can act in the sense 
of stabilizing the flow and therefore the primary 
state is replaced with another stable motion which is 
considered as secondary flow. This one can be 
further replaced with a tertiary stable flow, and the 
process goes on. It is thus obtained a bifurcations 

sequence, and Couette-Taylor flow is a widespread 
example in this sense [3].  
 

 
1.2.The kinematics of mixing framework 

A flow has the general mathematical formula: 
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In the continuum mechanics the relation (1) is 
named flow, and it is a diffeomorphism of class Ck.  
It must satisfy the following equation [4]: 
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Here D denotes the derivation with respect to the 
reference configuration, in this case X. The equation 
(2) implies two particles, X1 and X2, which occupy 
the same position x at a moment. In the kinematics 
of mixing, it is taken into account a basic flow 
(which can be water) containing a biologic material 
mixed in it. Therefore the basic measure is the 
deformation gradient F, with the relation: 
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(3) 

 where X  denotes differentiation with respect to 
X. According to equation (2), F is non- singular. 
After defining the basic deformation of a material 
filament and the corresponding relation for the area 
of an infinitesimal material surface, the deformation 
measures are defined: the length deformation λ and 
surface deformation η, with the following relations 
[4]: 

      2/112/1 :det,: NNCMMC
 F   

(4) 

where C (=FT·F) is the Cauchy-Green deformation 

tensor, and the vectors M, N are the orientation 
versors in length and surface respectively. 
Very often, in practice is used the scalar form of (4), 
details can be found in [4]. 
A central study point in the kinematics of mixing is 
the deformation efficiency, which can be naturally 
quantified. In this context, the basic qualitative 
quantities in the kinematic of mixing are defined; 
the first one is the deformation efficiency in length 

[4]: 
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Similarly, there is defined the deformation efficiency 

in surface,  eη : in the case of an isochoric flow (the 
jacobian equal 1), the following equation holds: 
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where D is the deformation tensor, obtained by 
decomposing the velocity gradient in its symmetric 

and non-symmetric part.  
The flows with a special form of the 

deformation gradient F have a great interest, 
because in this class there are contained the  
Constant Stretch History Motion –CSHM flows. 
[4,5] 

 
 

2 Computational stability analysis. 

Recent results 
2.1. Computational Lyapunov analysis 

When considering a differential equation 
modelling the evolution of a phenomenon, we must 
always take into account the fact that the 
reproduction of the initial conditions is never 
entirely identical. Therefore is very important to 
study how small variations in the initial conditions 
will introduce small variations in the phenomenon 
evolution.  

Stability is a well-known property of the 
solutions of differential equations in Rn of the form 
𝒙̇ = 𝒇(𝑡, 𝒙) by which, given a “reference" solution 
𝑥∗(𝑡, 𝑡0

∗, 𝑥0
∗) , any other solution 𝑥(𝑡, 𝑡0, 𝑥0) starting 

close to 𝑥∗(𝑡, 𝑡0
∗, 𝑥0

∗) remains close to 𝑥∗(𝑡, 𝑡0
∗, 𝑥0

∗) 
for long times.  

Although the converse theorems provided a great 
help for this problems, starting with 1950’s, they are 
not very constructive in practice, since they use the 
solution trajectory of the system to construct the 
Lyapunov function, but the solution trajectories are 
generally not known [6].  

The Lyapunov theorem is of great importance in 
system theory, giving the possibility of establishing 
stability or asymptotic stability of equilibrium points 
without explicitly computing trajectories. [6,7]. 
Theorem 1 (Lyapunov). Let 𝑥𝑒 = 0 be an 
equilibrium point for the system (1). Let 𝑉 ∶  𝑅𝑛 →
𝑅 be a positive definite continuously differentiable 
function. 

1. If 𝑉̇: 𝑅𝑛 → 𝑅 is negative semi-definite, then 
xe is stable; 

2. If 𝑉̇ is negative definite, then xe is 
asymptotically stable. 

The theorem gives the existence of a Lyapunov 
function but does not provide a method to compute 
one. If for linear systems, this issue arises naturally, 
in general computing a Lyapunov function is an 
open problem giving rise to different methods to 
construct it.  

The two basic Lyapunov criteria are very useful 
for finding a Lyapunov and control Lyapunov 
function. The first one is based on eigenvalues 
analysis, and the second one on the monotonicity of 
the function V [7].  
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The first Lyapunov criterion is based on the 
eigenvalues analysis.  
Let us consider the following continuous-time 
nonlinear system: 

𝒙̇ = 𝒇(𝒙(𝑡), 𝑢(𝑡)) (7) 
In the vicinity of the equilibrium point (𝑥0, 𝑢0), let 
us consider the corresponding linearized system: 

𝑥̇̃(𝑡) = 𝐴𝑥̃(𝑡) + 𝐵𝑢̃(𝑡) (8) 
This criterion has three distinct cases for the 
eigenvalues λi of the matrix A [7]: 

(i) If 𝑅𝑒 𝜆𝑖  < 0 for all i, then (𝑥0, 𝑢0) is 
asymptotically stable; 

(ii) If there exits at least one i such as 
𝑅𝑒 𝜆𝑖  > 0 then (𝑥0, 𝑢0) is unstable; 

(iii) If there exits at least one i such as 
𝑅𝑒 𝜆𝑖 = 0 and for all other λj, j≠i, 
𝑅𝑒 𝜆𝑗  < 0, then we cannot conclude 
anything about the stability of (𝑥0, 𝑢0). 
In this case we say that the criterion is 
not effective 

We concern if Lyapunov functions always exist. 
How could we find such a function? For the first 
question the answer is generally positive but, 
finding a Lyapunov function is not immediate, since 
the converse theorems assume the knowledge of the 
solutions of the system (7) [6,7]. Therefore, refining 
the definition of Lyapunov function and establishing 
a more specific context for it is very necessary. 
Between the specific directions of Lyapunov 
function research, two are very wide used in 
applications: the control Lyapunov functions and 
sum of squares (SOS) Lyapunov functions [7,8,9]. 
We recall briefly in what follows the definition of 
control Lyapunov functions. 

Similar with the system (7), we can define a 
control system as follows: 

𝒙̇ = 𝒇(𝒙, 𝒖) (9) 
 

where 𝒖 ∈ 𝑈 ⊂ 𝑅𝑚  is the control. The control is an 
open-loop control if u is function of time, u = u(t) 
and  closed-loop if u = k(x).  The closed-loop 
control is in fact the feedback control. If the 
feedback has been fixed, u=k(x) and the equilibrium 
in the origin has a desired stability property, then we 
have a feedback stabilized system [7,10]. 
The system (9) is called locally, asymptotically null-

controllable, [8] if for every 𝜌 in a  neighborhood of 
the origin there is an open-loop control u such that 
the solution of the system with initial value 𝜌 tends 
asymptotically towards the origin. In this context, 

Sontag [10] introduced the control Lyapunov 

function (CLF) as follows:  

𝑖𝑛𝑓𝑢∈𝑈∇𝑉(𝒙) ∙ 𝒇(𝒙, 𝒖)  ≤  −𝛾(‖𝒙‖) (10) 

Where V is a positive definite function and γ is a 
comparison function [8]. Asymptotic null-
controllability cannot be characterized by smooth 
control Lyapunov functions. Therefore, more 
general definitions of differentiability like the Dini- 
or the proximal sub-differential must be taken into 
account. Details about the refinements of the 
relation (10) can be found in [10].  

2.2  Recent results 

 Lyapunov functions are not always “energy-
like” functions, but they have some similarities with 
energy-like functions in certain contexts. In the 
stability theory, Lyapunov functions are used to 
analyse the stability of an equilibrium point of a 
dynamical system. Energy functions often have a 
similar role in physical systems; still Lyapunov 
functions can be more general.  

For a linear system case 𝑥̇ = 𝐴𝑥, finding a 
Lyapunov function implies finding a matrix P such 
that 𝐴𝑇𝑃 + 𝑃𝐴 is negative definite [11]. Then the 
associated Lyapunov function is given by 𝑉(𝑥) =
𝑥𝑇𝑃𝑥.  But although this seems not very 
complicated, it was seen only recently that, in this 
context, both 𝑉(𝑥), 𝑉̇(𝑥) are sum of squares 

functions! 
In the case of non-linear systems, there are 

involved supplementary requirements for the 
quantities implied in calculus. Therefore related 
mathematical methods provided recently a useful 
help. Between them, the convex analysis through 
the semidefinite-programming provided very useful 
algorithms.   

The sum of squares (SOS) technique has 
significant impact not only in optimization, but also 
in convex analysis and especially in control theory. 
The SOS technique generalizes a computational 
appliance in control theory, “Linear Matrix 
Inequalities” – LMI. Parrilo and Ahmadi had 
important contributions in this field. [9]. With this 
technique, the models can be easier handled and 
most solutions can be found numerically.  

In recent papers, [12,13,14] it was taken into 
account the stability of the basic form for the mixing 
flow dynamical system. When studying the mixing 
flow phenomena, one starts from the widespread 
kinematic 2d model [4]: 
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{
𝑥1̇ = 𝐺𝑥2

𝑥2̇ = 𝐾𝐺𝑥1,
  − 1 < 𝐾 < 1,   𝐺 ∈ 𝑅 (11) 

Although this is a linear model, when associating 
the corresponding initial condition  

 (12) 
it is obtained a complex solution for the Cauchy 
problem (11)-(12) [3,4]. The geometric standpoint is 
very interesting, the streamlines of the above model 
satisfy the relation 𝑥2

2 − 𝐾 ∙ 𝑥1
2 = 𝑐𝑜𝑛𝑠𝑡 and this is 

corresponding to some ellipses with the axes rate  

if ( 1

|𝐾|
)

1
2⁄
 K is negative, and to some hyperbolas 

with the angle 𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
1

|𝐾|
)

1
2⁄
 between the 

extension axes and x2, if K is positive [4]. 
To this broad isochoric flow, one can easily 
associate the corresponding 3d dynamical system 
[3]: 
 

 

(13) 

with the third component standing for the movement 
velocity of the system. 
In the 3d case the nonlinear system has a complicate 
behaviour, the influence of the parameters leading to 
a far from equilibrium model. The perturbed model 
was taken into account and it was found again a 
strong sensitivity with respect to parameters [3]. 
 In 2d case, some perturbations of the mixing 
flow dynamical system were taken into account. In a 
first stage, the feedback linearization [7] of the 
model in a slightly perturbed form was performed, 
namely for the system: 

{
𝑥1̇ = 𝐺𝑥2 + 𝑥1

𝑥2̇ = 𝐾𝐺𝑥1 − 𝑥2 
  − 1 < 𝐾 < 1,   𝐺 ∈ 𝑅 (14) 

 
and an interesting conclusion was found, namely it 
was found a different parameters’ distribution for 
the feedback linearized form of the model. Also, a 
SOS Lyapunov function was found both for the 
initial and for the feedback linearized model [12]. 
 In a next stage, a control Lyapunov function 
was found for the model (14) in a controlled form 
[14]. It is important to notice that this can be 
realized in feasible conditions for the parameters. 

Further, in [13] it was realized a good comparison 
analysis concerning the existence of a Lyapunov 
function, for the initial form versus the feedback 
linearized form, for the mixing flow model 
perturbed with a logistic type term.  
 
 
3 Results for the mixing flow 

dynamical system perturbed with a 

logistic type term 
 The mixing flow dynamical system in 3d case 

is a nonlinear model. If we start to perturb it, then 
we get a strongly nonlinear model. In [3] it was 
analysed the solution of the model in the non-
perturbed case and with a perturbation with a 
logistic type term. So the following model was 
taken into account: 
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For this model a complex solution was found, with 
the expression: 
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(16) 

In (16) the following notations were made in order 
to simplify the expressions: 

2
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Taking into account the stability analysis for a 
model like (15) is easy to observe that this is a 
challenging task. Therefore, starting with the 2d 
case would bring useful information.  
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For the aim of the present paper, the 2d case is taken 
into account for the mixing flow perturbed with a 
logistic type term: 

{
𝑥1̇ = 𝐺𝑥2

𝑥2̇ = 𝐾𝐺𝑥1 + 𝐺(𝑥2 − 𝑥1),
  − 1 < 𝐾 < 1,

                                                  𝐺 ∈ 𝑅
 

(17) 

As it is about a nonlinear model, finding a 
Lyapunov function (in the form CLF or SOS) is 
quite difficult, since it is difficult to fulfill the 
criteria.  Therefore, the stability analysis is 
approached according to the eigenvalues criterion.  
In order to have the system in the form (7), we 
consider it formally in a “controlled” form, adding a 
control on the first component: 

{

𝑥1̇ = 𝐺𝑥2 + 𝑝𝑥2

𝑥2̇ = 𝐾𝐺𝑥1 + 𝐺(𝑥2 − 𝑥1),
  − 1 < 𝐾 < 1,

                                                  𝐺 ∈ 𝑅, 𝑝 ∈ 𝑅
 

(18) 

It is obvious that the origin is solution for (18). 
The matrix associated to linearized system around 
the origin is: 

𝐴 = (
0 𝐺 + 𝑝

𝐾𝐺 − 𝐺 𝐺
) (19) 

Consequently, the characteristic equation is  

𝜆2 − 𝐺𝜆 − 𝐺(𝐾 − 1)(𝐺 + 𝑝) = 0 (20) 
According to the eigenvalues criterion for stability, 
we impose for the discriminant of (20) the condition 
∆𝑝< 0 which implies, after the calculus, the 
condition 

∆𝑝= (4𝐾 − 3 − 4𝑝)𝐺2 + 4𝐾𝑝𝐺 < 0 (21) 
This is equivalent to 
 

𝐺[(4𝐾 − 3 − 4𝑝)𝐺 + 4𝐾𝑝] < 0 (22) 
From the above inequality, taking into account that 
𝐺 ∈ 𝑅, −1 < 𝐾 < 1,  we have two possibilities: 

𝑖) 𝐺 < 0, 𝐹(𝐺, 𝐾, 𝑝) > 0 

𝑖𝑖) 𝐺 > 0, 𝐹(𝐺, 𝐾, 𝑝) < 0 

𝐹(𝐺, 𝐾, 𝑝) = (4𝐾 − 3 − 4𝑝)𝐺 + 4𝐾𝑝 

(23) 

 
It is easy to evaluate each of the situations in (23), 
starting from each hypothesis for G and then 
evaluate G itself from the second inequality. 
After all calculus, taking into account the basic 
conditions for G and K, we obtain the situations: 

𝑖) 0 < 𝐾 < 1, 𝑝 < 𝐾 −
3

4
 (24) 

𝑖𝑖) 0 < 𝐾 < 1, 𝑝 <
3

4
− 𝐾 

So from the inequalities (24), we deduce that the 
control p depends on the parameter K.  
The above relations are feasible from the parameters 
standpoint, therefore we can assess that in the form 
(18) of the mixing flow model, it is feasible to apply 
the eigenvalues criterion.  
Going further and calculating the eigenvalues, we 
find: 

𝜆1 =
𝐺

2
− 𝑖

√−∆𝑝

2
 

𝜆2 =
𝐺

2
+ 𝑖

√−∆𝑝

2
 

(25) 

Thus, the eigenvalues criterion is realized, namely 
in the conditions (24) for the parameters, we have 
the situations: 

a) If G<0 then the origin is asymptotically 
stable; 

b) If G>0 then the origin is asymptotically 
unstable 

 
 
Conclusions 
 The mixing flow dynamical system 
perturbed with a logistic type term provides a 
strongly nonlinear model. In [13] it was realized a 
Lienard type construction of the model and based on 
it, a Lyapunov function was found both for the 
initial and the feedback linearized model. 
 In the present paper the stability analysis is 
approached for the mixing flow model perturbed 
with a logistic term. Namely, it is found that in a 
controlled form and some feasible conditions for the 
parameters, the first stability criterion is feasible and 
some simple feasible conditions for the stability of 
the origin are found. 
 Thus, although a nonlinear model, the 
dynamical system modeling the kinematics of 
mixing can reach the stability. This enables us to 
take into account the construction of a Lyapunov 
function, in a suitable form for the controlled model.  
Also, further versions of the model and some 3d 
versions of vortex models will be taken into account 
in order to complete the panel of events for the 
mixing flow theory. 
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