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Abstract: - The article presents results obtained in attempts to quantify randomness characteristics for real 
numerical sequences or strings, using relative entropy. The characterization of the randomness of a series of real 
numbers is proposed to guide researchers in investigating phenomena towards deterministic or stochastic models. 
A numerical string's relative entropy is calculated using the histograms corresponding to the analysed strings, 
compared to the maximum entropy for the same histogram. It is shown that the entropy values have an asymptotic 
behaviour, but the relative entropy decreases with the increase in the number of histogram classes. Compared to 
other methods of characterizing the randomness of strings, which are not many, most of them being based on 
statistical tests, the method proposed in this article determines a better resolution for the classification of strings 
and, in addition, it can designate them as belonging to a class of randomness similar to that of some known 
strings, such as finite substrings of prime numbers, pseudorandom strings generated by common programs, 
trigonometric strings, etc. 
The attempt to quantify the randomness of real numerical strings, the results of which are presented in this article, 
is a first step in characterizing the randomness of experimental numerical strings, this being the final goal of the 
investigations. 
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1 Introduction 
We started this research from a concrete problem, 
namely, given a discrete signal (of theoretical or 
experimental origin, a string or a sequence of real 
numerical data), we must decide whether it is random 
or deterministic.  Also, a problem very close to the 
one mentioned is to decide if, between two signals 
designated to be random, one of them can be 
characterized by a "higher random intensity". In other 
words, is it possible to quantify the notion of 
randomness? This is the main problem of our 
research. The proposed method is tested on examples 
of strings or sequences recognized as random through 
the "vague" characterization of this notion, common 
in current scientific expositions. 
The purpose of elaborating such quantification of 
numerical strings is first of all the classification as a 
deterministic or random string, in order to motivate 
subsequent theoretical approaches (dynamic 
modelling, optimization) in a deterministic style 
(using differential or algebraic models) or random 
using the theory of random functions and their 
statistical dynamics, possibly optimizations with 

random functions. Secondly, such a quantification of 
the degree of uncertainty (randomness, [12]) is a 
desideratum of knowledge and offers an argument for 
the theoretical space in which we fit the analysis of 
physical, social, biological or other phenomena. 
In [5] it is shown that deterministic signals are a 
special category of frequency stationary signals and 
relatively constant amplitude over a long period of 
time. These can be expressed by an exact analytical 
relationship (formula), which leads to the precise 
determination of their value at any time. Such signals 
are not information bearers, they "do not say anything 
new", being absolutely predictable. 
Also in [5], it was stated that random or non-
deterministic signals are those whose evolution 
cannot be anticipated with certainty, such as vocal, 
video, seismic signals, etc. The unpredictability of 
the signals is positively correlated with the amount of 
energy transported. For example, the signal received 
during the transmission of news to a radio station is 
listened to with interest, due to its novelty. In the case 
of non-deterministic signals, so that the information 
can be received, the one who transmits it and the one 
who receives it uses the same language (code, 
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alphabet, etc.). As shown in [5], the non-
deterministic signal has specific characteristics, 
namely media, dispersion, global media, global 
dispersion, histogram, spectral power density, etc. 
The signal can have a certain degree of predictability 
of its evolution over time.  Depending on certain 
characteristics of it, the non-deterministic signal can 
be: 
• Stationary - media and dispersion do not depend on 
time, but are constant, 
• Ergodic - the media on portions does not differ from 
the global average, 
• White noise - has a constant spectral density 
throughout the frequency band. 
The idea of quantifying randomness is not new. In 
2017, the author of [6] stated, "Given the 
impossibility of the random true, the effort is directed 
to study the random degrees". Also, the same author 
shows that it can be proved that there is an infinite 
hierarchy (in terms of quality or power) of the forms 
of random. 
According to [13], „a randomness test (or test for 
randomness), in data evaluation, is a test used to 
analyse the distribution of a set of data to see if it can 
be described as random (pattern less). In stochastic 
modelling, as in some computer simulations, the 
hoped-for randomness of potential input data can be 
verified, by a formal test for randomness, to show that 
the data are valid for use in simulation runs. In some 
cases, data reveals an obvious non-random pattern, as 
with so-called "runs in the data" (such as expecting 
random 0–9 but finding "4 3 2 1 0 4 3 2 1..." and 
rarely going above 4). “Also in [13], it is shown that 
the issue of randomness is an important philosophical 
and theoretical question. Tests for randomness can be 
used to determine whether a data set has a 
recognisable pattern, which would indicate that the 
process that generated it is significantly non-random. 
For the most part, statistical analysis has, in practice, 
been much more concerned with finding regularities 
in data as opposed to testing for randomness. Many 
"random number generators" in use today are defined 
by algorithms, and so are actually pseudo-random 
number generators. The sequences they produce are 
called pseudo-random sequences. These generators 
do not always generate sequences which are 
sufficiently random but instead can produce 
sequences which contain patterns. Stephen Wolfram 
used randomness tests on the output of Rule 30 to 
examine its potential for generating random numbers, 
[14] though it was shown to have an effective key 
size far smaller than its actual size [15] and to 
perform poorly on a chi-squared test [16]. The use of 
an ill-conceived random number generator can put 
the validity of an experiment in doubt by violating 

statistical assumptions. Though there are commonly 
used statistical testing techniques such as NIST 
standards, Yongge Wang showed that NIST 
standards are not sufficient. Furthermore, Yongge 
Wang [17] designed statistical–distance–based and 
law–of–the–iterated–logarithm–based testing 
techniques. Using this technique, Yongge Wang and 
Tony Nicol [18] detected the weakness in commonly 
used pseudorandom generators such as the well-
known Debian version of the OpenSSL 
pseudorandom generator which was fixed in 2008. 
Also [13] show that there have been a fairly small 
number of different types of (pseudo-)random 
number generators used in practice. They can be 
found in the list of random number generators, and 
have included: Linear congruential generators and 
Linear-feedback shift registers, Generalized 
Fibonacci generators, Cryptographic generators, 
Quadratic congruential generators, Cellular 
automaton generators, Pseudo-random binary 
sequences. These different generators have varying 
degrees of success in passing the accepted test suites. 
There are many practical measures of randomness for 
a binary sequence. These include measures based on 
statistical tests, transforms, and complexity or a 
mixture of these. A well-known and widely used 
collection of tests was the Diehard Battery of Tests, 
introduced by Marsaglia; this was extended to the 
TestU01 suite by L'Ecuyer and Simard. The use of 
the Hadamard transform to measure randomness was 
proposed by S. Kak and developed further by 
Phillips, Yuen, Hopkins, Beth and Dai, Mund, 
Marsaglia and Zaman, [19]. Several of these tests, 
which are of linear complexity, provide spectral 
measures of randomness. T. Beth and Z-D. Dai 
purported to show that Kolmogorov complexity and 
linear complexity are practically the same, [20], 
although Y. Wang later showed that their claims are 
incorrect, [21]. Nevertheless, Wang also 
demonstrated that for Martin-Löf random sequences, 
the Kolmogorov complexity is essentially the same 
as linear complexity. 
The need to quantify an important characteristic of 
phenomena in the field of physics or in the field of 
numerical calculation has imposed the appearance of 
an important scientific discipline: quantifying 
uncertainty. According to [29], uncertainty 
quantification (UQ) is the science of quantitative 
characterization and reduction of uncertainties in 
both computational and real-world applications. It 
tries to determine how likely certain outcomes are if 
some aspects of the system are not exactly known. 
Many problems in the natural sciences and 
engineering are also rife with sources of uncertainty. 
Computer experiments by computer simulations are 
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the most common approach to studying problems in 
uncertainty quantification, [26], [27], and [28]. 
We must understand today that computer simulation has taken 
unacceptable proportions in research, which is felt in the quality 
of this activity. The enormous costs of the experiments required 
in serious research are more and more inaccessible to 
universities, research institutes and other institutions whose 
activity is research and design. At least in the academic field, in 
the scientific literature, the simulation tends to try at any cost to 
create the illusion that physical reality is very close to the virtual 
world. One can go so far as to violate reality in order to 
(hypothetically) adopt behaviour as (false) virtual reality. These 
are the reasons why I believe that in research and design, 
maximum caution is necessary for the use of simulation to solve 
concrete problems. 
Uncertainty is sometimes classified into two 
categories, [31], and [32]. Aleatoric uncertainty is 
also known as stochastic uncertainty and is 
representative of unknowns that differ each time we 
run the same experiment, [33]. Also from [33], 
epistemic uncertainty is also known as systematic 
uncertainty, and is due to things one could in 
principle know but does not in practice. This may be 
because the measurement is not accurate, because the 
model neglects certain effects, or because particular 
data have been deliberately hidden. According to 
[33], in real-life applications, both kinds of 
uncertainties are present. Uncertainty quantification 
intends to explicitly express both types of uncertainty 
separately. The quantification for the aleatoric 
uncertainties can be relatively straightforward, where 
traditional (frequentist) probability is the most basic 
form. Techniques such as the Monte Carlo method 
are frequently used. A probability distribution can be 
represented by its moments (in the Gaussian case, the 
mean and covariance suffice, although, in general, 
even knowledge of all moments to arbitrarily high 
order still does not specify the distribution function 
uniquely), or more recently, by techniques such as 
Karhunen–Loève and polynomial chaos expansions. 
To evaluate epistemic uncertainties, efforts are made 
to understand the (lack of) knowledge of the system, 
process or mechanism. Epistemic uncertainty is 
generally understood through the lens of Bayesian 
probability, where probabilities are interpreted as 
indicating how certain a rational person could be 
regarding a specific claim. And also [33] summarizes 
the mathematical point of view: in mathematics, 
uncertainty is often characterized in terms of a 
probability distribution. From that perspective, 
epistemic uncertainty means not being certain of the 
relevant probability distribution, and aleatoric 
uncertainty means not being certain what a random 
sample drawn from a probability distribution will be. 
Two important types of problems of the 
quantification of uncertainty are deeply involved in 
the particular field of the experimental measurement 

activity of the traction forces: the propagation of 
uncertainty, which is the quantification of the 
uncertainties at the outputs of the system, resulting 
from uncertainties and, the reverse quantification of 
the uncertainty, which involves calibration 
parameters or simply calibration. 
A direct approach to the random or deterministic 
character for numerical or alphanumeric strings is 
found on the web page [22]. In 4.4 we used the 
program from [22] to compare its decision with the 
values of relative entropy for several strings of small 
length, only because the introduction of data into the 
program is difficult and the maximum length of the 
strings is limited. Essential is the fact that [22] makes 
a characterization of strings on classes of suspicion 
of random, but entropy gives values that characterize 
the string or lead it to the vicinity of a series with 
known behaviour, with whose randomness or 
determinism, the analysed string can be assimilated. 
Considering the impressive theoretical and applied 
developments that addressed the notions of 
randomness, uncertainty and others from the same 
family of words, the only novelty in this attempt is 
the possible introduction of entropy as a measure of 
randomness or uncertainty, for now for a narrow 
category of some mathematical objects ( real 
numerical strings, very common in experimental and 
theoretical-empirical techniques). In relation to other 
methods of studying the random sequences or strings, 
the one proposed in this article through relative 
entropy, although it gives a result which is obtained 
also by other methods (on classes of suspicion of 
random), the resolution is better or the random 
clusters can be narrowed. This means that the interval 
[0, 1], where the relative entropy varies, can be 
divided by those who perform the analysis. In 
addition, they have at their disposal special classes of 
random strings with which to make a comparison: the 
string of prime numbers, pseudo-random generated 
by various programs, and original strings, with the 
desired length. As I showed above, in the end, the 
distribution of a string analysed in random classes 
(sets), provides an orientation of the mathematical 
model of the phenomenon that generates the analysed 
string to the deterministic or stochastic approach.  
 

2 A possible measure of random 

degree-the relative entropy 
Next, the definitions of the estimators of the 

numerical strings that we will use in this research, 
and their mathematical formulas will be introduced: 
entropy and relative entropy. 
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2.1 Relative entropy and entropy 
According to [1], in information theory, Shannon 
entropy or information entropy measures the 
uncertainty associated with a random variable. This 
measure also indicates the amount of information 
contained in the message. It is usually expressed in 
bits or in bits on the symbol. When expressed in bits, 
it represents the minimum length that a message must 
have to communicate the information. 
It also represents an absolute limit of the best 
compression without loss applicable to 
communicated data: treating a message as a series of 
symbols, the shortest possible representation of the 
message has a length equal to the Shannon entropy 
on the symbol multiplied by the number of symbols 
of the original message. 
For now, we will use, for the aim of this article, only 
the most common and usual definition of 
informational entropy, for example, in [3]: 
 

𝐸 = − ∑ 𝑝𝑖 log 𝑝𝑖

𝑛

𝑖=1

 
 

(1) 

 
where 𝑝𝑖 is the probability of the event, n is the 
volume of data of the random variable, and E is the 
entropy of the random string considered. So far we 
consider random strings of finite length and do not 
specify the basis of the logarithm except in the case 
of numerical results. The maximum value of entropy 
(1) is obtained in case the probabilities of all events 
are equal: 
 

𝑝𝑖 =
1

𝑛
  

(2) 
 
the maximum value of entropy being: 
 

𝐸𝑚𝑎𝑥 = log 𝑛 (3) 
 
The relative entropy of a random variable is defined, 
as a percentage value, according to formula (4). 
 

𝐸𝑟 =
100𝐸

𝐸𝑚𝑎𝑥
=

−100 ∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1

log 𝑛
 

 
(4) 

 
It is important to note that: 
e1) entropy is zero if at least one of the messages is 
reliable (i.e. has a probability 𝑝𝑖 = 1); 
e2) the entropy value is a real value, always greater 
than or equal to zero; 
e3) the entropy of a source with two alternative 
events can vary from 0 to 1; 
e4) entropy is an additive quantity: the entropy of a 
source whose messages consist of messages from 

several statistically independent sources is equal to 
the sum of the entropies of these sources; 
e5) entropy will be maximum if all messages are 
equally likely. 
The greater the entropy, the greater the uncertainty of 
the message transmitted by the random variable. 
According to [4], randomness is the characteristic of 
an uncertain event, which depends on future 
conditions, themselves uncertain. The same source 
characterizes uncertainty as something uncertain, and 
doubtful. Going along this line of vague human 
language, we can extrapolate the notions to the 
statement: entropy will be maximum at maximum 
uncertainty or random intensity. Small informational 
entropy (for example, in relation to the maximum 
value for the same volume of data) can be associated 
with reduced uncertainty and randomness. In other 
words, a random variable is "more random", the 
higher the entropy values. 
If you work with finite strings of numbers, the 
probabilities involved in calculating the relative 
entropy are calculated starting from the histograms of 
the values of the strings analysed. For the calculation 
of the number of intervals of the string histograms, 
we adopted some rules used in many works, [8-11]. 
Numerical studies have shown that relative entropy 
depends on the number of classes considered when 
constructing the diagrams. I used, for some reference 
strings (table 1), six of the most well-known formulas 
for calculating the number of histogram classes. The 
results differed depending on the number of classes 
of the histograms, but not very much, not so much as 
to make a series with a random behaviour, to change 
to one with a deterministic character or vice versa. In 
order to give an image of how these numerical 
analyses and the relative entropy can be used in the 
decision of the random or deterministic character of 
some numerical strings, we averaged the relative 
entropy values obtained from the six results 
calculated using the specified formulas for the 
number of classes of histograms. 
 

3 Assessment Tests 
In order to understand the characterization that 
relative entropy gives to numerical strings, in this 
chapter we will comparatively analyse several cases 
of strings, as well as the effects of choosing the 
number of classes of the histograms of the tested 
strings. 
 
3.1 Particular cases 
 In order to understand the behaviour of the relative 
entropy in describing the intensity of the randomness 
of the numerical data strings, some examples of 
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relative entropy values for finite numerical strings 
from various sources are given in this chapter. Due to 
the large number of formulas proposed for 
calculating the number of classes of histograms, we 
calculated the relative entropy as an average of six of 
the most common formulas for the number of classes 
of histograms, which are found in table 1 from [11]. 
The strings for which the calculations were 
performed are listed in table 1.  
 

Table 1 The average value of the relative entropy 
(𝐸𝑟), for the six formulas for calculating the 
number of classes of the histograms, the 
coefficient of variation (CV) and the amplitude of 
the standard deviation above the average 
(ASDAM), for experimentally obtained strings 
(1, 2, 3), sequences obtained using generation 
programs for pseudorandom sequences (4, 5, 6), 
[7] and sequences of sinusoidal type (7, 8, 9) or 
exponential (13, 14, 15) and finite sub-sequences 
of prime numbers. 
Index 𝐸𝑟 ,% 𝐶𝑉 ASDAM 

1 91.943 0.234 2.384 
2 90.320 -0.216 2.545 
3 88.836 0.250 2.894 
4 97.578 0.581 1.747 
5 96.810 0.543 1.831 
6 97.450 0.587 1.705 
7* 94.746 0.566 1.414 
8** 40.497 0.625 1.176 
9*** 81.202 1.529 2.441 
10 97.900 0.649 1.841 
11 98.152 0.641 1.813 
12 98.287 0.636 1.805 
131 20.914 0.019 4.767 
142 37.670 0.026 3.327 
153 6.986 0.011 8.395 

*Function 𝑓(𝑡) = 𝐴 sin(2𝜋𝜈𝑡) + 1, 𝐴 = 1, 𝜈 = 1, 𝑡 ∈
[0,30], with a sampling frequency of 10 samples per 
second, 𝑡being the time. 
**Function 𝑓(𝑡) = [𝐴 sin(2𝜈𝑡) + 1.6], 𝐴 = 1.2 , 𝜈 =
1, 𝑡 ∈ [0,30], with a sampling frequency of 10 samples per 
second, [𝑥]being the whole part of the number 𝑥. 
***The sum of five sinusoids with the amplitudes: 1.2, 2.3, 
-1.9, -0.31, 0.71, frequencies: 1, 2, 10.57, 7.0, 11.0 Hz, and 
the phases: 0, 0.1, 0.37, -0.53, -0.73. The sum of sinusoids is 
sampled with a sampling frequency of 10 samples per 
second. 
1Function 𝑓(𝑡) = 0.1𝑒−100(𝑡−1)2

+ 1. 
2Function 𝑓(𝑡) = 0.1𝑒−100(𝑡−1)2

+ 0.1𝑒−100(𝑡−2)2
+ 1 

3Function 𝑓(𝑡) = 0.1𝑒−1000(𝑡−1.5)2
+ 1. 

 
Table 1 lists the average values of the relative entropy 
(for the six formulas for calculating the number of 
histogram classes), (𝐸𝑟), the coefficient of variation 
(CV) and the amplitude of the standard deviation 

above the average, for experimentally obtained 
sequences (1, 2, 3), fig. 1, strings generated with 
generation programs for pseudorandom strings (4, 5, 
6), [7], fig. 2, and sinusoidal strings (7, 8, 9), defined 
by formulas below the table, and finite substrings of 
prime numbers. 
 

 
Fig. 1 The graphs of the three experimental 

records. 
 

 
Fig. 2 Three pseudo-random sequences were 

generated with the program [7]. 
 
Also, classic random strings obtained from the string 
of prime numbers or from the discretization of some 
Gauss curves were introduced in the tests. The 
formulas for calculating the number of histogram 
classes, used in this study, were, according to [11]: 
Mosteller and Tukey's formula, 1977, Sturges' 
formula, 1926, Velleman's formula, 1976, and Scott's 
formula, 1979 and two control formulas of the 
behaviour of entropy relative, having the number of 
classes equal to the number of elements of the string, 
respectively with its half. 
The ranking of the strings according to the value of 
the relative entropy is given in table 2. The indexation 
of the strings has been preserved as in table 1, and the 
observations with lowercase written after table 1 
remain valid for table 2. 
 
3.2 Comments on the relative entropy 

assessment  

The results listed in tables 1 and 2 suggest some 
observations: 
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Table 2 The average value of the relative entropy 
(𝐸𝑟), for the six formulas for calculating the 
number of classes of histograms, the variation 
coefficient (𝐶𝑉) and the amplitude of the 
standard over average, for the set of strings in 
table 1, sorted by relative entropy values. 
Index 𝐸𝑟 ,% 𝐶𝑉 ASDAM 

12 98.287 0.636 1.805 
11 98.152 0.641 1.813 
10 97.900 0.649 1.841 
4 97.578 0.581 1.747 
6 97.450 0.587 1.705 
5 96.810 0.543 1.831 
7* 94.746 0.566 1.414 
1 91.943 0.234 2.384 
2 90.320 -0.216 2.545 
3 88.836 0.250 2.894 
9*** 81.202 1.529 2.441 
8** 40.497 0.625 1.176 
142 37.670 0.026 3.327 
131 20.914 0.019 4.767 
153 6.986 0.011 8.395 

 
O1) The highest values of the relative entropy in 
table 1 correspond to the finished sequences of 
prime numbers, and the relative entropy 
increases with the length of the sequences of 
prime numbers (it is easier to see in table 2); 
O2) Values close to the entropy relative to those 
corresponding to the finished sequences of prime 
numbers, are obtained for the three strings 
generated with the help of the program access to 
[7], but between them and the sequences of 
prime numbers there is a noticeable difference; 
O3) The sequences obtained from experimental 
records are characterized by values of relative 
entropy over 85% but at a remarkable distance to 
the pseudo-random strings obtained using [7]; 
O4) Between the strings given by sinusoidal formulas 
it is observed that the sinusoid with a single 
component, composed with the floor function, (the 
set of values of this function has only three elements), 
has the lowest value of relative entropy, 40.497. The 
sinusoidal sequence that comes from a pure sinusoid 
has a value maximum value of entropy, even higher 
than any of the strings from experimental 
measurements.  The sinusoidal sequence with five 
components is positioned immediately after the 
pseudo-random strings. 
O5) The most ordinary laws containing the smallest 
quantity of information are those obtained from the 

discretization of the Gauss curves, obviously from 
the collection of curves examined in this study. 
O6) The relative entropy produces a strict order 
relationship on the set of the strings in table 1, which 
can be used for the purpose of ranking the intensity 
of the random character or of the uncertainty of the 
random strings described by such strings, as follows: 
O6.1) It can be appreciated, at a first evaluation, that 
random variables or strings with relative entropy 
greater than 50% can be considered as suspects of 
random character, respectively those with entropy 
less or equal to 50% can be considered determinists; 
O6.2) A higher resolution separation can be obtained 
by appreciating that strings characterized by relative 
entropy values lower than or equal to 33%, 
respectively, can be considered deterministic strings, 
and strings whose relative entropy is strictly higher 
than 66%, can be considered suspicious of intense 
randomness. Strings whose relative entropy is 
between 33% and 66% can be considered as having 
an undecidable character. 
O6.3) Another criterion for appreciating the intensity 
of the random or deterministic character of a string of 
numerical data can be obtained by comparison with 
standard strings whose relative entropy is known and 
does not vary much with the number of classes of 
histograms used for the calculation of it. Thus, for 
example, the strings of pseudo-random numbers can 
be considered to be close to the random intensity of 
the finished sequences of prime numbers. The 
experimental strings are in the category of random 
but less random than the finished rows of prime 
numbers considered. The sequences obtained by 
discretization of the Gauss curves are characterized 
by a high degree of determinism. The sinusoidal 
sequences can be located in the area of random 
sequences, in the undecidable or deterministic area, 
according to the values of amplitudes, frequencies, or 
the way of generation (composition with the floor 
function, for example, or with generators of pseudo-
random numbers). 
 
3.3 Variation of relative entropy with the 

number of the histogram’s classes 
The variation of entropy relative to the number of 
classes of histograms poses difficult problems for 
analysis. First of all, we wonder if the number of 
classes of histograms increases, it can be reached in 
the situation that the random string changes the 
characteristic, from random to determinist, or vice 
versa (intuitive, the last option is unlikely)? The 
denominator of the fraction that defines the relative 
entropy (4), tends to infinity with the number of 
histogram classes. Starting from a certain number of 
classes, 𝑛∗  begin to appear intervals that do not 
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contain values of the string, so they have a zero 
probability. The existence of some classes of the 
histogram with zero elements implies belonging to 
the sum that defines the relative entropy of some 
meaningless terms, but which, at the limit, tend to 
zero. Therefore, intuitively, starting with the number 
of classes greater than or equal to  𝑛∗, the 
denominator of the relative entropy (4) increases, 
while the numerator should have an asymptotic 
behaviour, to a certain value, characteristic of the 
analysed string. As a result of this reasoning, I sought 
to stop the process of growing the number of classes 
of the histograms to a number near  𝑛∗. If {𝑥𝑖}𝑖=1…𝑁, 
it is the random string, the number of samples in each 
class of the histogram, either 𝑚 = min

𝑖=1,…,𝑁
𝑥𝑖, 

respectively 𝑀 = max
𝑖=1,…,𝑁

𝑥𝑖 (they can be equal, if the 

string is constant), then, assuming a number of the 
histogram, with equal intervals, we obtain the size or 
length of the histogram range: 𝛿𝑛 =

𝑀−𝑚

𝑛
. Suppose 

that the slightest distance of two terms of the string 
is: 
 

𝛿𝑚𝑖𝑛 = min
𝑖=1,…1𝑁−1

{|𝑥𝑖+1 − 𝑥𝑖|} (5) 

 
where the symbol | |represents the magnitude 
operator or the module of a real number (or absolute 
value).Then one can be considered the number  𝑛∗, 
given, approximately, by the formula: 
 

𝑛∗ = [
𝑀 − 𝑚

𝛿𝑚𝑖𝑛
] + 1  

(6) 
 
Details and examples are given in 4.2. 
 
4 The general working algorithm for 

estimating the relative entropy of a 

string 
Although the method of calculating the relative 
entropy of a string (random variable) is quite simple 
at first glance, there are important stages that require 
discussions and, very likely, choices that can 
influence the result. 
 
4.1 Steps of the relative entropy calculation 

algorithm 
A formulation as short as possible of the calculation 
algorithm for the relative entropy of a string is given 
in this sub-session. 
E1. A finite numerical string with real components, 
{𝑥𝑖}𝑖=1,… ,𝑁, is entered, where 𝑁 is the volume of data 
or the length of the string or, again, the number of 
components. In addition, the descriptive statistics of 

the string 𝑥 are calculated (average value, average 
standard deviation, coefficient of variation, and 
possibly other characteristics). 
E2. A maximum number 𝑛∗of classes are chosen for 
the histograms used to evaluate the relative entropy 
(4), for example, 𝑁 or the floor of a fraction of 𝑁, or 
a number of classes calculated according to 𝑁 and, 
possibly, certain descriptive statistical characteristics 
of the string 𝑥, according to [11] for example. 
Alternatively, the procedure for determining a 
maximum number of classes can be used as in (5) and 
(6) from 2.3. 
E3. Entropy and relative entropy are calculated for 
each 𝑘 = 2, … , 𝑛∗. 
E4. A selection criterion of a number 𝑘∗ is applied, 
which satisfying this criterion, designates the 
histogram to which the relative entropy of the string 
𝑥 will correspond. This criterion is based on the 
entropy curve - the number of classes of the 
histogram, the discrete curve obtained in step E3. In 
2.3 it was explained why this curve is taken and not 
the discrete curve relative entropy –the number of 
classes of the histogram. The criterion for obtaining 
the number of classes 𝑘∗can be formulated in various 
ways: 
E4.1 It is chosen for 𝑘∗, that value of the number of 
classes for which the module or the magnitude of the 
average value of one or more consecutive differences 
of the entropy series {𝐸𝑘}𝑘=1,…,𝑁 does not exceed an 
arbitrarily chosen limit, possibly a fraction of the 
corresponding maximum entropy, for example. The 
minimum value of the index at which this criterion is 
met is chosen for 𝑘∗. This criterion was used to obtain 
the results from Tables 1 and 2. It is a criterion that 
must be assisted by the operator on the computer 
because the entropy variation is not strictly 
monotonous (at least at the current level of the 
algorithm). For example, for the results presented in 
Tables 1 and 2, we worked with three consecutive 
differences between the terms of the entropy string, 
and for the results in 4.3, we worked with a single 
consecutive difference in the terms of the same 
string. 
E4.2 A criterion that avoids the small monotony 
variations of the discrete curve entropy - number of 
classes of the histograms, uses the interpolation of 
this curve through a continuous exponential curve 
with horizontal asymptote towards infinity. On this 
continuous curve, the criterion for determining the 
number 𝑘∗ is set by imposing an arbitrarily chosen 
limit on the slope of the interpolation curve. This 
criterion was used to obtain the results presented in 
4.3. It should be noted that not in all cases the 
continuous curve with the horizontal asymptote at 
plus infinity, succeeds in interpolating the entropy 
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series. In cases with random strings that are formed 
with few values, for example, or are concentrated on 
narrow ranges of numbers, the interpolation can be 
done with rational power type curves or with 
discontinuous curves and for this reason, the 
proposed algorithms must be assisted by the human 
operator in thing, for now. 
 
4.2 A way of choosing the minimum number 

of classes for the histogram used in the 

evaluation of relative entropy, for example, 

the string of the first 1000 prime numbers  
In order to study the influence of the number of 
classes of the histogram with which the entropy of a 
random string is calculated, I took as an example the 
series of 1000 primary numbers. Since the first prime 
number is two, and the 1000th is 7919, the minimum 
distance between two of the elements of this string is 
1 (the distance between 2 and 3). The criterion of the 
number of classes where each class contain only one 
element explained in the relations (5) and (6), leads 
to a number of 7917 classes. According to the method 
presented in 3.1, the histogram, probabilities, and 
finally, entropy, relative entropy and other 
characteristics of the string of the first 1000 prime 
numbers are calculated. 
According to the criterion for calculating the number 
of classes of the histograms, we calculated the 
entropy, the maximum entropy and the relative 
entropy for all numbers from 2 to 7917. Additionally, 
in order to provide some statistical complements, is 
calculated: the coefficient of variation and the 
amplitude of the standard deviation above the 
average. In fig. 3 and 4, it can be observed that the 
entropy increases monotonically asymptotically, 
while the relative entropy decreases monotonically 
with an unclear asymptotic trend. For this reason, the 
selection criterion of the "optimal" number of classes 
(intervals) necessary for a "good enough" assessment 
of the relative entropy was based on the variation of 
the entropy and not on the relative entropy with the 
number of classes of the histogram. Thus, the 
stopping criterion is given by the condition that the 
optimal number of classes is the lowest number of 
classes for which the sum of three (a higher or lower 
number can be used) consecutive differences 
between the entropy values are lower than a number 
which is arbitrarily chosen number. In the case of this 
study, we chose: 
 

𝜀 =
max (𝐸)

0.1 ∙ 𝑁ℎ𝑚𝑎𝑥
 

 
(7) 

 

where 𝐸 is the entropy of the string, and 𝑁ℎ𝑚𝑎𝑥 is the 
maximum number of the classes of tested histograms, 
7917. In the case of this numerical test, we use the 
value 𝜀=0.013 which is obtained, for the maximum 
value of the entropy,  max(𝐸) = 9.966. The stopping 
value is a bit exaggerated (below 0.126% of the 
maximum entropy value), but this numerical study is 
only an example. For the histogram with 131 classes, 
𝐸max 131=7.033 and 𝐸𝑟 131 = 99.269%,  were 
obtained, 1% higher than the value in tables 1 and 2. 
 

 
Fig. 3 Dependence of the entropy of the sequence 

on the number of classes of the histograms. 
 

 
Fig. 4 Dependence of the relative entropy of the 

sequence on the number of classes of the 
histograms. 

 
4.3 A procedure for choosing the number of 

classes of the histograms used to estimate the 

relative entropy based on the interpolation of 

the dependence curve of entropy by the 

number of classes of the histogram 
This appendix gives the results of the relative entropy 
evaluation for the strings in table 1, obtained using a 
criterion for determining the number of classes of the 
histogram, type E4.2, presented in chapter 3. 
The algorithm used to obtain the results presented in 
4.3 uses the discrete entropy curve - the number of 
classes as described in chapter 3, E4.2, combined in 
certain cases (the only concrete one among those 
included in the collection of evaluated strings) with 
the selection algorithm of the number of histogram 
classes given in E4.1. A curve of dependence 
between entropy and the number of classes of the 
histogram is given in fig. 6. This curve corresponds 
to the experimental data (tensometry records) from 
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fig. 5, included in the analysed collection listed in 
table 1, at position 1. 
By putting the condition that the minimum number of 
classes of the histogram to be the smallest abscissa, 
for which the slope has less than 1o, on the curve in 
fig. 5, are obtained the next results 𝑛∗ = 74, 𝐸 =
5.15,  𝐸𝑚𝑎𝑥 = 6.209,  𝐸𝑟 = 93.641%  are obtained. 
 

 
Fig. 5 Graphical representation of the sequences 
of experimental data described by the series in 

table 1, position 1. 
 

 
Fig. 6 The discrete dependence curve, entropy - 
number of histogram classes, for the string in 

table 1, position 1. 
 
The solution which uses the selection algorithm from 
E4.1, with the same constant (the tangent of 1-degree 
angle), leads to the solution: 𝑛∗ = 156, 𝐸 =
6.675,  𝐸𝑚𝑎𝑥 = 7.304,  𝐸𝑟 = 91.395%, if used for 
the number of classes of histogram the criterion of the 
average of three consecutive differences of entropy. 
If the selection is made using the simple successive 
differences between the elements of the entropy 
string, the solution obtained is the next: 𝑛∗ = 45,
𝐸 = 5.183,  𝐸𝑚𝑎𝑥 = 5.555,  𝐸𝑟 = 93.315%. The 
limit value used is the same approximation of the 
tangent of the angle of lo (0.017).The results of the 
running of the calculation programs based on the 
criteria described in E4.1 and E4.2, with the 
additional clarifications, are given in Table 3 and 4. 
 The two calculation algorithms for the relative 
entropy of the strings belonging to the collection 
taken as an example produce the same ranking of 
randomness, [12]. Only the characteristic values 
differ, but not significantly, see Table 5. 

 
Table 3 Results of entropy calculation for the set of 
sequences from table 1, using criteria E4.1. 

Sequence 

Index, table 1 𝑛ℎ 𝐸 𝐸𝑚𝑎𝑥 𝐸𝑟 

1 45 5.18 5.55 93.31 
2 51 5.28 5.73 92.19 
3 65 5.52 6.07 90.96 
4 55 5.72 5.83 98.02 
5 50 5.55 5.70 97.45 
6 60 5.83 5.95 97.94 
7 75 5.97 6.27 95.29 
8 3 1.58 2.32 68.26 
9 63 5.59 6.02 92.88 

10 62 5.91 6.00 98.49 
11 85 6.39 6.44 99.11 
12 76 6.25 6.28 99.39 
13 13 0.86 3.91 21.96 
14 30 1.89 5.00 37.82 
15 4 0.23 2.58 8.93 

 
Table 4 Results of entropy calculation for the set of 
strings from table 1, using criteria E4.2. 
Sequence 

Index, table 1 𝑛ℎ 𝐸 𝐸𝑚𝑎𝑥 𝐸𝑟 

1 74 5.81 6.21 93.64 
2 73 5.72 6.19 92.40 
3 73 5.64 6.19 91.05 
4 75 6.10 6.23 97.95 
5 72 5.98 6.17 96.97 
6 73 6.05 6.19 97.83 
7 81 6.04 6.34 95.31 
8* 5 1.58 2.32 68.26 
9* 74 5.80 6.21 93.46 
10 77 6.18 6.27 98.55 
11 82 6.31 6.36 99.24 
12 85 6.37 6.41 99.36 
13 5 0.59 2.32 25.49 
14 27 1.86 4.75 39.17 
15 6 0.23 2.58 8.93 

*Random strings for which, in the case of the E4.2 algorithm, 
the interpolation was done by discontinuous functions, second-
degree polynomial for the case of histograms with two and 
three classes and constant ceiling for more than three classes. 

It can be observed that, compared to the randomness 
ranking of the strings in table 2, the changes are 
small, namely, the string of five sinusoids is inserted 
between the first two strings of experimental origin, 
increasing in relative entropy value. From the point 
of view of the category, there are no transitions from 
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the class of random strings to that of deterministic 
strings or vice versa. 
 

Table 5 The randomness ranking for the fifteen 
analysed sequences. 

Sequence rank 𝑬𝒓, E4.1 𝑬𝒓, E4.2 

10 99.387 99.365 
11 99.115 99.244 
12 98.487 98.554 
4 98.017 97.947 
5 97.942 97.829 
6 97.447 96.966 
7 95.287 95.306 
1 93.315 93.641 
9 92.884 93.457 
2 92.189 92.405 
3 90.963 91.052 
8 68.261 68.261 

14 37.819 39.17 
13 21.963 25.488 
15 8.926 8.926 

 
4.4 The relationship between the 

characterization of strings by relative entropy 

and the characterization of the same strings 

using randomness statistical tests 

 An important opinion on the random or 
deterministic character of the numerical strings 
(including alphanumeric strings, using 
numerical encoding) also expresses the statistics, 
through random tests, [13]. In order to compare 
the results of testing randomness (uncertainty or 
determinism) of some strings by relative entropy 
with the results of testing by statistical tests of 
randomness, in this appendix an example of 
characterization is given for 11 strings, some of 
them from the list given in table 1, others 
elaborated to highlight the differences of 
viewpoints and cover all interesting cases of the 
randomness test used. The randomness test used 
is a free online test, [22]. The theoretical 
foundations of the randomness statistical test are 
presented in [22]. This test requires manual data 
entry, so we limited the length of the strings to 
20 elements. From the strings of the collection 
given in table 1, we took only the first 20 
elements. I rescaled the sinusoidal or Gaussian 
series so that the discrete curves keep the visual 
identity of the curve. I introduced three new 
strings: two to highlight the characterization of 

some reference strings (the constant string, the 
triangular string), and the third, a string "as 
random as possible", created by the author, in 
order to cover the limit characterizations of the 
statistical test, fig. 7. 
 

 
Fig. 7 Random string used to cover the "Little or 

no real evidence against randomness" 
characterization case of the statistical test. 

 
The characterizations given by the statistical test 
program of the random character of the strings, 
parallel to the relative entropy value, are shown 
in table 6. 
 
Table 6 Characterizations of the randomness of 
some numerical strings, using statistical tests and 
using relative entropy. 

Sequence Decision 𝑬𝒓 

the sequence of the first 20 prime 
numbers 

a 96.749 

the sequence of the first 40 prime 
numbers 

e 98.692 

the sequence of the first 60 prime 
numbers 

e 98.361 

sequence of 20 pseudo randomly 
generated numbers 

b 99.636 

sinusoidal string resolution 20 /s in, 1 
s 

a 93.498 

Gauss bell position 13, table 1, 20 
points, time between 1.375 s and 

1625 s 

a 96.749 

discrete sinusoid with sampling 
frequency 20/s, for 1 s 

b 67.657 

constant string, all terms are 0.05, 20 
components 

e 0 

string of 20 points in which all terms 
are 0.05 except terms 9, 10 and 11, 

which have the values 0.5, 1 and 0.5 
(triangular) 

a 32.197 

the first 20 elements of the first 
experimental sequence - position 1, 

table 1 

a 90.835 

some sequence - see fig. A3.1 d 67.555 

 
It is observed that the decisions of the program used 
in [22] for the randomness test of numerical or 
alphanumeric strings are divided into five classes: a-
Very strong evidence against randomness (trend or 
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seasonality), b-Moderate evidence against 
randomness, c-Suggestive evidence against 
randomness, d-Little or no real evidence against 
randomness, e-Strong evidence against randomness. 
 

5 Conclusion 
The numerical investigations carried out so far in the 
problem of quantifying the random or deterministic 
character (uncertainty or determinism), show that the 
research deserves to be continued, using the entropy 
of random strings, calculated on the histograms of 
these strings and the probabilities calculated with 
their help. 
The relative entropy of strings can produce a ranking 
on the set of sequences and a sequence can be 
designated as belonging to a class of random or 
deterministic strings, possibly undecidable. I 
described this classification in the observations in 
chapter 2.2. 
Another possibility of describing the random or 
deterministic character is a relative one, by 
comparing or associating an analysed string with an 
already studied string having both close relative 
entropy values. For example, in the rankings 
produced in this article in the collection of considered 
strings, the sinusoidal string is located in the 
immediate vicinity of the random strings generated 
with pseudo-random string generation programs. 
I repeat the importance of designating a series of data 
as having a random or deterministic character 
consists in obtaining an argument for which the 
model of the phenomena characterized by such series 
will be oriented,  towards the approach with random 
models (description within the theory of random 
functions) or towards deterministic models (the 
classical framework of the majority of the usual 
models in classical mechanics). 
Finally, the answer to the question of the title of the 
article seems, at least for now, to be affirmative or at 
least promising. 
Obviously, many problems remain to be studied in 
order to clarify the problem of quantifying the 
random or deterministic nature of numerical strings. 
Among them, first of all, there are those related to the 
calculation algorithms used, the criteria for choosing 
the number of classes of the histograms, and the way 
to perform the selection (discrete or continuous). The 
most severe limitation of operator intervention in the 
numerical schemes of these algorithms (solving 
nonlinear equations and/or nonlinear minimization of 
some selection functions) is an important objective. 
The completion of the classification of the degree of 
randomness of the strings is also related to the 
development of other estimators that we suggested 

and calculated in the developed algorithms: the 
coefficient of variation and the amplitude of the 
standard deviation above the average. They introduce 
a direct connection between the problems of 
autocorrelation and the correlation of signal 
fragments, respectively with the theory of signal 
coding and decoding. For these reasons, our direction 
of research on the issue remains current. 
A slightly more distant objective, which I have 
already approached in the beginning, is the complete 
transition of the problem of discrete strings to the 
study based on continuous functions, starting from 
the interpolating of histograms. It is important to note 
how high the precision of this alternative can be in 
relation to the purely discrete method, that was used 
first. 
This study can now be used to estimate the 
randomness of some physical phenomena, for 
example, the tensile strength of some tillage 
machines. This could give precise recommendations 
for the terms in which the answer to experimental and 
theoretical research must be formulated. 
Continuations of the investigations, in any of the 
ways exposed, or others, will be done only to the 
extent that there is interest in this problem, especially 
considering that the development of a mathematical 
model of some phenomena within the theory of 
random functions could be received with some 
reservations by the specialists involved in the related 
engineering field. 
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