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Abstract. This study proposes a dynamic ant colony optimization algorithm to solve the static frequency assignment problem. This 
approach solves the static problem by modeling it as a dynamic problem through dividing this static problem into smaller sub-problems, 
which are then solved in turn in a dynamic process. Several novel and existing techniques are used to improve the performance of this 
algorithm. One of these techniques is applying the concept of a well-known graph colouring algorithm, namely recursive largest first 
for each sub-problem. Furthermore, this study compares this algorithm using two visibility definitions. The first definition is based on 
the number of feasible frequencies and the second one is based on the degree. Additionally, we compare this algorithm using two trail 
definitions. The first one is between requests and frequencies. The second is between requests and requests. This study considers real 
and randomly generated benchmark datasets of the static problem and our algorithm achieved competitive results comparing with other 
ant colony optimization algorithms in the literature.  
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1 Introduction 

The frequency assignment problem (FAP) is related to 
wireless communication networks, which are used in 
many applications such as mobile phones, TV broadcast-
ing and Wi-Fi. The aim of the FAP is to assign frequen-
cies to wireless communication connections (also known 
as requests) while satisfying a set of constraints, which 
are usually related to prevention of a loss of signal qual-
ity. Note that the FAP is not a single problem. Rather, 
there are variants of the FAP that are encountered in prac-
tice. The minimum order FAP (MO-FAP) is the first var-
iant of the FAP that was discussed in the literature, and 
was brought to the attention of researchers by [1]. In the 
MO-FAP, the aim is to assign frequencies to requests in 
such a way that no interference occurs, and the number 
of used frequencies is minimized. As the MO-FAP is NP-
complete [2], it is usually solved by meta-heuristics. 

Many meta-heuristics have been proposed to solve the 
MO-FAP including genetic algorithm (GA) [3], evolu-
tionary search (ES) [4], ant colony optimization (ACO) 
[5], simulated annealing (SA) [6] and tabu search (TS) 
[6, 7, 8, 9]. It can be seen from literature that there are 
relatively few papers concerning the application of ACO 
to solve the FAP. However, existing ACO algorithms in 
the literature are unable to find a feasible solution in 
some instances of the MO-FAP. Hence, this study inves-
tigates whether ACO can be improved to be an effective 
solution method for the MO-FAP.   

In this study, the dynamic ant colony optimization 
(DACO) is mainly designed to solve MO-FAP by mod-
eling it as a dynamic problem through dividing this static 
problem into smaller sub-problems, which are then 
solved in turn in a dynamic process. Several novel and 
existing techniques are used in this study to improve the 

performance of DACO. One of these techniques is apply-
ing the concept of a well-known graph colouring algo-
rithm, namely Recursive Largest First (RLF), which was 
proposed in [15]. RLF has not been used in ACO for the 
static FAP in the literature. Furthermore, this study com-
pares DACO using two visibility definitions (see Section 
5.3). The first definition is based on the number of feasi-
ble frequencies, which was previously used in ACO for 
the graph colouring problem (GCP) [10]. The second one 
is based on the degree, which was previously used in 
ACO for the GCP [12]. Additionally, we compare 
DACO using two trail definitions (see Section 5.4). The 
first one is between requests and frequencies, which was 
previously used in ACO for the static FAP [13]. Note that 
ACO in [13] decreases the level of trail for bad solutions, 
whereas we increase the level of trail for the unassigned 
requests for all available frequencies in order to be more 
attractive to be selected. This technique was previously 
used in ACO for the examination scheduling problem 
[11]. The second trail definition considered in this study 
is between requests and requests, which was previously 
used in ACO for the GCP [12]. 

This paper is organised as follows: the next section 
gives an overview of the static MO-FAP. Section 3 pre-
sents the modeling the static MO-FAP as a dynamic 
problem, section 4 shows the graph coloring model for 
the static MO-FAP. Section 5 presents the main compo-
nents of our DACO algorithm for the static MO-FAP. 
Results of this algorithm are given and discussed in Sec-
tion 6 before this study finishes with conclusions.    

2 Overview of the Static MO-FAP   

The main concept of the static MO-FAP is assigning a 
frequency to each request while satisfying a set of con-
straints and minimizing the number of used frequencies. 
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The static MO-FAP can be defined formally as follows: 
given 

 a set of requests  R = {𝑟1, 𝑟2, … , 𝑟NR}, where NR is the 
number of requests, 

 a set of frequencies F = {𝑓1, 𝑓2, … , 𝑓NF} ⊂ ℤ+, where NF 

is the number of frequencies, 
 a set of constraints related to the requests and frequencies 

(described below), 

the goal is to assign one frequency to each request so that 
the given set of constraints are satisfied and the objective 
function is minimized, where the objective function is 
minimizing the number of used frequencies. Note that the 
frequency that is assigned to requests 𝑟𝑖  is denoted 
as 𝑓𝑟𝑖 throughout of this study. The static MO-FAP has 
four variants of constraints as follows: 

1. Bidirectional Constraints: this type of constraint forms 
a link between each pair of requests  {𝑟2𝑖−1, 𝑟2𝑖} , 
where  𝑖 = 1, . . . , 𝑁𝑅/2. In these constraints, the fre-
quencies 𝑓𝑟2𝑖−1

 and 𝑓𝑟2𝑖
that are assigned to 𝑟2𝑖−1 

and 𝑟2𝑖, respectively, should be distance 𝑑𝑟𝑖𝑟𝑗
 apart. In 

the datasets considered here, 𝑑𝑟𝑖𝑟𝑗
 is always equal to a 

constant value (238). These constraints can be written 
as follows:                  

| 𝑓𝑟𝑖
−  𝑓𝑟𝑗

|

=  𝑑𝑟𝑖𝑟𝑗
 

for 𝑖 = 1, … , NR/2 (1) 

2. Interference Constraints: this type of constraint forms 
a link between a pair of requests {𝑟𝑖 , 𝑟𝑗}, where the pair 
of frequencies  𝑓𝑟𝑖 and  𝑓𝑟𝑗

 that is assigned to the pair 
of requests 𝑟𝑖  and  𝑟𝑗 , respectively, should be more 
than distance 𝑑𝑟𝑖𝑟𝑗 apart. These constraints can be 
written as follows:  

| 𝑓𝑟𝑖
−  𝑓𝑟𝑗

|

>  𝑑𝑟𝑖𝑟𝑗
 

for 1 ≤ 𝑖 < 𝑗 ≤ NR (2) 

3. Domain Constraints: the available frequencies for 
each request 𝑟𝑖  are denoted by the domain 𝐷𝑟𝑖 ⊂ 𝐹, 
where  ∪𝑟𝑖∈𝑅 𝐷𝑟𝑖 = 𝐹. Hence, the frequency which is 
assigned to 𝑟𝑖  must belong to  𝐷𝑟𝑖 . For the datasets 
considered in this study, there are 7 available domains. 

4. Pre-assignment Constraints: for certain requests, the 
frequencies have already been pre-assigned to given 
values i.e.  𝑓𝑟𝑖

= 𝑝𝑟𝑖 , where 𝑝𝑟𝑖 is given value.  

3 Modeling the Static MO-FAP as 

a Dynamic Problem 

In this approach, the static MO-FAP is broken down into 
smaller sub-problems, each of which is considered at a 
specific time period. To achieve this, each request is 
given an integer number between 0 and 𝑛 (where 𝑛 is a 
positive integer) indicating the time period in which it 

becomes known. In effect, the problem is divided into 
𝑛 + 1  smaller sub-problems   𝑃0 ,  𝑃1, … , 𝑃𝑛 , where n is 
the number of sub-problems after the initial sub-problem 
𝑃0 . Each sub-problem  𝑃𝑖  contains a subset of requests 
which become know at time period 𝑖. The initial sub-
problem 𝑃0 is solved first at time period 0. After that, the 
next sub-problem 𝑃1 is considered at time period 1 and 
the process continues until all the sub-problems are con-
sidered. In this study, we found that the number of sub-
problems does not impact on the performance of the ap-
proach for solving the static MO-FAP, so the number of 
sub-problems is fixed at 21 (i.e. n = 20).  

Based on the number of the requests known at time 
period 0 (belonging to the initial sub-problem 𝑃0), 10 dif-
ferent versions of a dynamic problem are generated. 
These versions are named using percentages which indi-
cate the number of requests known at time period 0. 
These 10 versions are named 0%, 10%, 20%, 30%, 40%, 
50%, 60%, 70%, 80%, 90% (note that 100% means all 
the requests are known at time period 0 and so corre-
sponds to the static MO-FAP).  

An example of how a static MO-FAP is modeled as a 
dynamic problem is illustrated in Figure 1, where each 
node represents a request, each edge a bidirectional or 
interference constraint and each color a time period in 
which a request becomes known for the first time. 

After breaking the static MO-FAP into smaller sub-
problems, these sub-problems will be solved in turn.   

 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 1. An example of modeling a static MO-FAP as a dy-
namic problem over 3 time periods. 

4 Graph Coloring Model for the 

Static MO-FAP 

The graph coloring problem (GCP) can be viewed as an 
underlying model of the static MO-FAP [16]. The GCP 
involves allocating a color to each vertex such that no 
adjacent vertices are in the same color class and the num-
ber of colors is minimized. The static MO-FAP can be 
represented as a GCP by representing each request as a 
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vertex and a bidirectional or an interference constraint as 
an edge joining the corresponding vertices. 

One useful concept of graph theory is the idea of 
cliques. A clique in a graph can be defined as a set of 
vertices in which each vertex is linked to all other verti-
ces. A maximum clique is the largest among all cliques 
in a graph. Vertices in a clique have to be allocated to a 
different color in a feasible coloring. Therefore, the size 
of the maximum clique acts as a lower bound on the min-
imum number of colors. 

As the requests belong to different domains, the graph 
coloring model for each domain can be considered sepa-
rately and then a lower bound on the number of frequen-
cies that is required from each domain can be calculated. 
An overall lower bound on the total number of frequen-
cies for a whole instance can also be calculated in a sim-
ilar way. A branch and bound algorithm is used to obtain 
the set of all maximum cliques for each domain within 
each sub-problem.  

5 Overview of the Dynamic Ant 

Colony Optimization 

A key decision when designing DACO is how to choose 
the solution space and cost function, request and fre-
quency selection, visibility definitions, trail definitions 
and descent method. 

5.1 Solution Space and Cost Function         

The solution space of DACO is defined as the 
set of all possible feasible assignments, that is, 
satisfying all of the constraints. The corresponding 
cost function is defined as the number of unassigned 
requests.  

5.2 Request and Frequency Selection 

DACO selects a frequency 𝑓𝑗  greedily by selecting the 
one which can be assigned feasibly to the most requests. 
If there is more than one candidate frequency, then one 
of them is randomly selected. After that, the frequency 
𝑓𝑗 is sequentially feasibly assigned to all possible re-
quests until no more can be feasibly assigned. The order 
of selecting requests from among those that are feasible 
for 𝑓𝑗 is based on probability 𝑝𝑟𝑖𝑓𝑗

 given by Formula 3.  
 

                                   
𝜏𝑟𝑖𝑓𝑗

𝛼 .𝜂𝑟𝑖𝑓𝑗

𝛽

∑ 𝜏𝑟𝑖𝑓𝑘
𝛼  .𝜂

𝑟𝑖𝑓𝑘

𝛽
𝟏

𝑓𝑘∈𝑮

        if  𝑓𝑗 ∈

𝐺𝑟𝑖
                                                                                                                        

                               0                                        oth-

erwise            

 

where 𝐺𝑟𝑖
 is the set of frequencies which can be feasi-

bly assigned by an artificial ant to the request 𝑟𝑖, The vis-
ibility 𝜂𝑟𝑖𝑓𝑗

 of a request 𝑟𝑖 to be assigned a frequency 𝑓𝑗 
is defined in Section 3.3 and the trail 𝜏𝑟𝑖𝑓𝑗

 is defined in 
Section 3.4. The parameters 𝛼, 𝛽 ≥ 0 control the relative 
significance of the pheromone trail 𝜏𝑟𝑖𝑓𝑗

 against the visi-
bility 𝜂𝑟𝑖𝑓𝑗

. 
After that, a different frequency is selected in the same 

way and this process is repeated until all requests are fea-
sibly assigned, if possible. This process is inherited from 
a well-known graph colouring algorithm, namely recur-
sive largest first. In fact, applying recursive largest first 
aims to improve the performance of selecting frequencies 
and requests to be assigned. In contrast, ACO for the 
MO-FAP in the literature (see e.g. [13]) frequently se-
lects a request based on probability and then assign it to 
a feasible frequency.  

5.3 Visibility Definitions 

The visibility gives some indication of the desirability 
of choosing a request based on the experience of previous 
ants. Hence, the visibility of a request acts as a greedy 
heuristic. In this study, two types of visibility definition 
are applied and compared. These two visibilities are de-
fined as follows:  

 
i) Visibility 𝜂𝑟𝑖𝑓𝑗

 of a request 𝑟𝑖 to be assigned a fre-
quency 𝑓𝑗 is based on the number of feasible frequencies 
for 𝑟𝑖 (𝑁𝐹𝐹𝑟𝑖

), which is given by Formula 4. 
                                         𝜂𝑟𝑖𝑓𝑗

=
1

𝑁𝐹𝐹𝑟𝑖
+1

                                                     

(4) 
This definition prioritises those requests that have 

fewer feasible frequencies. This type of visibility defini-
tion was previously used in ACO for the graph colouring 
problem (GCP) [10].  

 
ii) Visibility 𝜂𝑟𝑖𝑓𝑗

 of a request 𝑟𝑖 to be assigned a fre-
quency 𝑓𝑗 is based on the degree of 𝑟𝑖 (𝐷𝐸𝐺𝑟𝑖

), which is 
defined as the numbers of unassigned requests that can-
not be assigned feasibly to 𝑓𝑗  and have a common inter-
ference constraint with 𝑟𝑖 . This visibility is given by For-
mula 5.    

                                   𝜂𝑟𝑖𝑓𝑗
=  𝐷𝐸𝐺𝑟𝑖

+ 1                                                  
(5) 

This visibility looks ahead and prioritises requests that 
have more constraints in common with other requests 
that cannot be assigned to the frequencies being consid-
ered currently. This visibility definition was previously 
used in ACO for the GCP [12]. 

 
A request from among those that are feasible for the se-
lected frequency 𝑓𝑗  is selected based on the probability 
given by Formula 3 Here, assume that the trail and the 
parameters 𝛼 and 𝛽  in Formula 3 are set to one. Then, 

𝑝𝑟𝑖𝑓𝑗
 = 

(3) 
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the probability of selecting a request based on the two 
visibility definitions would be calculated as follows: 

 
i) The probability of selecting each request using the 

first visibility definition is given in Table 1. Note that the 
number of feasible frequencies of each request (𝑁𝐹𝐹𝑟𝑖

) is 
invented and cannot be deduced from Figure 1. 

 
Table 1.  Requests selection based on probability using the first defi-

nition of visibility. 
 𝑟1 𝑟3 𝑟5 𝑟7 Σ 

𝑁𝐹𝐹𝑟𝑖
 1 2 3 4  

1

𝑁𝐹𝐹𝑟𝑖
+ 1

 1 1/2 1/3 1/4 25/1
2 

𝑝𝑟𝑖𝑓𝑗
 0.4

4 
0.2

8 
0.1

3 
0.1

5 1 

 
ii) The probability of selecting each request 

using the second visibility definition is given in 
Table 2. Note that the degree of each request 
(𝐷𝐸𝐺𝑟𝑖

) can be deduced from Figure 1. 
 
 
 
Table 2.  Requests selection based on probability using 

the second definition of visibility 
 𝑟1 𝑟3 𝑟5 𝑟7 Σ 

𝐷𝐸𝐺𝑟𝑖
 3 0 1 1  

𝐷𝐸𝐺𝑟𝑖
+

1 
4 1 2 2 9 

𝑝𝑟𝑖𝑓𝑗
 

0.4
4 

0.1
1 

0.2
2 

0.2
2 

1 

 
In both cases, once the probabilities have 

been calculated, one request is selected proba-
bilistically.  

5.4 Trail Definitions      

The purpose of the trail within DACO is to provide 
information about previous construction solutions to in-
fluence future constructions. In this study, two different 
trails are defined, where the initial values of these trails 
are set to one. Moreover, evaporation and updating of 
these trails are discussed. The definitions of these trails 
are given as follows: 

i) Trail between requests and frequencies (𝑇𝐴  𝑅𝐹): the 
key component of a solution is to decide to which fre-
quency each request is assigned. Therefore, the most ob-
vious trail definition is between each request and each 
frequency, which is also previously used in ACO for the 
static FAP [14]. The value of the trail indicates the qual-
ity of previous solutions when a request is assigned to a 
frequency.  

ii) Trail between requests and requests (𝑇𝐴  𝑅𝑅): pre-
vious work on the graph colouring problem (GCP) in 
[12] found that a trail between nodes and nodes was more 
successful than a trail between nodes and colours. This is 
because the important aspect of a graph colouring solu-
tion is not in which colour each node is placed, as the 

colours are interchangeable. The important aspect is 
which nodes are placed together in the same colour class. 
When considering the static FAP, clearly the actual fre-
quency to which each request is assigned is important. 
However, given the static FAP has the same underlying 
model as the GCP, we decided to investigate whether a 
trail based on which requests are assigned to the same 
frequencies could be advantageous.  

This trail measures the success of previous solutions 
when requests are assigned to the same frequency us-
ing 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅, which is the average trail between 
the prospective request and all requests already assigned 
to the candidate frequency 𝑓𝑗, which is defined by For-
mula 6. 

                         𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝐴 𝑅𝑅{𝑟𝑖}  =

∑
 𝑇𝐴 𝑅𝑅{𝑟𝑖,𝑟𝑗} 

|𝐻|+1 𝑟𝑗∈𝐻,𝑖≠𝑗                               (6)  
where 𝐻 is the set of requests already assigned to fre-

quencies 𝑓𝑗.  

5.4.1 Trail Evaporation    

Both types of trail are evaporated after each genera-
tion by multiplying the trail by the evaporation parame-
ter, which will be determined experimentally The trail 
evaporation can be defined by Formula 7. 

                                           𝜏𝑟𝑖𝑓𝑗
←  𝜌 . 𝜏𝑟𝑖𝑓𝑗

                                                     
(7) where the evaporation parameter 𝜌 is in the range [0, 
1).   

 

5.4.2 Trail Updates 

The trails are updated using two reward functions, 
namely Cost1 and Cost2, which are defined as follows: 

- Cost1: counts the number of used frequencies in 
the current solution. This is appropriate when a 
solution is feasible.   

- Cost2: counts the number of unassigned re-
quests in the current solution. This is appropri-
ate when a solution is infeasible.       

The values of  𝑇𝐴 𝑅𝐹 could have been updated using For-
mula 8.  

                 𝑇𝐴 𝑅𝐹{𝑟𝑖 , 𝑓𝑗} = 𝑇𝐴  𝑅𝐹{𝑟𝑖 , 𝑓𝑗} +
20

𝐶𝑜𝑠𝑡1+ 𝐶𝑜𝑠𝑡2− 𝐵𝑒𝑠𝑡 + 1
                    (8) 

where 𝐵𝑒𝑠𝑡 is the best minimum number of used fre-
quencies found so far in the search. Note that 𝐶𝑜𝑠𝑡1 +
 𝐶𝑜𝑠𝑡2 − 𝐵𝑒𝑠𝑡  can be equal to 0 when 𝐶𝑜𝑠𝑡1 = 𝐵𝑒𝑠𝑡 
and 𝐶𝑜𝑠𝑡2 = 0. Thus, we add 1 to the denominator of the 
last term in Formula 8. A similar trail update function 
was previously used in ACO for the GCP [12].  

 
Similarly, the values of  𝑇𝐴  𝑅𝑅 are updated using For-

mula 9.   
                     𝑇𝐴 𝑅𝑅{𝑟𝑖 , 𝑟𝑗} = 𝑇𝐴 𝑅𝑅{𝑟𝑖 , 𝑟𝑗} +

20

𝐶𝑜𝑠𝑡1+ 𝐶𝑜𝑠𝑡2− 𝐵𝑒𝑠𝑡 + 1
                  (9) 

Another problem of trail updates is that only requests 
that have been assigned to frequencies are updated. 
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Therefore, the trail values on any unassigned requests are 
not increased, meaning such requests are likely to be se-
lected even later in the following construction processes. 
As we would prefer to consider them earlier in the con-
struction process, the trail is increased on each unas-
signed request for all available frequencies. This idea 
was previously used in ACO for the examination sched-
uling problem [11]. 

5.5 Descent Method     

This method is executed only when no feasible solu-
tion can be found by all ants in a generation for a sub-
problem. In such generations, the descent method is exe-
cuted only for one ant which constructs the infeasible so-
lution with the minimum number of unassigned requests. 
First, these requests are assigned to the frequencies 
which lead to the least number of violations. Then, the 
descent method aims to reduce the number of violations 
with a fixed number of frequencies to find a feasible so-
lution, if possible 

5.6 The DACO Algorithm Implementation   

DACO solve each sub-problem through given number 
of generations, each of which contains a given number of 
ants, where each ant individually constructs a solution. 
Each ant starts constructing a solution by selecting a fre-
quency to be assigned to all possible feasible requests. 
The process is repeated until no frequencies can be se-
lected (see Section 5.2). After all ants in the current gen-
eration construct their solutions, if no feasible solution 
can be found, then the descent method (see Section 5.5) 
is used to attempt to achieve a feasible solution. Then, 
the trail is evaporated and updated (see Section 5.4.1 and 
5.4.2). After that, the next generation is executed by the 
same process. The overall structure of the DACO algo-
rithm is illustrated in Figure 2. 
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Fig. 2. Overall structure of our DACO algorithm for each 
sub-problem of the static MO-FAP 
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6 Experiments and Results 

This section presents and compared the performance 
of DACO in three sections. The first section gives the 
results of DACO for the static FAP. The second section 
compares the performance of DACO with existing ACO 
algorithms in the literature.  

DACO is implemented in FORTRAN 95 and all ex-
periments were conducted on a 3.0 GHz Intel Core I3-
2120 Processor (2nd Generation) with 8GB RAM and a 
1TB Hard Drive.  

6.1 Results Comparison of the DACO 

Algorithm   

In this study, the number of generations of DACO is 
100, where this number is selected based on experiments. 
Moreover, the performance of DACO is compared based 
on several options of the following components:  

1. The number of ants, 
2. The trail definition, 
3. The visibility definition, 
4. The parameters 𝛼, 𝛽  𝑎𝑛𝑑 𝜌 

Different values of the number of ants, two options of 
the trail definition and two options for visibility defini-
tion are compared. For the parameters  𝛼, 𝛽 and 𝜌, three 
values of each parameter are tested. By considering all 
these options, there are 756 versions of ACO to be com-
pared. Moreover, each version is tested on 10 instances 
with 5 runs being performed on each instance. Therefore, 
considering all the versions of ACO take excessive time. 
Hence, the comparison is made for each component 
while fixing the others; i.e. first, different numbers of 
ants are compared while fixing the remaining compo-
nents. After selecting the best number of ants, the two 
different trail definitions are compared. After that, two 
definitions of the visibility are compared and finally, dif-
ferent values of the parameters (𝛼, 𝛽 and 𝜌) are compared 
in the same way. Based on experiments, the best values 
of the parameters and number of ants given in Table 3. 

 
Table 3. The best values of the parameters and number of ants 

based on experiments. 
      𝛼  𝛽  𝜌 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑠 

3 2 0.78 20 
 
Moreover, the performance of DACO using 𝑇𝐴 𝑅𝐹 is 

better than using 𝑇𝐴  𝑅𝑅.  The performance of DACO 
using the two types of trail definitions is shown in Figure 
3 (for the instances in which feasible solutions are 
found).  

 
 
 
      

      
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. The performance of DACO using two types of trail 
definitions. 

 
It is found by the Wilcoxon signed-rank test at the 0.05 

significance level that there is a significant difference be-
tween the performances of DACO using  𝑇𝐴 𝑅𝐹 
and  𝑇𝐴 𝑅𝑅.  

Moreover, the performance of DACO using the first 
definition of visibility better than the second one.  

6.2 Results Comparison with Existing ACO 

Algorithms   

The performance of our DACO is compared with exist-
ing ACO in the literature. To the best of my knowledge, 
only one published research [13] applied ACO for the 
MO-FAP using CELAR and GRAPH datasets. Table 4 
shows the results in the form given in [13], i.e. in the 
form of (y) where y is the number of violations. Note that 
y is equal to 0 means a feasible solution is found. 
  
 

Table 4. Results of DACO and existing ACO algorithm in the litera-
ture. 

 

Instance ACO [13] Our DACO 

CELAR 01 (0) (0) 
CELAR 02 (0) (0) 
CELAR 03 (0) (0) 
CELAR 04 (8) (0) 
CELAR 11 (2) (1) 
GRAPH 01 (0) (0) 
GRAPH 02 (0) (0) 
GRAPH 08 (0) (0) 
GRAPH 09 (0) (0) 
GRAPH 14 (0) (0) 

 
Table 4 shows that both of the algorithms struggled to 
find a feasible solution for CELAR 11. Moreover, ACO 
in [13] could not achieve a feasible solution for CELAR 
04, whereas our DACO could. Overall, our DACO algo-
rithms performing better than ACO in [13]. 
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7 Conclusions 

In this study, the DACO was introduced to solve the 
static MO-FAP by modeling it as a dynamic problem 
through dividing this static problem into smaller sub-
problems, which are then solved in turn in a dynamic pro-
cess. Several novel and existing techniques have been 
used. One of the techniques was applied to improve the 
performance of DACO is the recursive largest first. In 
fact, this technique aims to improve the performance of 
selecting frequencies and requests to be assigned. More-
over, DACO was compared using two trail definitions 
and two visibility definitions. It was found that using the 
trail between requests and frequencies led to better per-
formance than the other trail definition. Moreover, using 
the visibility definition based on the number of feasible 
frequencies resulted in better performance than another 
visibility definition. Furthermore, several values for the 
parameters 𝛼, 𝛽, 𝜌 were compared. 

DACO is combined with a descent method to achieve 
better results when no feasible solution can be found in a 
generation. In such generations, the descent method is 
executed for only one ant which constructs the infeasible 
solution with the minimum number of unassigned re-
quests. Overall, our DACO algorithm performed better 
than ACO in the literature. 
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