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Abstract: - In last two decades the growing life expectancy has spiralled the prevalence of neurogenerative 
disorder such as Dementia among elderly population posing a significant challenge to mental health globally. 
The dementia is generally characterized by progressive cognitive decline which it affects memory, thinking, 
behaviour, and the ability to perform everyday activities. Early diagnosis and intervention are crucial for 
improving patient outcomes and managing the societal burden of dementia. The primary aim of this study is to 
deploy various machine learning models such as Logistic Regression, K-Nearest Neighbour (KNN), Support 
Vector Machine (SVM), Decision Tree, Random Forest (RF). Extreme Gradient Boosting (XGBoost) for the 
classification of Dementia. The suitable features required for the classification is determined through efficient 
filter-based and wrapper-based feature selection techniques. The experimental evaluation of machine learning 
models is performed using standard metrics such as accuracy, precision, recall and F1 score. Furthermore, 
Explainable AI (XAI) techniques such as SHAP and LIME are employed to interpret the black-box nature of 
these models, offering transparency and insights into the contribution of individual features to the model 
predictions. The thorough evaluation of machine learning models exhibited that Random Forest outperforms 
other models with an accuracy of 96%, with CDR identified as a key predictor through XAI analysis. 
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1. Introduction 
 
Dementia is a sickness that can result from several 
illnesses that gradually harm the brain and kill nerve 
cells, impairing cognitive function (i.e., the capacity 
to think critically) more than would be predicted 
from the normal ageing process. The physical, 
psychological, social, and economic aspects of 
dementia affect not just the person with the disease 
but also their family, caretakers, and society at 
large. There is often a lack of awareness and 
understanding of dementia, resulting in 
stigmatization and barriers to diagnosis and care. 
Dementia, a condition characterized by cognitive 
decline, can be caused by various illnesses and 
injuries that affect the brain, either directly or 
indirectly. The most common form, accounting for 
60–70% of cases, is Alzheimer’s disease. Other 
types include dementia with Lewy bodies, marked 

by abnormal protein deposits in nerve cells, 
dementia caused by vascular disease, and conditions 
that exacerbate frontotemporal dementia, in volving 
the degeneration of the brain’s frontal lobe. Clear 
differentiations among the different types of 
dementia are often lacking, and mixed forms are 
commonly found to coexist. Currently ranking as 
the seventh most common cause of death 
worldwide, dementia is also a major contributor to 
impairment and dependency in the elderly 
population [1]. Someone in the world develops 
dementia every 3 seconds. Currently dementia 
affects over 55 million people worldwide, with over 
60% of them residing in low- and middle-income 
countries. The numbers will almost double every 20 
years, reaching 78 million in 2030 and 139 million 
in 2050 [2]. There is a serious possibility that the 
number of dementia cases in India would rise. In 
India, the estimated prevalence of dementia among 
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persons 60 years of age and older is 7.4%. 
Approximately 8.8 million Indians who are older 
than 60 suffer from dementia. In both rural and 
urban regions, dementia is more common in women 
than in men. There is notable variance in the 
prevalence of dementia between states [3]. Clinical 
diagnosis of dementia is based on neurological tests, 
cognitive evaluations, and a thorough medical 
history collected from patients and their family 
members. Additional tests such as haematology, CT 
scans, and MRI scans are conducted to eliminate 
other potential causes of dementia. 
Neuropsychological tests are particularly important 
for identifying impairments in various cognitive 
functions. Despite the existence of several clinical 
measures for early dementia diagnosis, a significant 
degree of subjectivity persists. There is an urgent 
need to create more dependable diagnostic tools. 
 
The precise identification of cognitive impairment is 
essential, not only for the individuals affected but 
also for advancing the medical field. The manual 
process of diagnosing cognitive impairment in 
clinical environments takes a lot of time and may 
involve a number of different pieces of evidence, 
such as reports from informed informants, 
laboratory study results, and data from 
neuropsychological tests. The practitioner’s level of 
expertise influences the diagnostic’ efficacy and 
precision. Classification and early dementia 
diagnosis will be substantially more challenging in a 
number of isolated locations with a shortage of 
trained workers. Machine learning embodies a 
sophisticated computational technology that 
enhances the analysis of medical data and 
autonomously derives diagnostic outcomes [4]. In 
the classification and diagnosis of dementia, 
machine learning has become a potent instrument 
that offers substantial improvements in early 
detection, accuracy, personalised medication, 
research insights, and resource optimisation. By 
analyzing large datasets comprising diverse sources 
of data such as medical records, imaging data (MRI, 
CT scans), and neuropsychological test results, 
machine learning algorithms can detect subtle 
patterns indicative of dementia at early stages. This 
early detection enables timely interventions and 
treatment planning, potentially slowing down 

disease progression and improving patient 
outcomes. Moreover, machine learning models 
integrate various data sources and learn complex 
patterns that might not be readily visible to human 
clinicians, leading to more accurate and reliable 
diagnostic predictions and reducing misdiagnosis 
rates. 
 
While AI has made remarkable advancements and is 
increasingly integrated into daily life, many AI-
powered systems function as "black boxes," 
providing limited transparency into how decisions 
are made. This opacity creates challenges, especially 
when understanding how AI systems arrive at 
critical conclusions, such as a medical diagnosis. In 
high-stakes applications like healthcare, it is crucial 
to understand the reasoning behind specific 
decisions. Explainable Artificial Intelligence (XAI) 
addresses this need by adding a layer of 
transparency to these models, promoting systems 
that clarify their internal workings and offering 
valuable insights into the factors influencing their 
outputs. By integrating explainability, AI becomes 
more trustworthy, accountable, and transparent, 
allowing clinicians and healthcare providers to 
engage with AI systems confidently. This is 
particularly important in dementia classification, 
where understanding how models weigh factors like 
cognitive test scores or brain volume metrics helps 
align AI decisions with medical expertise. XAI 
supports early interventions and improves patient 
outcomes by providing clear, comprehensible 
explanations, ensuring more ethical and informed 
clinical practice. 
 
Therefore, in our study we have considered machine 
learning models like Random Forest (RF), Extreme 
Gradient Boost (XGBoost), K-Nearest Neighbours 
(KNN), Logistic Regression, Decision Tree and 
Support Vector Machine (SVM) to detect the 
presence of dementia as a binary classification 
problem. The models are trained on the features 
selected from the dataset using Recursive Feature 
Elimination (RFE) approach and assessed based on 
metrics like accuracy, recall, precision, and F1 
score. Additionally, to ensure transparency and trust 
in these predictive models, we incorporated 
Explainable AI (XAI) techniques like SHAP 
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(Shapley Additive Explanations) and LIME (Local 
Interpretable Model-agnostic Explanations). By 
utilizing XAI, we provide insights into how specific 
features, such as Clinical Dementia Rating (CDR) or 
brain volume measurements, contribute to the 
model's decisions, making the results more 
interpretable for clinicians and fostering greater 
confidence in AI-assisted healthcare. This 
interpretability is crucial in translating machine 
learning outcomes into actionable medical 
decisions. 
 
The main contributions of this research article are 
provided below: 

 We performed relevant features selection 
for dementia classification using a 
combination of filter-based and wrapper-
based techniques. 

 We trained and evaluated multiple machine 
learning models such as Logistic 
Regression, K-Nearest Neighbour (KNN), 
Support Vector Machine (SVM), Decision 
Tree, Random Forest (RF), and Extreme 
Gradient Boosting (XGBoost) for dementia 
classification. 

 We interpreted predictions obtained from 
best performing models utilizing XAI 
techniques like SHAP and LIME providing 
insights into feature importance and 
model’s decision-making. 

The remainder of the paper is organized as follows: 
Section 2 reviews the related work, while Section 3 
outlines the proposed methodology. Section 4 
presents the results and offers a comprehensive 
discussion. Finally, Section 5 concludes the paper 
and highlights potential directions for future 
research. 
 

 

2. Related Work 
 
Deep learning (DL) and machine learning (ML) 
have made significant strides in a number of fields 
lately, providing answers to today’s problems. 
Machine learning methodologies have demonstrated 
considerable potential, particularly within the 

medical and healthcare domains, as evidenced by 
the utilization of machine learning techniques for 
the diagnosis of Alzheimer’s disease [5] or utilizing 
machine learning and deep learning architectures to 
identify dementia through speech patterns [6]. 
However, amidst the plethora of applications, 
dementia remains a pressing and complex 
degenerative disorder demanding urgent attention. 
Recognizing its severity, numerous researchers have 
earnestly engaged with the problem, striving to 
uncover effective solutions and interventions. 
Herzog et al., [7] utilized data from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database 
to propose a novel approach for analyzing structural 
changes in brain asymmetries. By employing 
supervised machine learning algorithms and 
convolutional neural networks, the study yielded 
promising outcomes. Specifically, they achieved 
accuracies of 92.5% and 75.0% for distinguishing 
between normal cognition and early or progressive 
dementia stages, and 93.0% and 90.5% for 
differentiating between normal cognition and 
Alzheimer’s Disease. This innovative pipeline 
presents an economical solution for dementia 
classification and holds promise for assisting in the 
diagnosis and monitoring of various brain 
degenerative disorders characterized by similar 
asymmetry changes. Castellazzi et al., [8] conducted 
research on distinguishing vascular dementia (VD) 
from Alzheimer’s disease (AD) and predicting the 
primary disease in patients with mixed VD-AD 
dementia profiles. The study included 60 subjects 
(33 AD, 27 VD) and utilized various regional 
metrics from resting-state fMRI and diffusion tensor 
imaging as input features for three machine learning 
algorithms: Artificial Neural Network (ANN), 
Support Vector Machine (SVM), and Adaptive 
Neuro-Fuzzy inference system (ANFIS). ANFIS 
emerged as the most effective algorithm, achieving 
a classification accuracy of over 84% using a 
limited feature set. When applied to the mixed VD-
AD group, ANFIS accurately predicted the 
prevalent disease in 77.33% of cases. Overall, the 
research demonstrated the robust discriminative 
ability of the proposed method in distinguishing 
between AD and VD profiles and highlighted its 
potential in aiding physicians’ diagnostic 
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assessments of dementia patients with ambiguous 
clinical presentations. 
 
James et al., [9] investigated the efficacy of machine 
learning algorithms in forecasting incident dementia 
within a 2-year period using data from 15,307 
memory clinic attendees without dementia. Their 
study aimed to compare the performance of these 
algorithms against established predictive models. 
Impressively, the machine learning algorithms 
outperformed the existing models, achieving a 
minimum accuracy of 90% with only 6 variables. 
Moreover, the assessment of the area under the 
receiver operating characteristic curve resulted in a 
value of 0.89, indicating strong predictive 
capability. These results highlight the capability of 
machine learning algorithms as valuable aids in 
clinical decision-making, particularly for accurately 
predicting dementia risk over a 2-year timeframe. 
Zhu et al., [10] conducted a study aimed at 
addressing the challenging issue of reliable 
diagnosis in the early stages of dementia. The study 
focused on creating and validating a novel machine 
learning-driven approach to aid in the initial 
diagnosis of normal cognitive function, mild 
cognitive impairment (MCI), very mild dementia 
(VMD), and dementia through the utilization of an 
informant-based questionnaire. A cohort of 5,272 
participants took part in the research, completing a 
questionnaire comprising 37 items. Three distinct 
feature selection techniques were utilized to 
pinpoint the most significant features, with 
Information Gain emerging as the most effective 
method. Following this, the prominent features, in 
conjunction with six classification algorithms, were 
employed to construct diagnostic models. Among 
the various classification models examined, the 
Naive Bayes algorithm exhibited superior 
performance, attaining an accuracy of 0.81, 
precision of 0.82, recall of 0.81, and an F-measure 
of 0.81. The results indicate that the proposed 
diagnostic model serves as a robust tool for 
clinicians in diagnosing the early stages of 
dementia, providing valuable support for timely 
intervention and treatment. Salem et al., [11] in their 
study, investigated dementia diagnosis by 
employing the 10/66 one stage dementia diagnostic 
algorithm, utilizing data collected from three 

community-based surveys conducted in Lebanon. 
They tackled dataset imbalance by implementing 
oversampling and undersampling techniques, along 
with employing cost- sensitive methods to mitigate 
training bias. Utilizing three times repeated, 10-fold 
stratified cross-validation, they fine- tuned model 
hyperparameters, including incorporation cost and 
oversampling/undersampling percentages. Their 
results unveiled the balanced random forest as the 
most resilient probabilistic model, utilizing a mere 
20 features and attaining an F2 score of 0.82, a G-
Mean of 0.88, and a ROC AUC of 0.88. 
Furthermore, the Calibrated Weighted SVM 
emerged as the top classification model with similar 
features, obtaining an F2-score of 0.74 and a ROC 
AUC of 0.80. Mirzaei et al., [12] utilized the 
Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) dataset, a publicly available resource 
designed to assess the feasibility of combining 
various imaging modalities, clinical evaluations, and 
neuropsychological assessments for measuring the 
progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). Their study 
focused on leveraging deep learning approaches, 
specifically convolutional neural networks (CNN) 
and recurrent neural networks (RNN), which have 
demonstrated remarkable accuracy without the need 
for extensive feature selection. Results indicated 
impressive accuracies of up to 96% for AD 
classification and 84.2% for MCI. Notably, these 
deep learning methods outperformed traditional 
machine learning techniques. The results emphasize 
the capacity of deep learning models to analyze 
neuroimaging data for diagnosing Alzheimer’s 
disease (AD) and mild cognitive impairment (MCI), 
presenting a hopeful pathway for improving 
diagnostic precision in clinical environments. 
 
Shahzad et al., [13] investigated the potential of 
instrumented gait assessment in home environments 
for the detection of Mild Cognitive Impairment 
(MCI), which serves as an early indicator of 
dementia. They gathered data from thirty 
individuals with mild cognitive impairment (MCI) 
and thirty cognitively normal (CN) sub- jects, 
utilizing shank-mounted inertial sensors in both 
standard and dual-task walking scenarios. The study 
evaluated various gait biomarkers derived from the 
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sensor signals and assessed their predictive power 
for MCI screening. Statistical analysis revealed 
significant differences in gait parameters between 
MCI and CN subjects, particularly under dual-task 
conditions. Through the utilization of machine 
learning models and feature selection techniques, 
the study developed a model to preliminarily screen 
for mild cognitive impairment (MCI) by utilizing 
gait biomarkers extracted from inertial sensors. The 
model achieved an accuracy of 71.67% and a 
sensitivity of 83.33%. These findings suggest the 
potential of gait assessment as a non-invasive and 
early screening tool for MCI, enabling timely 
intervention and treatment to mitigate dementia 
progression. Hane et al. [14] studied the utilization 
of deidentified clinical notes from different hospital 
systems collected over a decade to improve 
retrospective machine learning models focused on 
predicting the risk of Alzheimer’s disease and 
related dementias (ADRD). They utilized two years 
of data to forecast the onset of ADRD and 
transformed clinical notes into a 100- dimensional 
vector space to identify clusters of associated terms 
and sentiments. The findings demonstrated that the 
inclusion of clinical notes substantially enhanced the 
area under the curve (AUC), increasing it from 0.85 
to 0.94, and improved the Positive Predictive Value 
(PPV), which rose from 45.07% to 68.32% at the 
time of disease onset. Models incorporating clinical 
notes exhibited improved AUC and PPV in years 3-
6, aligning with increased note volume, although 
outcomes in years 7 and 8 with smaller cohorts 
yielded mixed results. These findings highlight the 
potential of deidentified clinical notes, collected via 
natural language processing across multiple hospital 
systems, to enhance the accuracy of risk models for 
ADRD prediction, offering valuable insights into 
early detection and improved patient care. 
Aschwanden et al. [15] conducted a study utilizing 
data from the Health and Retirement Study, which 
included nearly 10,000 participants aged 50 to 98 
years, to evaluate 52 possible indicators of cognitive 
decline and dementia. By integrating machine 
learning techniques with semi-parametric survival 
analysis, they discovered that African American 
individuals and those experiencing heightened 
emotional distress were at an increased risk for 
cognitive decline and dementia. Furthermore, 

sociodemographic variables such as lower 
educational levels and Hispanic ethnicity, along 
with health-related factors like declining subjective 
health and elevated BMI, were identified as 
significant indicators of cognitive decline. 
Surprisingly, cardiovascular factors and polygenic 
scores were found to have less predictive value than 
initially anticipated. The study concluded that 
broader factors like emotional distress and 
subjective health exerted greater influence than 
specific clinical and behavioral indicators. It 
emphasized the necessity of interdisciplinary 
collaborations and diverse methodological 
approaches to gain deeper insights into the intricate 
mechanisms underlying dementia and to effectively 
tackle this critical global health challenge. Jin et al., 
[16] developed a machine learning model using data 
from the Harmonized Diagnostic Assessment of 
Dementia for the Longitudinal Aging Study in India 
(LASI-DAD), a nationally representative study on 
late-life cognition and dementia in India involving 
4,096 participants. From a subsample of 2,528 
respondents, clinicians provided clinical consensus 
diagnoses of dementia. The study utilized 
comprehensive data from LASI-DAD, 
encompassing sociodemographic details, medical 
histories, cognitive screening outcomes, and 
informant interviews. Using a two-step process, 
numerous machine learning models underwent 
training and evaluation utilizing diverse metrics 
such as area under the receiver operating curve 
(AUROC), accuracy, sensitivity, specificity, 
precision, F1 score, and kappa statistic. Among 
these models, the support vector machine 
demonstrated the highest sensitivity (0.81), F1 score 
(0.72), and kappa (0.70), signifying substantial 
agreement and leading to its selection as the primary 
model. Upon application to individuals lacking a 
clinical consensus diagnosis, this model predicted a 
dementia prevalence of 7.4%. The research findings 
revealed that the chosen machine learning model 
exhibited exceptional discriminatory capability and 
substantial alignment with clinically accepted 
diagnoses, highlighting its potential as a decision 
support tool for dementia diagnosis. 
 
Machine learning algorithms, especially deep 
learning models, often lack transparency, which can 
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significantly impede trust in healthcare applications 
like dementia diagnosis. In critical healthcare 
settings, the absence of explainability in AI-driven 
decisions can lead to skepticism and hinder the 
adoption of these systems. Additionally, biases 
embedded in these algorithms can exacerbate 
inequalities, particularly affecting vulnerable 
populations. The need for AI systems in healthcare 
to be both accurate and interpretable is paramount 
for ensuring trust and fairness in diagnosis and 
treatment recommendations (Rai, 2020 , [17]). 
Lombardi et al. [18] established a comprehensive 
framework to categorize individuals into three 
groups: healthy controls, those exhibiting cognitive 
impairment, and individuals diagnosed with 
dementia, utilizing a range of cognitive metrics. 
Their research further examined the variability of 
SHAP (SHapley Additive exPlanations) values 
associated with the choices made by predictive 
models. They illustrated that SHAP values could 
effectively depict the influence of each cognitive 
metric on a patient’s cognitive condition. 
Additionally, longitudinal SHAP value analyses 
provided valuable insights into the progression of 
Alzheimer’s disease, identifying cognitive indexes 
most relevant for tracking neurodegeneration. This 
work highlights the potential of explainability 
indexes as markers to describe changes in cognitive 
status during both normal and pathological aging. 
These indexes offer a means to quantify the 
contribution of individual cognitive domains to 
overall patient health, thus enabling personalized 
neurodegeneration patterns and optimizing 
predictors for Alzheimer's classification (Lombardi 
et al., [18]). In recent studies, the application of 
machine learning algorithms has shown promise in 
the early diagnosis of mental health conditions, 
including schizophrenia, which has parallels in 
dementia diagnostics. Shivaprasad et al., [19] 
highlight the effectiveness of various classifiers, 
including Logistic Regression, SVM with linear 
kernel, and Ridge, in predicting schizophrenia with 
high accuracy rates ranging from 83% to 86%. Their 
research emphasizes the importance of feature 
selection and correlation analysis, demonstrating 
that specific attributes, such as age and sex, 
significantly contribute to predictive outcomes. 
Moreover, they employed five Explainable AI 

techniques—SHAP, LIME, QLattice, ELI5, and 
Anchor—to elucidate the decision-making processes 
behind their models. For instance, SHAP values 
were used to quantify feature importance, revealing 
critical insights into patient characteristics 
influencing predictions. This approach can inform 
the development of XAI methodologies for 
dementia, where understanding model behavior is 
crucial for clinical decision-making. The integration 
of such explainable frameworks can enhance trust 
and transparency in AI systems utilized within 
healthcare settings, ultimately aiding in faster and 
more accurate diagnoses of cognitive disorders like 
dementia (Shivaprasad et al., [19]). Bogdanovic, B., 
Eftimov, T. & Simjanoska, M., [20] explored recent 
advancements in understanding Alzheimer’s disease 
(AD) through the application of Explainable 
Machine Learning (ML) methods, particularly the 
SHAP (SHapley Additive exPlanations) framework, 
which has proven instrumental in enhancing model 
interpretability. SHAP enables both global and local 
interpretability, allowing researchers to ascertain 
how different features influence model predictions. 
A comprehensive dataset comprising 12,741 
individuals was utilized to test hypotheses regarding 
the causes and indicators of AD. Findings revealed 
that cognitive assessments, especially the Clinical 
Dementia Rating Scale Sum of Boxes (CDRSB), 
have a significant impact on diagnosis predictions, 
with higher CDRSB values correlating with more 
severe diagnoses. Additionally, the study 
highlighted the complex interplay of various 
features, such as education levels and MRI 
indicators, in diagnosing AD. Notably, it was found 
that AD cannot be attributed solely to genetic 
factors, age, or gender, indicating its multifactorial 
nature. These insights underscore the potential of 
explainable ML methods to provide valuable 
guidance for future research and clinical practices in 
AD, ultimately aiding in timely diagnoses and 
interventions. 
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3. Methodology 
 

3.1 Dataset Description 
The dementia dataset used in this study is sourced 
from Kaggle and includes records from 373 patients, 
divided into three categories: demented, non-
demented, and individuals who transition to a 
demented state due to delays or reluctance in 
seeking timely medical intervention. In the dataset, 
"demented" denotes individuals diagnosed with 
dementia, a degenerative condition marked by 
cognitive deterioration and memory impairment, 
while "non-demented" signifies subjects exhibiting 
standard cognitive function. The term "converted" 
pertains to patients initially identified as non-
demented but later diagnosed with dementia. In this 
study, "converted" patients are classified as 
"demented." The dataset includes various attributes 
recorded for each patient, such as Subject ID, MRI 
ID, Group, Visit, MR Delay, gender (M/F), 
handedness (Hand), age, education level (EDUC), 
socioeconomic status (SES), Mini-Mental State 
Examination (MMSE) score, Clinical Dementia 
Rating (CDR), estimated total intracranial volume 
(eTIV), normalized whole-brain volume (nWBV), 
and atlas scaling factor (ASF). Each entry provides 
invaluable insights into the demographic and 
clinical profiles of the subjects under investigation. 
 
3.2 Data Preprocessing 
This section focuses on describing the data 
preprocessing steps performed on the dementia 
dataset considered in the  present study. Initially, the 
exploratory data analysis is conducted by 
identifying missing values, outliers and checking  
for skewness. Missing values were found in two 
features in the dementia dataset namely ‘SES’, 
’MMSE’. The percentage of missing values in 
‘MMSE’ feature is insignificant (0.54%) and hence 
the rows corresponding to missing values are 
dropped. For missing values in ‘SES’(5.09%),the K-
Nearest Neighbours (KNN) imputation technique is 
used. KNN imputation operates on the premise that 
similar data points should exhibit similar values. 
Outliers were identified across all features in the 
dataset. IQR method, Z-Score method and 
Percentile method are used based on the distribution 
of the respected features as detailed in Table I. For 

the features in which outliers were detected, capping 
was performed. In process of capping we set a 
maximum and minimum threshold of a variable to 
limit outliers and the outliers detected are set to 
minimum or maximum limit based on their values. 
Subsequently, features having skewness are detected 
and transformed using Box Cox, Yeo Johnson and 
Log Transform to avoid bias in the further usage of 
features. 

TABLE I: Outliers Detected in Features 

Feature Distribution Tested Method 

Visit Skewed IQR 
MR Delay Skewed IQR 

CDR Skewed IQR 

EDUC Neither normal nor 
skewed 

Percentile 

MMSE Skewed IQR 

 

In this study, feature selection techniques such as 
supervised and unsupervised selection techniques 
are utilized. Features such as Subject ID, MRI ID 
and Hand are removed directly from the dataset due 
to their lack of relevance. Supervised feature 
selection techniques may be further divided into 
three categories, i.e. intrinsic, wrapper, filter 
methods. During the implementation, filter and 
wrapper-based methods are employed. For filter-
based method of feature selection, the input variable 
had both Numerical and categorical features which 
are separated. The output is categorical. Chi-
Squared and Mutual Information are applied on 
categorical features. Anova and Mutual Information 
are applied on numerical features. In wrapper-based 
method of feature selection, recursive feature 
elimination and iterative feature selection 
techniques are applied. The models Decision Tree, 
Random Forest, XGBoost and Logistic Regression 
are used as estimator for recursive feature 
elimination. The best results from all the feature 
selection techniques utilized are obtained from 
recursive feature selection with Random Forest as 
estimator and six features were chosen based on 
their relevance as shown in Figure 1. 
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Fig. 1: Feature Selection Using Recursive Feature  
Elimination and Random Forest as estimator 
 
3.3 Machine Learning Models 
 

3.3.1 Random Forest 

Random Forest is an ensemble learning technique 
that aggregates predictions from multiple decision 
trees to enhance both accuracy and robustness. 
During the training process, it constructs numerous 
trees and determines either the majority class for 
classification tasks or the mean prediction for 
regression tasks. Known for its effectiveness, 
scalability, and ability to handle complex, high-
dimensional datasets, Random Forest emerges as a 
prominent method in the realm of machine learning. 
 

3.3.2 XGBoost  

XGBoost presents an optimized distributed gradient 
boosting library crafted for efficiency, adaptability, 
and scalability. Employing a gradient boosting 
framework, it sequentially trains a conglomerate of 
weak learners, typically decision trees, 
amalgamating their predictions to refine accuracy. 
Widely recognized for its exceptional performance 
and speed, XGBoost serves as a cornerstone in 
various machine learning competitions. 
 
3.3.3 Decision Tree 

A decision tree is a supervised learning algorithm 
that excels in both classification and regression 
endeavours. It partitions datasets recursively into 
subsets based on the most informative features at 
each node, thereby creating a tree-like structure. 
Each leaf node encapsulates a class label or 
numerical value, rendering decision trees 

interpretable, visually intuitive, and proficient in 
capturing intricate data relationships. 
 
3.3.4 K-Nearest Neighbours 

KNN is a simple instance-based learning algorithm 
designed for both classification and regression 
purposes. It assigns labels to new data points by 
considering the majority class among their closest 
neighbours in the feature space. Devoid of 
assumptions regarding the underlying data 
distribution, KNN proves particularly adept  in 
handling datasets featuring complex decision 
boundaries. 
 
3.3.5 Support Vector Machine  
SVM, a formidable supervised learning algorithm, 
finds application in both classification and 
regression scenarios. By constructing hyperplanes in 
a high-dimensional feature space, SVM effectively 
segregates classes or predicts continuous outcomes. 
Its objective lies in maximizing the margin between 
classes while minimizing classification errors, 
thereby excelling in both linearly and non- linearly 
separable datasets. 
 
3.3.6 Logistic Regression 

Logistic Regression, categorized as a linear 
classification algorithm, is particularly useful in 
tasks involving binary classification. It works by 
modeling the probability of an input being assigned 
to a particular class through the logistic function. 
Despite its nomenclature, Logistic Regression 
operates as a classification rather than regression  
algorithm. Renowned for its simplicity, 
interpretability, and efficiency with linearly 
separable datasets, Logistic Regression stands as a 
foundational method in machine learning. 
 
 

3.4  Explainable AI Techniques 

 
3.4.1 SHAP (SHapley Additive exPlanations) 

SHAP is a game-theory-based method utilized to 
interpret the outcomes of machine learning models. 
It attributes an importance score to each feature 
based on how much it contributes to the final 
prediction. By calculating Shapley values for all 
possible feature combinations, SHAP offers a 
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comprehensive view of how individual features 
affect the model's prediction. Its consistency and 
ability to handle complex models make SHAP one 
of the most widely adopted explainability methods 
in the field. 
 
SHAP Summary Plot:  

The SHAP summary plot provides a consolidated 
representation of feature importance and their 
effects on model predictions, derived from SHAP 
values. In this visualization, features are ranked by 
their mean absolute SHAP values, with the most 
important features at the top and the least important 
at the bottom. Each dot in the scatter plot represents 
an individual observation for a particular feature. 
The Y-axis lists the features, while the X-axis 
displays the corresponding SHAP values, indicating 
the direction and magnitude of each feature’s effect 
on the predictions. This plot provides an in-depth 
analysis of how each feature influences the model’s 
outputs. 
 
SHAP Bar Plot: 
A SHAP bar plot visualizes the contribution of each 
feature to a machine learning model’s output by 
displaying the average magnitude of SHAP values 
across all predictions. The length of each bar 
represents how much influence a feature has on the 
model’s decisions, with longer bars indicating 
greater impact. Ranked by importance, this plot 
offers a clear, interpretable summary of the most 
influential features, making it especially useful for 
understanding complex models and ensuring 
transparency in predictions. 
 
SHAP Waterfall Plot: 

The waterfall plot visually represents the impact of 
individual features on the model’s prediction for a 
specific instance. Each row illustrates how a feature 
either positively (red) or negatively (blue) 
contributes to shifting the predicted value from the 
expected output, E[f(x)], which is the model's 
prediction based on the background data 
distribution, to the final prediction, f(x), for the 
given instance. The SHAP values, representing each 
feature's contribution, are accumulated to show how 
the model output transitions from a baseline value to 
the final prediction. This format effectively clearly 

illustrates how the model integrates evidence from 
all features to arrive at the predicted value. 

3.4.2 LIME (Local Interpretable Model-Agnostic 

Explanations)  

LIME is a model-agnostic explanation technique 
designed to interpret predictions of any black-box 
model. It operates by approximating the original 
model locally around the instance to be explained, 
using simpler interpretable models like linear 
regression or decision trees. By modifying the input 
data and analyzing the resulting changes in 
predictions, LIME provides a local surrogate model 
that helps understand the reasoning behind specific 
predictions. 

4. Results and Discussion 

The dataset undergoes partitioning into training and 
testing subsets, with an allocation ratio of 80:20 for 
the train-test split. In this study, cross-validation is 
also utilized for evaluation purposes, enhancing the 
reliability of the findings. Cross-validation stands as 
a statistical methodology vital for assessing the 
efficacy and resilience of machine learning models. 
This technique entails partitioning the dataset into 
distinct subsets, or folds, which are sequentially 
employed as both training and validation sets. By 
iteratively training and validating on various 
subsets, cross-validation provides a more reliable 
assessment of the model’s performance compared to 
a single train-test split. Figure 2 depicts the 
confusion matrix obtained for different machine 
learning models. 
 
The selection of the optimal classifier model 
involves considering several performance metrics. 
The formulas for these metrics in terms of True 
Positives (TP), True Negatives (TN), False Positives 
(FP), and False Negatives (FN) are presented in 
Equations (1) through (4), which are used in Table 
II. These equations are instrumental in evaluating 
the outcomes of different models. 
 

Accuracy = TP + TN             
TP + TN + FP + FN 

Precision =    TP  
TP + FP 

(1)  

 

(2) 
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Recall =     TP     

TP + FN 

F1 Score = 2 × (Precision × Recall) 
Precision + Recall 

 

 
(a) Confusion Matrix for Random Forest    (b) Confusion Matrix for XgBoost 

 

(c) Confusion Matrix for Decision Tree (d) Confusion Matrix for kNN 

(e) Confusion Matrix for SVM        (f) Confusion Matrix for Logistic Regression 

 Fig. 2: Confusion Matrix for Different Machine Learning Models for Dementia Classification 
TABLE II: Evaluation Metrics for Dementia Classification 

Model 
Cross-Validation Score Test Data 

Accuracy Precision F1 Recall Accuracy Precision F1 Recall 

Random Forest 0.95 0.93 0.95 0.98 0.96 0.92 0.96 1 
XGBoost 0.95 0.92 0.95 0.98 0.95 0.90 0.95 1 

Decision Tree 0.89 0.92 0.89 0.88 0.93 0.90 0.93 0.97 
KNN 0.75 0.74 0.77 0.82 0.84 0.85 0.83 0.81 
SVM 0.77 0.71 0.81 0.95 0.84 0.77 0.85 0.94 

Logistic Regression 0.52 0.74 0.77 0.82 0.48 0.48 0.65 1 

(3) 
(4) 
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4.1 Implementation and Evaluation of ML 

Models 

In this study, several machine learning models are 
evaluated for their effectiveness in classifying 
dementia. Random Forest is employed as an 
estimator in Recursive Feature Elimination (RFE) 
for feature selection, successfully identifying six 
key features and achieving high accuracy, precision, 
and recall. Its robust performance and 
interpretability, enhanced through SHAP and LIME 
analyses, lead to its selection as a final model. 
XGBoost, applied after feature selection, also 
demonstrates exceptional performance and strong 
predictive accuracy, supported by the same 
interpretability tools. 

Decision Trees are initially used for the 
classification of dementia on the dataset but are 
ultimately outperformed by Random Forest and 
XGBoost in predictive performance. K-Nearest 
Neighbours (KNN) is considered but not used due to 
limitations with high-dimensional data. Similarly, 
Support Vector Machines (SVM) are briefly 
explored but do not achieve the accuracy and 
scalability of the ensemble methods. Logistic 
Regression provides useful insights into linear 
relationships but is less effective in capturing the 
dataset's complexities. Ultimately, Random Forest 
and XGBoost outperform the other models, making 
them the preferred choices for this analysis. 
 

4.2 Implementation of XAI Techniques 

 

4.2.1 SHAP 

SHAP (SHapley Additive ExPlanations) is an 
interpretative framework grounded in game theory, 
designed to elucidate the outputs of machine 
learning models. It calculates SHAP values, which 
represent the contribution of each  
 
 
 

feature to a specific prediction, providing an 
intuitive and detailed understanding of feature 
influence. Features with larger SHAP values are 
deemed more significant, and their importance is 
visualized in descending order. As a model-agnostic 
approach, SHAP can be applied to any machine 
learning algorithm, offering consistent and 
interpretable insights into feature relevance. Its key 
innovation lies in defining a new class of additive 
feature attribution methods, with theoretical results 
establishing a unique solution that possesses 
desirable properties within this class. 
 
The SHAP summary plot for the Random Forest 
model regarding Class 0 (dementia) shown in Figure 
3(a) demonstrates the predominance of Cognitive 
Decline Rating (CDR) as the key predictor in the 
classification process. The plot reveals a 
pronounced clustering of blue dots at -0.4, 
indicating that lower CDR values are strongly 
associated with non-demented classifications. 
Conversely, the aggregation of red dots at 0.4 
illustrates that higher CDR scores correlate with an 
increased likelihood of dementia diagnosis. This 
clear delineation emphasizes the critical role of 
CDR in influencing model outcomes. Other 
features, such as Age and nWBV, present varied 
contributions, indicating relevance but being 
overshadowed by the dominant effect of CDR. 
 
In the context of the XGBoost model, the SHAP 
summary plot depicted in Figure 3(b) further 
emphasizes the significance of CDR in dementia 
classification. The blue dots positioned near 4 
suggest that lower CDR scores correspond to a 
reduced likelihood of the condition, while the red 
dots clustered around -4 (indicating higher CDR 
scores) suggest a greater probability of being 
classified as having dementia. This consistent 
finding across both models reinforces the conclusion 
that CDR serves as a vital predictor in identifying 
dementia. 
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(a) Dementia in Random Forest                          (b) Non dementia in XGBoost 

Fig. 3: SHAP Summary Plot  

              

              (a) Random Forest                                                                   (b) XGBoost 
Fig. 4: SHAP Bar Plot 

  

Fig. 5 SHAP waterfall plot of an instance of class 0 (dementia) using Random Forest 

In the SHAP bar plot for Random Forest model 
illustrated in Figure 4(a), the Clinical Dementia 
Rating (CDR) stands out with a SHAP value of 
+0.36, indicating a strong association between 
higher CDR scores and dementia presence. Other 
features, such as the Mini-Mental State Examination 
(MMSE) and normalized Whole Brain Volume 

(nWBV), have lower contributions of +0.05 and 
+0.03, respectively, suggesting that cognitive 
performance and brain volume are also relevant but 
less impactful. These are followed by Effective 
Total Intracranial Volume (eTIV) with a 
contribution of +0.03. Alzheimer's Severity Factor 
(ASF) and Age exhibit minimal influence with 
values of +0.02 and +0.01 respectively. In contrast, 
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the SHAP bar plot for  XGBoost model shown in 
Figure 4(b) assigns an even greater importance to 
CDR, with a SHAP value of +4.53, highlighting its 
critical role in dementia prediction. The eTIV, Age, 
and nWBV follow with SHAP values of +0.88, 
+0.71, and +0.61, respectively, indicating their 
meaningful contributions to the diagnosis. The 
MMSE retains significance (+0.44), while ASF 
shows no impact. Overall, both models affirm the 
pivotal role of CDR in diagnosing dementia, with 
variations in feature influence suggesting a 
multifaceted approach is essential for accurate 
predictions. 
 
The SHAP waterfall plot outlined in Figure 5 
deconstructs the classifier's prediction for an 
individual patient, elucidating the specific 
contributions of various features to the overall 
dementia assessment. This plot visually represents 
the shift from the expected value to the predicted 
outcome, highlighting how individual feature 
impacts align with the dementia diagnosis. In this 
instance, the model outputs a high prediction value 
of f(x)=0.97f(x) = 0.97f(x)=0.97, indicating a strong 
likelihood of dementia. The Clinical Dementia 
Rating (CDR) significantly influences the 
prediction, with a notable positive contribution of 
+0.41, demonstrating its critical role in identifying 
dementia. The contributions from other features, 
such as the Mini-Mental State Examination 
(MMSE), Effective Total Intracranial Volume 
(eTIV), Normalized Whole Brain Volume (nWBV), 
and Alzheimer's Severity Factor (ASF), further 
support this classification. Each of these features 
contributes positively to the prediction, with values 
of +0.04, +0.03, +0.02, and +0.01, respectively, 
indicating their relevance in the dementia context. 
 
Conversely, the Age feature exhibits a minor 
negative contribution of -0.01, suggesting that older 
age has a slight diminishing effect on the prediction, 
although it does not overshadow the significant 
positive influences of other features. This combined 
effect reinforces the classifier's identification of this 

patient as being dementia-positive. The insights 
drawn from the waterfall plot align with existing 
dementia research, highlighting the importance of 
these features in predicting dementia and confirming 
the patient's condition as consistent with clinical 
expectations. 
 
4.2.2 LIME 

 
LIME is a model-agnostic technique in Explainable 
AI that generates locally interpretable models to 
explain how individual features influence the 
predictions of complex machine learning systems. 
The LIME framework provides insight into 
individual model outputs by generating a local 
surrogate model that approximates the behaviour of 
the original model in the neighbourhood of a given 
prediction. Given its focus on localized 
explanations, LIME does not endeavour to elucidate 
all potential decisions a model may render across 
the entire input space. Rather, it selectively 
examines the features that contribute to the 
classification of a specific instance, providing 
insight into the model's decision-making process for 
that particular prediction. 
The Local Interpretable Model-agnostic 
Explanations (LIME) analysis of Figure 6 elucidates 
the contributions of various features influencing the 
prediction probabilities for a specific patient 
regarding dementia classification. The model 
predicts a high probability of class 0 (dementia) at 
0.99, while the probability of class 1 (non-dementia) 
is minimal at 0.01. The Clinical Dementia Rating 
(CDR) of 0.27, indicating borderline status, 
contributes a significant probability of 0.58 to the 
prediction of class 0. This value falls within the 
range of −0.00 < CDR ≤ 0.27, suggesting a tendency 
towards dementia. The Mini-Mental State 
Examination (MMSE) score of 91765708852.43 is 
notably high and reinforces the classification as 
demented, with a threshold of MMSE ≤ 
91765708852.43 adding an additional 0.08 
probability to class 0. 
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Fig. 6 LIME plot of an instance of class 0 (dementia) using Random Forest 
 

 

 
 

Fig. 7 LIME plot of an instance of class 0 (dementia) using XGBoost 
 

 

 
                                                                                        
                            (a) Random Forest                                                  (b) XGBoost 
                                                         Fig. 8 Feature contribution plot 
 
Conversely, the Alzheimer's Severity Factor (ASF) 
of 1.19 contributes positively to class 1, as indicated 
by the threshold 1.11 < ASF ≤ 1.19, adding a 
probability of 0.02. The Effective Total Intracranial 
Volume (eTIV) of 1477.00 also supports class 1, 
falling within the range of 1473.00 < eTIV ≤ 
1583.75, contributing 0.00 to the prediction for class 
0. Additionally, the Normalized Whole Brain 
Volume (nWBV) of 0.73 and the patient's Age of 
82.00 contributes 0.00 probabilities to classes 0 and 
1, respectively. Notably, similar results were 
obtained using the XGBoost model, as shown in 

Figure 7, along with LIME analysis, further 
reinforcing the reliability of the findings across 
various model interpretations. 
 
4.2.3 Feature Contribution 

 

Feature contribution, often referred to as feature 
importance, quantifies the influence of each feature 
on the predictions made by the model. This 
measurement can be derived for either the entire 
dataset or specific individual instances. 
Understanding feature importance not only aids in 
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interpreting complex models but also enhances 
model performance by identifying relevant features 
for inclusion and potentially eliminating irrelevant 
or redundant ones. Moreover, understanding feature 
importance is especially critical in high-stakes fields 
such as healthcare and finance, where 
comprehending the reasoning behind predictions is 
paramount for informed decision-making. 
 
In both the Random Forest and XGBoost models as 
shown in Figure 8, the Clinical Dementia Rating 
(CDR) emerges as the most significant predictor of 
dementia, with a stark contrast in importance 
compared to other features. In the Random Forest 
model, CDR has an importance score close to 0.6, 
while all other features have scores below 0.1. 
Similarly, in the XGBoost model, CDR's importance 
exceeds 0.8, with negligible contributions from 
other features. This consistent dominance of CDR 
across both models highlights its critical role in 
dementia classification, underscoring its relevance 
as a key determinant in predicting the condition. 

5. Conclusion 

Dementia represents a significant global health 
issue, with a shifting focus towards risk mitigation, 
early intervention, and prompt identification in 
elderly individuals, rather than solely seeking a 
cure. With the aging of society, the prevalence of 
dementia rises, impacting not only older adults but 
also a growing number of younger individuals 
afflicted by the condition. This study demonstrated 
the effectiveness of machine learning models for 
binary classification, accurately predicting the 
presence or absence of dementia among patients and 
categorizing them as either “Demented” or “Non-
Demented”. We utilized a range of machine learning 
models, encompassing Logistic Regression, KNN, 
SVM, Decision Tree, Random Forest, and 
XGBoost. After comparison, Random Forest 
demonstrated superior performance relative to the 
other models, attaining an impressive accuracy rate 
of 96%. From the Table II it can be concluded that 
XGBoost is the close competitor followed by 
Decision Tree.  

Additionally, to ensure transparency and 
interpretability, Explainable AI (XAI) techniques 
like SHAP (SHapley Additive exPlanations) and 
LIME (Local Interpretable Model-agnostic 
Explanations) were employed to analyze feature 
contributions. These techniques provided valuable 
insights into how specific features and clinical 
parameters contributed to the model's predictions. 
This interpretability enhances the trust and usability 
of machine learning models in clinical practice. As 
future work, these efficient models can be integrated 
with multimodal data sources such as neuroimaging, 
genetic, and clinical data to further enhance 
accuracy and understanding of disease progression. 
Investigating the development of interpretable 
machine learning models specific to clinical settings 
could also facilitate real-time adaptability by 
healthcare professionals. 
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