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Abstract: - The speed of evolution, measured by the number of mutations over a fixed number of years, varies 
greatly in various branches of the evolutionary tree. This paper proposes an evolutionary trend discovery 
algorithm that reveals the distinguishing characteristics of any branch of the evolutionary tree. The evolutionary 
trend discovery algorithm is designed to work with either fossil-based data or automatically generated data 
about the age of the internal nodes in the evolutionary tree. The evolutionary trend discovery algorithm 
estimates the missing age data using cubic spline interpolation. The evolutionary trend discovery algorithm 
identifies, for example, that human evolution seems to be currently speeding up while the evolution of chickens 
is slowing down.  
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1 Introduction 
Whereas evolutionary biologists in the past could 
be satisfied with piecing together an evolutionary 
tree of related species, now they can ask deeper 
questions, such as when was the evolutionary 
change most rapid or slow in any branch of the 
evolutionary tree [11]. In the past, evolutionary 
biologists could make only relatively subjective 
statements about the speed of evolution. However, 
the DNA data available today in many genome 
databases [5], [14] for an increasing number of 
living species and even from ancient DNA from 
fossils enables modern evolutionary biologists to 
make more precise and measurable statements 
about the speed of evolution.  This is because the 
speed of biological evolution from an ancestor 
species to a descendant species can be measured in 
the number of genetic mutations.  

Data analytics has the potential to make many 
fascinating discoveries about the evolutionary 
trends and their causes. Such a data analytics would 
bring together evolutionary biologists and data 
scientists. Towards this goal, we describe in this 
paper a novel evolutionary trend discovery (ETD) 
algorithm. The ETD algorithm estimates the 
different trends of evolution for various branches of 
the evolutionary tree. Our work already brings 
together cubic spline interpolation from numerical 
analysis, phylogenetic tree algorithms, and 
evolutionary biology.    

This paper is organized as follows. Section 2 
presents some related work. Section 3 describes a 
method to find evolutionary trends using the fossil 
record-based age estimates of ancestral species. 
Section 4 describes the experimental results from 
Section 3. Section 5 proposes a way to 
automatically estimate the age of internal nodes in 
the evolutionary tree. With this alternative age 
estimation, the evolutionary trend discovery 
algorithm is shown to be yielding a result similar to 
the result in Section 3. Finally Section 6 gives some 
conclusions and directions for future work  
 
 
2 Related Work 
Given the genes of a set of related species, a 
hypothetical evolutionary tree, also called a 
phylogenetic tree, can be constructed using several 
different algorithms.  

The UPGMA  [12] and the Neighbor Joining 
(NJ) [10] algorithms are the most commonly used 
phylogenetic tree algorithms. The maximum 
likelihood method is also well known, although it 
less frequently used that UPGMA and Neighbor 
Joining because it requires more computational 
time. The Common Mutations Similarity Matrix 
(CMSM) algorithm of Revesz [6], the Incremental 
Phylogenetics by Repeated Insertions (IPRI) 
algorithm of Revesz and Li [4], and Wang’s 
method [15] are some recently proposed 
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phylogenetic tree algorithms. Many phylogenetic 
tree algorithms are reviewed in the textbooks [1]-
[3].  

The phylogenetic tree algorithms generate for a 
given set of genes of a set of related species a 
common ancestor/root node as well as internal 
nodes that correspond to the ancestral forms of 
various branches in the evolutionary tree. 
Moreover, the algorithms also associate with the 
root and each internal node an estimated gene 
(DNA sequence) based on all the descendant 
species.  

There is a strong relationship between the 
biological classification of species and their 
evolutionary tree. In fact, the biological 
classification is often updated to match closer the 
constantly improving understanding of biological 
evolution.  

For example, Table 1 lists the biological 
classification of fourteen vertebrate species. A 
phylogenetic tree generated for these fourteen 
species using the Common Mutations Similarity 
Matrix algorithm of Revesz [6] is shown in Fig. 1. 

  

 
 

The biological classification in Table 1 and the 
phylogenetic tree in Fig. 1 correspond well with 
each other.  In particular, the root, which is node 
27, corresponds to the ancestors of vertebrates, the 
Chordata phylum. Node 24 represents the ancestor 
of fish, while node 26 represents the ancestor of 

every other vertebrate.  Node 25 represents the 
ancestor of mammals, and node 21 represents the 
ancestor of rodents, etc. Biologists have used the 
extensive fossil record of vertebrates to estimate 
when each ancestor form existed. For example, the 
ancestor of all vertebrates is estimated to have lived 
about 525 million years ago. Some of the other 

Table 1. The biological classification of fourteen vertebrate species 
 

Species Phylum Class Order Family 
Human  
(Homo sapiens)  Chordata  Mammalia Primates Hominidae 

Cattle  
(Bos taurus) Chordata Mammalia Cetartiodactyla Bovidae 

Dog  
(Canis familiaris) Chordata Mammalia Carnivora Canidae 

Brown rat  
(Rattus norvegicus) Chordata Mammalia Rodentia Muridae 

Mouse  
(Mus musculus) Chordata Mammalia Rodentia Muridae 

Hamster  
(Mesocricetus auratus)  Chordata Mammalia Rodentia Cricetidae 

Chicken  
(Gallus gallus) Chordata Aves Galliformes Phasianidae 

Japanese quail  
(Coturfnix japonica) Chordata Aves  Galliformes Phasianidae 

African clawed frog  
(Xenopus laevis) Chordata Amphibia Anura Pipidae 

Japanese puffer fish 
(Takifugu rubripes) Chordata Actinopterygii Tetraodontiformes Tetraodontidae 

Estuary cod fish  
(Epinephelus coioides) Chordata Actinopterygii Perciformes Serranidae 

Ricefish  
(Oryzias melastigma) Chordata Actinopterygii Beloniformes Adrianichthyidae 

Japanese ricefish  
(Oryzias latipes) Chordata Actinopterygii Beloniformes Adrianichthyidae 

Zebrafish  
(Danio rerio) Chordata Actinopterygii Cypriniformes  Cyprinidae 
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known estimates of evolutionary biologists are 
listed in Table 2.  

Our data analytics method also uses the cubic 
spline interpolation method from numerical 
analysis. A review and recent extension of the 
cubic spline method can be found in [7].  
 
 
3 The Evolutionary Trend Discovery 
Algorithm  
In this section we describe our Evolutionary Trend 
Discovery (ETD) algorithm. The pseudocode of our 
ETD algorithm is shown below. The ETD 
algorithm takes as input the following: 

 
1. An evolutionary tree E. 

 
2. A function T from internal nodes of E to 

millions of years ago, where for any internal 
node N, the value of T(N) is the estimated 
evolutionary time from the root of E to N. 
The root R is always assumed to be at time 0. 

 
3. A function A from nodes of E to amino acid 

sequences or DNA sequences.  
 

4. A specific leaf node L.   
 

 
The output of the ETD algorithm is the 

discovered evolutionary trend function D.  In our 
description, the function D is a cubic spline 
interpolation function based on the combination of 

the genetic and temporal data that is associated 
with the path from the root to a leaf L.  However, in 
theory, the trend function could be generated by 
several other numerical interpolation methods. 
Therefore the cubic spline interpolation is used 
here as an example of this general idea.  Cubic 
spline interpolation gives an interpolating 
polynomial that is smoother than some other 
interpolating polynomials such as Lagrange 
polynomial and Newton polynomial. 
 
ALGORITHM ETD(E, T, A, L, D) 
  1 Find the tree E2 that is the same as E except that   
pointers from the parents to the children are 
reversed.  
  2 Create arrays D1 and D2, and  
     initialize i = path_length(L); 
  3 current_node = L; 
  4 while (current_node ≠ R) 
  5     D1[i] = T[current_node]; 
  6     mutation_number = 
Hamming(A(current_node), A(R)); 
  7      D2[i] = mutation_number; 
  8     current_node = current_node.next(in E2); 
  9     i = i-1; 
10 end 
11 D1[i] = T(R); 
12 D2[i] = 0; 
13 D = Cubic_Spline(D1,D2);  
14 Return D; 
 

In the ETD algorithm we assume that we have 
available as a subroutine Hamming, which 
computes the Hamming Distance between two 
strings, and Cubic_Spline, which finds the cubic 
spine interpolation function with time D1 and 
corresponding values D2. The ETD algorithm 
allows us to investigate the evolutionary trend of a 
given species of interest using the changes in the 
number of mutations from the root to the leaf node 
corresponding to that species.  

 
Example.  Suppose that the ETD algorithm is 
called with the parameters where the tree is in 
Fig.1, the function T is in Table 2, the function A is 
the amino acids that are returned for each internal 
node by the CMSM algorithm and for each leaf 
node. In Fig. 1 the TERT amino acid (which is 
discussed in detail in Section 4), and the leaf node 
is 1.  As can be seen in Fig. 1, here L = node 1 and 
R = node 27.  
 

Table 2. Fossil-based age estimates of ancestral 
species. 
 
Node 

Number Classification Million 
Years Ago 

15 Beloniformes N/A 
16 Galliformes 85 
18 Muridae N/A 
21 Rodentia 66 
22 Amphibia 370 
23 Primates 56 
24 Actinopterygii 420 
25 Mammalia 225 
26 Non-Actinopterygii 420 
27 Chordata 525 
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Fig. 1. The CMSM phylogenetic tree based on vertebrate telomerase protein data. 
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The path from L, which corresponds to humans, to 
R, which is the ancestral vertebrate, is the 
following: 1 à 23 à 25 à 26 à 27.  Hence the 
ETD algorithm will work as follows: 
 
 

 
D1[4] = T(node 1) 
D2[4] = Hamming(A(node 1), A(R)) = 83 
 
D1[3] = T(node 23)  
D2[3] = Hamming(A(node 23), A(R)) = 28 
 
D1[2] = T(node 25)  
D2[2] = Hamming(A(node 25), A(R)) = 11 
 
D1[1] = T(node 26)  
D2[1] = Hamming(A(node 26), A(R)) = 4 
 
D1[0] = T(node 27) 
D2[0] = 0 
 
Build a cubic spline that satisfies D2 = D (D1). 

 
 

4 Experimental Results 
As an example, we build an evolutionary tree based on 
the telomerase (TERT) protein family using the CMSM 
algorithm. Telomerase help protect eukaryote 
chromosomes during duplication and is generally 
present protein in eukaryotes. From the website 
http://telomerase.asu.edu we obtained 14 vertebrate 
telomerase proteins as our input data. After alignment, 
the length of each amino acid sequence was 1353. Fig. 1 
shows the evolution tree from CMSM. 

We evaluate our evolutionary trend discovery 
algorithm using as test TERT data related to human 
and chicken evolution. Fig. 2 shows the cubic 
spline interpolation results for both humans and 
chickens based on fossil records. 

Each unit on the x axis in Fig. 2 is 1 million 
years. Both the human and the chicken 
evolutionary trend functions indicate that the 
overall number of mutations is increasing with time 
but at different rates. There are some small periods 
that can be considered errors in the interpolation 
because the number of mutations should always 
increase. These blips of errors non-withstanding, 
the overall trends seem quite reasonable. 

 

In order to check better the evolutionary trends, 
we also draw the curves of the first derivatives for 
the evolutionary trend functions as shown in Fig. 3. 
The red curve stands for human evolution, and the 
purple curve represents chicken evolution from an 

ancestral vertebrate that lived around 500 million 
years ago. Fig. 3 suggests that the evolution of 
humans involved a speeding up of the rate of 
evolutionary mutations.  
 

 
 

Fig. 2. Cubic spline interpolation of the number of evolutionary mutations for human (left) and chicken 
(right). The x-axis is already known millions of years since the common ancestor of all vertebrates, and the 

y-axis is the number of mutations in the TERT proteins. 
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In contrast, the rate of evolutionary mutations 

slowed down for chickens around 200 million years 
ago. This result agrees with our intuition with 
biological evolution as birds have evolved from 
dinosaurs millions of years ago, and mammals have 
evolved more recently. There seems to be a more 
rapid evolution at the beginning of the appearance 
of radically new forms of species and adaptations 
to new modes of living, such as flying for birds, 
and then a decline in the rate of mutations and 
adaptations after a period of establishment of the 
new form.  It would be interesting to check whether 
this pattern also appears when considering other 
genome or protein families and other examples of 
vertebrates from the mammalian and bird phyla. 

We implemented our evolutionary tree 
algorithms and generated evolutionary trees using 
Java and MATLAB. In addition, we implemented 
in Maple the cubic spline interplation function and 
its visualization that is shown in various figures in 
our paper. These programs are freely available for 
any researchers who request them.  

 
5   Estimating the Branching Times 
Unfortunately, the evolutionary trend discovery 
algorithm described in Section 3 cannot be applied 
when there is no available time estimate for each 
branching that occurs in the evolutionary tree.  The 

time period of some internal evolutionary tree 
nodes are not always possible to estimate based on 
fossil data. In the special case of the vertibrates,  
some fossil record can be found for each internal 
node. However, if you consider bateria, for 
example, then we do not have available fossil 
records. Therefore, the internal nodes of bateria 
evolution are usually inferred from genetic 
similarity of extant species. A well-known example 
of inferring age estimates from genetic data is in a 
case of primates[13], [16]. Even in this case, there 
are still several types of errors which result in an 
estimation errors.  

In this section, we propose a new method for 
estimating the time of each internal node. Before 
describing our method, we introduce some 
notation.  

Let L(N) represent the length of the longest path 
from node N to any leaf that is a descendant of N.  

 
L(N) = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 longest path from N to any leaf 

  
Let Age(L) be the age of any leaf node L. We 

assume that any leaf node represents a current 
species. Hence we have: 
 

Age(L)  =  0 
 

 
Fig. 3.  The above figure shows the first derivatives of the functions in Fig. 2 based on fossil records. The 
red curve shows the evolutionary trend function associated with humans and the purple curves shows the 

evolutionary trend function associated with chickens. 
 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Zhiqiang Li, Peter Z. Revesz

E-ISSN: 2224-2902 120 Volume 13, 2016



Let Age(R) be the age of the root node.  This is 
the only constant that we expect to know from the 
beginning.  

 
Age R = age of R in millions of years ago 
 

Let Age(I) be the age of any internal node I. For 
any internal node I we define Age(I) as follows: 
 

Age I = Age R ×
L(I)
L(R)

             (1) 

 
 
T(I) is a variable that is the elapsed time from the 
root to the beginning of internal node I.  That is, 

 
T I = Age R − Age I                    (2) 

 
 

 

 

 
 

Fig. 4 Cubic spline interpolation of the number of evolutionary mutations for human (left) and chicken 
(right). The x-axis is automatically estimated millions of years since the common ancestor of all vertebrates, 

and the y-axis is the number of mutations in the TERT proteins. 
 

 
Fig. 5 The above figure shows the first derivatives of the functions in Fig. 4. based on our time estimation. 
The red curve shows the evolutionary trend function associated with humans and the purple curves shows 

the evolutionary trend function associated with chickens. 
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Fig. 4 shows the cubic spline interpolation 
results for both humans and chickens based on our 
time estimation method. Fig. 5 shows the first 

derivative of the evolutionary function from Fig. 4. 
The unit of x-axis is one million years. 
 

    Now we can use T(I) as the estimated time. 
Based on T(I), we can again use a cubic spline 
interpolation to build a function f:TàM to 
represent the relationship between time and the 
number of accumulated mutations. 

Comparing Fig. 2 with Fig. 4, and Fig. 3 with 
Fig. 5, we find that the evolutionary trend 
discovery algorithm gives very similar results with 
the fossil-based age estimates and the automatically 
generated age estimates.  In particular, in both Fig. 
3 and Fig. 5, the derivative of the mutational 
changes is larger for humans than for chickens 
toward the right end, i.e., the most recent 
evolutionary times, and it is larger for chickens 
than for the predecessors of humans in the middle 
of the graph, i.e., when birds were evolutionarily 
introduced and undergone wide adoptive radiation 
while spreading to the air and reaching various 
continents and habitat areas in the world. 

Meanwhile the vertebrate ancestors of humans and 
other mammals were more restricted in diversity 
according to the fossil record. 

This similarity between the two results gives 
some confidence in the automatic age estimation 
method. In terms of the fossil-based method, 
looking up the years of each node is required, if 
there are no existing records to check (such as 
bacteria), then this method fails.  However, the 
automatic time estimation method can overcome 
this issue. In fact, Fig. 6 shows the first derivatives 
of the evolutionary mutation functions for each 
branch of Fig. 1. The various curves show a great 
variety. The rate of mutation varies from near zero 
to almost thirty, and the peak mutation rate occurs 
at various times, although there is a general 
tendency of accelerated mutation in the recent 
times.  
 

 
 

Fig. 6. The first derivative of the evolutionary function for each branch in Fig. 1. The colors refer to the 
following: human (red), golden hamster (green), mouse (blue), brown rat (orange), dog (yellow), cattle 

(purple), Japanese quail (tomato), chicken (indigo), frog (medium aquamarine), Japanese ricefish 
(crimson), ricefish (dark green), estuary cod fish (dark sea green), Japanese puffer fish (deep pink) and 

zebrafish (deep sky blue). 
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6 Conclusions and Future Work 
We plan to apply the ETD algorithm to other 
protein and genome families for both eukaryotes 
and bacteria. In the ETD algorithm, we also plan to 
use other estimated time function T. Some 
possibilities include the estimates obtained by the 
UPGMA algorithm that returns not only an 
evolutionary tree but also a time estimate for each 
internal node of the tree. Many other phylogenetic 
tree algorithms also a time function that may be 
useful. It remains to be seen which of these 
estimates is the best and what is the degree of 
consistency in the results when using all of these 
different estimates of T.  The estimating of the time 
function T by some method is especially important 
in the case of species that do not have available as 
extensive fossil records as for the vertebrates.  

In addition, in the future more complex data 
analytics would need to correlate the overall 
evolutionary trends with significant known events 
in the history of the earth, such as gradual changes 
in the atmospheric concentrations of carbon 
dioxide, oxygen and water vapor, temperature 
changes, water elevation changes etc. These may 
enable a deeper data analytics and temporal 
classifications [8]-[9] that identify the significant 
factors that drive the speed of evolution and other 
characteristics of evolution over time.  
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