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Abstract: - Time-to-event coupled with longitudinal trajectories are often of interest in biomedicine, and one 
popular approach to analysing such data is with a Joint Model (JM). JMs often have intractable marginal 
likelihoods, and one way to tackle this issue is by using the hierarchical likelihood (HL) estimation approach by 
Lee and Nelder [12]. The HL approximation sometimes results in biased estimates, and we propose a bias-
correction approach (C-HL) that has been used for other models (eg, frailty models). We have applied, for the 
first time, the C-HL in the context of joint modelling of time-to-event and repeated measures data. Our C-HL 
method shows efficiency improvement, which comes at a cost of a more expensive computation than the existing 
HL approach. Additionally, we illustrate our method with a new MIMIC-IV CAP dataset.  
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1 Introduction 
 
In community acquired pneumonia (CAP) studies, C-
reactive protein (CRP) blood concentrations are often 
measured repeatedly over time and used to monitor 
inflammatory response to bacterial infection in 
hospitalized adult patients. When a person becomes 
infected by a bacteria responsible for pneumonia 
(e.g., Streptococcus pneumoniae), serum levels of 
CRP begin to increase rapidly stimulated by 
cytokines, such as interleukin (IL)-6. 
The time to a patient’s discharge is usually of primary 
interest; and frailty models are often used to measure 
cluster specific-risk prediction. Our research interest 
is to understand longitudinal trajectories of CRP 
response association with time to discharge or death 
using the hierarchical likelihood (H-likelihood) 
estimation approach Ha et al. [5-9, 12]. Three 
challenges pose in the analysis of such data; the 
marginal likelihood can have analytically intractable 
integrals as random effects get larger; the seemingly 
high censoring rate resulting in bias parameter 
estimates; and the interrelationship between CRP 
serum levels and the risk of death. These issues can 
only be properly accounted for in a joint model when 
the primary intent is to predict the 30-day mortality 
in adult CAP patients. 

In this paper, we propose a bias correction approach 
for the H-likelihood estimators of a univariate joint 
modelling Ha et al., [9-10]. The H-likelihood, 
originally proposed in by Lee and Nelder, [12] 
resolves the issue of intractability of integrals in 
marginal inferences by treating the random effects as 
parameters. This prevents integrating out random 
effects over their respective distribution. However, in 
presence of high censoring rate, the H-likelihood 
tends to produce substantially bias parameter 
estimates Jeon et al. [10]. Furthermore, literature of 
the joint modelling cautions conducting separated 
analysis of longitudinal measurements and event 
times. Since these two data are observed directly 
from a same individual, they are likely correlated. 
Hence, ignoring this inherent association results in 
biased regression coefficients [4]. There are several 
methods capable to correct the all these bias; we use 
the regression calibration method of Wang et al., 
[15]. Finally, we conduct a simulation study to assess 
the performance of the proposed method, and we 
illustrate it using the Medical Information Mart for 
Intensive Care (MIMIC)-IV community acquired 
pneumonia dataset (2008-2019) [2]. This research 
applies, for the first time, the regression calibration 
approach to the H-likelihood estimator in the context 
of joint modelling. Additionally, we illustrate our 
method with a new MIMIC-IV CAP dataset. 
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2 Joint models formulation 
 
It is intuitive to use joint modelling methods to 
understand longitudinal trajectories of CRP response 
association with the risk of one or multiple events 
such as onset of an infection, sepsis or death etc. In 
such study setting, an individual may experience 
multiple outcomes that may be associated [3, 9]. So-
called “shared random intercepts” are widely used to 
capture the association structure  between the 
longitudinal data and the time-to-event data [9, 14]. 

 
2.1 Modelling the longitudinal outcome 
Let us denote by Y a random variable, and 𝒚൫𝑡൯ its 
observed value for each subject (𝑖 = 1,…, 𝑞) 
measured at time 𝑡, (𝑗 = 1,…, 𝑛) where 𝑛 is the 
number of measurement occasions (clusters). 

𝒚 = ൫𝑦ଵ, … , 𝑦
൯

்
constitutes the 𝑛 × 1 vector of 

CRP response for patient 𝑖. Let us also consider 

𝒙ଵ = ൫𝑥ଵଵ, … , 𝑥ଵ
൯

்
 the vector of covariates for 𝒚 

(possibly time-varying). It is common to use linear 
mixed effects (LME) models to fit the observed value 
for 𝒚 with respect to some covariates. This can be 
given by, 
 

   𝒚 = 𝑥ଵ
் ൫𝑡൯𝜷ଵ + 𝑧

் ൫𝑡൯𝒃 + 𝑒, 

   𝒃 ~
ௗ

𝑁(𝟎, D);  𝒆 ~
ௗ

𝑁(𝟎, 𝜎𝐈),             (1) 
 
where 𝒚 is the immune response of subject 𝑖 for the 
𝑗-th measurement occasions, 𝒙ଵ and 𝒛 are vectors 
of covariates with mean and random effects 
parameters 𝜷ଵ = (𝛽ଵଵ,…, 𝛽ଵభ

)் and 𝒃, 
respectively. D denotes the between subjects 
unknown variance covariance matrix, 𝜎 is the 
variance parameter for the within-subject 

measurements, 𝒆 = ൫𝑒ଵ, … , 𝑒
൯

்
 is the vector of 

the random errors, 𝐈 is the q-th dimension identity 
matrix, and 𝑖𝑖𝑑 refers to independent and identically 
distributed. Other covariance structures such as 
compound symmetric (CS), autoregressive (AR1) or 
unstructured (UN) can also be used. The best fit for a 
model’s variance-covariance structure can be 
decided by estimating the Akaike information 
criterion (AIC) with the lowest value relative to 
models with other variance structures.  
 
2.2 Modelling the time-to-event  
The response profiles of a biomarker, namely C-
reactive protein in adult patients with community 
acquired pneumonia, can be associated with the risk 

of death, since they are likely to be observed for a 
same individual. Though, the intrinsic nature of this 
association be may be complex in practice, we 
assume that the time to death depends on essential 
characteristic of the CPR trajectories. 
Denote by 𝑇 the random variable of time to death and 

𝒙ଶ = ൫𝑥ଶଵ, … , 𝑥ଶ൯
்

 the 𝑞 × 1  vector of covariates 
(possibly time-varying) for 𝑇. Denote also by 𝑪, the 
non-informative right censoring time with respect 
to 𝑇, 𝑡

∗ = min(𝑇, 𝑪) and 𝛿 = 𝐼(𝑇 ≤ 𝑪), where 
𝐼(∙) is an event indicator function. In practice, 
censoring time are non-negligible in 30-day mortality 
for CAP studies. We fit the Cox model [3] for the 
observed the survival times {(𝑡

∗, 𝛿), 𝑖 = 1,…, 𝑞}, 
and can be given by, 
 
 𝜆(𝑡|𝒃) = 𝜆(𝑡) exp(𝑥ଶ

் 𝜷ଶ + 𝑧𝒃
்𝛾),          (2) 

 
where, 𝜆(𝑡) is an unspecified baseline hazard 
function, 𝜷ଶ is a 𝑝ଶ × 1 vector of fixed effects, and 𝛾 
is a real value parameter of association that links  
positively (negatively) the CPR trajectories to the 
risk of death. Thus 𝛾 has a critical implication for our 
joint model. 
  
2.3 Joint modelling 
The key assumptions below are essential for our joint 
model: 
(i). 𝒚 and 𝑻 given 𝒃 are conditionally independent 
(ii). 𝑻  and 𝑪 given 𝒃 are conditionally independent 
(iii). 𝒃 and 𝒆 are independent. 
Thus, the basic joint model can be given by, 
 
    𝒚 = 𝑥ଵ

் ൫𝑡൯𝜷ଵ + 𝑧
் ൫𝑡൯𝒃 + 𝑒,  

    𝜆(𝑡|𝒃) = 𝜆(𝑡) exp(𝑥ଶ

் 𝜷ଶ + 𝑧𝒃
்𝛾)  

    𝒃 ~
ௗ

𝑁(𝟎, D);  𝒆 ~
ௗ

𝑁(𝟎, 𝜎𝐈).               (3)
  
Now, let 𝜃 = (𝜷ଵ

், 𝜷ଶ
், 𝒃

்)் be the collection of all 
fixed effects parameter in our joint model, and denote 
by 𝜉 = (𝜎, 𝛾, D) the collection of all dispersion 
parameters. For all observed random variables 𝒚𝒊, 
and (𝑡

∗, 𝛿), the marginal joint modelling inference is 
given by, 

𝐿(𝜃, 𝜉) = ෑ ∫ 𝑓(𝑦|𝜷ଵ, 𝒃, 𝜎)



ୀଵ

× 𝑓(𝑡
∗, 𝛿|Λ, 𝜷ଶ, 𝒃, 𝜸)

× 𝑓(𝒃|D)𝑑𝒃 

where, 𝑓(𝑦|𝜷ଵ, 𝒃, 𝜎) is the conditional density in 
(1), 𝑓(𝑡

∗, 𝛿|Λ, 𝜷ଶ, 𝒃𝒊, 𝛾) is the survival function in 
(2) and 𝑓(𝒃|D) is the density function for the 
random intercepts given D. The dimension of 𝒃 can 
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be large and integrating it out can be computationally 
expensive or analytically intractable. The Fisher 
likelihood does not provide inference on 𝒃, and 
evaluating 𝐿(𝜽, 𝜉) using Bayesian MCMC yields a 
slow convergence. 
 
2.4 Corrected H-likelihood approach 
For simplicity, suppose 𝜂ଵ = 𝑥ଵ

் 𝜷ଵ + 𝒃, and 

𝜂ଶ = 𝑥ଶ
் 𝜷ଶ + 𝛾𝒃. Then, the log h-likelihood is 

given by,  

ℎ = ℎ(𝜷ଵ, 𝜷ଶ, Λ, 𝜎, 𝐷|𝒃) 

    =  ℓଵ



+  ℓଶ



+  ℓଷ



 

and,  
ℓଵ = log 𝑓(𝑦|𝜷𝟏, 𝒃, 𝜎) 

        = −
ଵ

ଶ
log(2𝜋𝜎) −

ଵ

ଶఙ
൫𝑦 − 𝜂ଵ൯

ଶ
, 

ℓଶ = log 𝑓(𝑡
∗, 𝛿|𝜷𝟐, 𝒃 , Λ) 

       = 𝛿ൣlog൫𝜆(𝑡
∗)൯ + 𝜂ଶ൧ − Λ(𝑡

∗) exp(𝜂ଶ), 

ℓଷ = log 𝑓(𝒃|D) =
ଵ

ଶ
log(2𝜋𝐷) −

ଵ

ଶ
𝑏

ଶ,   

are the conditional log-likelihoods for 𝒚 , (𝑡
∗, 𝛿) 

and 𝒃𝒊, respectively.  
Thus, exp{−Λ(𝑡

∗) exp(𝜂ଶ)} = 𝑆൫𝑡
∗|𝒃 , 𝒙ଶ

் ൯ is the 
estimated survival function.  
The maximum h-likelihood estimate can be obtained 
using iterative approximation method based on the 
score function (𝑈), Hessian matrix (𝐻) and Newton 
Raphson method, and can be given by, 

𝑼(𝜃) = ቌ

డ

డ𝜷

డ

డ𝒃

ቍ = ቆ
𝑿்(𝒀 − 𝝁)

𝒁்(𝒀 − 𝝁)𝜸 + 𝜵𝓵𝒃

𝟏 ቇ,             (5) 

𝑯(𝜃) = ቆ
𝑿்𝑾𝑿 𝑿்𝑾𝒁
𝒁்𝑾𝑿 𝒁்𝑾𝒁 + 𝜵𝓵𝒃

𝟐 ቇ,                      (6) 

where, 

𝑿 = ൬
𝑿ଵ 𝟎
𝟎 𝑿ଶ

൰, 𝒁 = ൬
𝒁ଵ

𝒁ଶ
൰, 𝒀 = ൬

𝒀ଵ

𝒀ଶ
൰,  

𝝁 = ቀ
𝝁ଵ

𝝁ଶ
ቁ, 𝜸 = ൬

1
𝛾

൰
்

, 𝑾 = ൬
𝑾ଵ 𝟎

𝟎 𝛾ଶ𝑾ଶ
൰, 

𝜵𝓵𝒃

ଵ = 𝜕ℓ𝒃/𝜕𝒃, and 𝜵𝓵𝒃

ଶ = −𝜕ଶℓ𝒃/𝜕𝒃ଶ. 
Following Ha et al., [5-6, 9], and Breslow [1], the 
non-parametric maximum H-likelihood estimator of 
the cumulative baseline hazard function can be given 
by, 

Λ𝟎(𝛽ଶ, 𝑏) =  𝜆

:(ೖ)ஸ௧

 

      = 
𝑑()

∑ exp(𝜂ଶ) ∈ோ൫(ೖ)൯:(ೖ)ஸ௧

 

where, 𝑋() is the 𝑘th smallest distinct failure time of 

the 𝑋()’s, and 𝑅൫𝑋()൯ = {𝑖𝑗: 𝑋 ≥ 𝑋(), 𝑖 = 1,…, 

𝑞, 𝑗 = 1,…, 𝑛) is the risk set at time 𝑋() and 𝑑() is 
the number of failures at 𝑋(). 
To estimate the mean parameter 𝜃, we use the log-H 
profiled likelihood ℎ by substituting the estimated 
baseline hazard Λ𝟎(⋅) = Λ𝟎(⋅) in (4). After some 
algebra, we obtain the logH-profile likelihood 

ℎ ∝  ℓଵ



+  𝑑() log
𝑑()

∑ exp(𝜂ଶ) ∈ோ൫(ೖ)൯

+  𝛿𝜂ଶ



−  𝑑()



+  ℓଷ



. 

Then, the adjusted ℎ-likelihood (ℎ) is used to obtain 
estimates of the dispersion parameters 𝜉 by solving 
the score equations 𝜕ℎ/𝜕𝜉 = 0 and using Newton 
Raphson approximation, respectively [12, 14]. The 
adjusted ℎ-likelihood, 

ℎ = ℎ|𝜷ୀ𝜷,𝒖ୀ𝒖ෝ −
1

2
log{det(𝑯)}|𝜷ୀ𝜷,𝒖ୀ𝒖ෝ  

+
(2(𝑝 + 𝑑) + 1)

2
log 2𝜋 

where 𝑑 is dispersion parameters, and 𝑝 is the number 
of fixed effects. 
 
2.5 Derivation of the score equations 
Given 𝜃 = (𝜷ଵ

், 𝜷ଶ
், 𝒃

்)் and 𝜉 = (𝜎, 𝛾, D) the 
maximum h-likelihood estimators for 𝜃 are obtained 
by solving 𝜕ℎ/𝜕𝜽 = 𝟎. In other words, 

𝜕ℎ

𝜕𝜷𝟏
= 

𝜕ℓଵ

𝜕𝜷𝟏


=
1

𝜎
 𝑥ଵ

்



൫𝑦ଵ − 𝜂ଵ൯ 

         =
ଵ

ఙ
𝑿ଵ

்(𝒚 − 𝜼ଵ),          (7) 

𝜕ℎ

𝜕𝜷𝟐
= 

𝜕ℓଶ

𝜕𝜷𝟐


=  𝑥ଶ
்



(𝛿 − 𝜂ଶ) 

         = 𝑿ଶ
்(𝜹 − 𝝁𝟐),     (8) 

𝜕ℎ

𝜕𝒃𝒊
= 

𝜕ℓଷ

𝜕𝒃
=

1

𝜎
𝒁ଵ

்(𝒚 − 𝜼𝟏)



 

+𝛾𝒁ଶ(𝜹 − 𝝁𝟐) − 𝒃D
ିଵ, (9) 

where 𝝁𝟐 = exp(log Λ(𝑡∗) + 𝜼ଶ). 𝑍ଵ is 𝑛 × 𝑞 
cluster indicator matrix whose elements 𝑧 are  
𝜕𝜂ଵ/𝜕𝑏, (𝑛 = ∑ 𝑛 ) and 𝑍ଶ = 𝑰 = 𝑰× is an 
identity matrix.  
The maximum h-likelihood estimators  𝜉  of  𝜉 can be 
derived using iterative methods and the diagonal of 
the Hessian matrix 𝑯 and is given by, 

𝑯 = ቌ

𝑋ଵ
்𝑊ଵ𝑋ଵ 𝟎 𝑋ଵ

்𝑊ଵ𝑍ଵ      

𝟎             𝑋ଶ
்𝑊ଶ𝑋ଶ 𝑋ଶ

்(𝛾𝑊ଶ)𝑍ଶ

𝑍ଵ
்𝑊ଵ𝑋ଵ 𝑍ଶ

்(𝛾𝑊ଶ)𝑋ଶ 𝒁𝑻𝑾𝒁 + 𝜵𝓵𝒃

𝟐

ቍ  

where, 𝑊ଵ = −
డమ

డ𝜼భడ𝜼భ
 = 𝜎ିଵ𝐼,  

𝑊ଶ = −
డమ

డ𝜼మడ𝜼మ
, 𝜵𝓵𝒃

𝟐 = −
డమ

డ𝒃డ𝒃 = 𝐷ିଵ𝐼,  

, 

   (4) 
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𝑾 = ൬
𝑊ଵ 𝟎

𝟎 𝛾ଶ𝑊ଶ
൰,  

𝜵𝓵𝒃

𝟏 = −𝐷ିଵ𝒃, 𝜸 = ൬
1
𝛾

൰
்

 and 𝜼ଵ = 𝝁ଵ.  

We then can update the score equation (5) and the 
Hessian matrix (6), where 

𝑿 = ൬
𝑿ଵ 𝟎
𝟎 𝑿ଶ

൰, 𝒁 = ൬
𝒁ଵ 𝟎
𝟎 𝒁ଶ

൰, 𝒀 = ൬
𝒀ଵ

𝒀ଶ
൰,  

𝝁 = ቀ
𝝁ଵ

𝝁ଶ
ቁ, 𝜸 = ൬

1
𝛾

൰
்

, 𝜷 = ൬
𝜷ଵ

𝜷ଶ
൰. 

We then take the partial derivative of the adjusted 
profile likelihood, ℎ with respect to 𝜉, 
𝜕ℎ

𝜕𝜉
=

𝜕ℎ

𝜕𝜉
ฬ

𝜽
−

1

2
trace ൬𝑯ିଵ

𝜕𝑯

𝜕𝜉
൰ฬ

𝜽
 

−
డ

డక
ቀ

ଵ

ଶ
log[det(𝑯)]ቁቚ

𝜷ୀ𝜷,𝒃ୀ𝒃,ఒబୀఒబ

  

= 𝟎                 (10) 
This leads to the partial restricted maximum 
likelihood estimate  
𝜎ො = (𝒚 − 𝝁ෝଵ)்(𝒚 − 𝝁ෝଵ)/(𝑛 − 𝜔), and  

𝐷 = 𝒃்𝒃/(𝑞 − 𝜔ଵ), where 

𝜔 = −𝜎 × trace ቀ𝑯ିଵ డ𝑯

డఙ
ቁቚ

𝜽
, 

𝜔ଵ = −𝐷 × trace ቀ𝑯ିଵ డ𝑯

డ
ቁቚ

𝜽
. 

The estimate of 𝛾 is obtained through Newton- 
Raphson method.  For the partial derivative of ℎ 
with respect to 𝛾, 
𝜕ℎ

𝜕𝛾
=

𝜕ℎ

𝜕𝛾
ฬ

𝜽
−

1

2
trace ൬𝑯ିଵ

𝜕𝑯

𝜕𝛾
൰ฬ

𝜽
 

the first term of 𝜕ℎ/𝜕𝛾 
𝜕ℎ

𝜕𝛾
ฬ

𝜽
= (𝒁𝒃)்𝜹 − 𝒅(𝒌)(𝒁𝒃)் 

             = (𝒁𝒃)்൫𝜹 − 𝒅(𝒌)൯ห
𝜽
, 

and its the second term is, 
𝜕𝑯

𝜕𝛾
= 

𝜕

𝜕𝛾


𝑋ଵ
்𝑊ଵ𝑋ଵ 𝟎 𝑋ଵ

்𝑊ଵ𝑍ଵ      

𝟎             𝑋ଶ
்𝑊ଶ𝑋ଶ 𝑋ଶ

்(𝛾𝑊ଶ)𝑍ଶ

𝑍ଵ
்𝑊ଵ𝑋ଵ 𝑍ଶ

்(𝛾𝑊ଶ)𝑋ଶ 𝒁𝑻(𝑾ଵ + 𝛾ଶ𝑾ଶ)𝒁 + 𝑫ି𝟏

 ቮ

𝜽

 

 

Since, 𝑊ଶ = −
డమ

డ𝜼మడ𝜼మ
 = 𝑿ଶ

்𝝁𝟐𝑋ଶ, then, 

𝜕𝑊ଶ

𝜕𝛾
= 𝑿ଶ

்𝚲𝟎 exp(𝜂ଶ) 𝑋ଶ𝒁𝒃 

         = 𝑿ଶ
்𝝁𝟐𝑋ଶ𝒁𝒃 

Now, we take the partial derivative of 𝜕ℎ/𝜕𝛾 with 
respect to 𝛾 to obtain the Hessian matrix 𝑯 

𝑯 =
డమಲ

డఊమ =
డమ

డఊమቚ
𝝉ො

−
ଵ

ଶ

ப

பఊ
ቆtrace ቀ𝑯ିଵ డ𝑯

డఊ
ቁቇቤ

𝜽

, 

డమ

డఊమቚ
𝝉ො

= (𝒁𝒃)்𝒅(𝒌)𝒁𝒃ห
𝜽
.  

Finally, estimates of 𝜉, and 𝛾 are obtained through 
iterative approximation of the score function and 
Newton-Raphson equation (11). 
 
𝜸ෝ(ାଵ) = 𝜸ෝ() + ൫𝑯ିଵ𝑺(𝜃)൯|𝜽ୀ𝜽(ೖ)           (11) 
where, 𝜽 = (𝜷, 𝒃), and  𝜽 = ൫𝜷, 𝒃൯. 
 
2.6 Fitting procedure with bias correction 
Following Ha et al., [9], the h-likelihood method can 

be extended and calibrated. Let 𝒃 = ൫𝒃ଵ
் , … , 𝒃

்൯
்
 

and starting with initial values൫𝜉(), 𝜃(), 𝜆መ
()

ቁ, we 

iterate in 𝑗-steps as follows: 
(S1) Set initial values (𝜷, 𝒃, 𝜆, 𝜉). 
(S2) Evaluate quantities 𝑺(𝜽) and 𝑯(𝜽) using 
equation (5) and (6), respectively. 
(S3) Estimate 𝜷 = 𝜷(𝒋), and 𝒃 = 𝒃(𝒋) using the 
Newton Raphson formula. 
(S4)  Update 𝑯() using 𝜷()and 𝒃() and estimate 

𝑯ଶଶ
() the lower right corner using 𝑯ିଵ() matrix. 

(S5)  Estimate 𝜎ො() using results from (10), by 
replacing 𝒃 with 𝐸ൣ𝒃ห𝒃()൧ = 𝜻()𝒃() = 𝒃() , 
where, 𝜻 = ൫𝜁ଵ, … , 𝜁൯, 𝒃() is the corrected random 
effect at 𝑗௧ iteration,  

𝜁
()

=
ఙෝ(ೕషభ)

ቀఙෝ(ೕషభ)ା 𝝉
(ೕ)

ቁ
, 𝜎ො(ିଵ) is the sample variance of 

𝑏ଵ
(ିଵ)

,…, 𝑏
(ିଵ)

, 𝝉
()

= 𝑯
(), 𝑯 is the 𝑖௧ 

diagonal element of the lower right corner matrix of  

2 × 2 𝑯ିଵ() block matrix ቀ(𝑯ିଵ)ଶଶ
()

ቁ evaluated at 

the 𝑗୲୦ iteration. By asymptotic properties of 𝒃, 
(𝑯ିଵ)ଶଶ = (𝑯ଶଶ)ିଵ. 
(S6)  Update ℎ by replacing 𝒃 with 𝒃(), and 

exp(𝒃) with 𝐸ൣexp(𝒃)ห𝒃()൧ = exp ቀ𝜻()𝒃() +

ቀ 𝜎ො()൫1 − 𝜻()൯ቁ /2 ቁ. 

(S7) Repeat steps S2 to S6 until the convergence 
criteria is met, which is defined as  

max൛ห𝜷(ାଵ) − 𝜷()ห, ห𝜎ො(ାଵ) − 𝜎ො()หൟ < 𝜀, 

where 𝜀 is a predetermined tolerance limit. 
(S8) Given ൫𝜽(), 𝜉()൯ we obtain estimates of the 

unspecified baseline hazard Λ
(), 

Λ
()(𝑡) = 

∑ ቆ
ఋூ൫௧

∗ୀ௧൯

∑ ୣ୶୮ቀ௫మ
 𝜷మ

(ೕశభ)
ା൫𝒃(ೕశభ)൯


ఊ(ೕశభ)ቁூ൫௧

∗ஹ௧൯

సభ

ቇ

ୀଵ , 

where 𝐼(∙) is an indicator function. 
 

3 Simulation studies 
 

; 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2021.18.14 Karl Stessy Bisselou, Gleb Haynatzki

E-ISSN: 2224-2902 122 Volume 18, 2021



In this section, we conducted simulation studies, 
based on 500 replicates to evaluate the performance 
of the proposed bias corrected H-likelihood (C-HL) 
univariate joint model with shared random intercepts. 
We compared it with the H-likelihood (HL) approach 
[5, 6, 9], and the Gauss-Hermite quadrature (GHQ) 
approximation method. The R packages “frailtyHL” 
[7] and “JM” [13] were used to fit the HL and the 
GHQ (15 quadrature nodes), respectively. The initial 
values of the parameters used for the simulation 
below were the estimates obtained from fitting the 
joint model to the CAP dataset.  
From the joint model in (3), we generated random 
subject intercepts 𝑏 ~ 𝑁(0, D = 0.70) for 𝑖 =1,…, 
50. Next, we obtained 𝑦  for 𝑛 = 8 (cluster) 
repeated measurements using the linear mixed 
model: 
𝑦|𝑏~𝑁(𝛽ଵ + 𝛽ଵଵAge + 𝛽ଵଶTime + 𝑏, 𝜎 = 0.35),  
where 𝛽ଵ = 1.50, 𝛽ଵଵ = 0.15, 𝛽ଵଶ = 0.15. Age was 
a binary random variable generated from the 
Bernoulli distribution with probability 0.5 (where:     
1 = 65 and older, 0 = less than 65), and Time = 0, 5, 
10, 15, 20, 25, 30 and 35 (days). 
Next, we used the model in (2) to generate event 
times for (𝑡

∗, 𝛿), 
 
𝜆(𝑡|𝒃) = 𝜆(𝑡) exp(𝛽ଶଵAge + 𝛾𝑏𝒊),  
 
where 𝜆(𝑡) =1, 𝛽ଶଵ = 0.60 and 𝛾 = 0.20. Finally, 
censoring rates were generated from the exponential 
distribution resulting in three different cases of how 
heavy the data are censored: 32%, 58% and 86%; and 
the maximum follow-up time as equal to 35. 
 Results are summarized in Table 1. We 
calculated mean, standard deviation (SD) and Mean 
squared error (MSE) for 500 replicates to obtain 𝜽  
and 𝜉መ. Results suggest that the original HL estimators 
𝜽  and 𝝃 of  𝜽 = (𝛽ଵ, 𝛽ଵଵ, 𝛽ଵଶ, 𝛽ଶଵ)் and 𝝃 =

(𝜎, 𝛾, D), respectively, are underestimated and this 
bias increases with censoring. However, the C-HL 
reduces this bias significantly as the censoring rate 
increases. When the number of quadrature nodes 
become larger, C-HL and GHQ estimates are closer 
(results not shown). However, the computation cost 
increases with the model complexity, the number of 
quadrature points and the censoring rate [13]. Our 
studies showed that for data with high censoring rate, 
C-HL is preferred to the HL, particularly for 𝛾 and 
𝛽ଶଵ inferences. But C-HL becomes computationally 
more intensive than HL since the sample variance for 
the random intercepts are being recalculated; and this 
trend is maintained as the sample size increases. 

4 Data analysis of CAP data 
 
4.1 Data analysis results 
In this section, we analyze the Medical Information 
Mart for Intensive Care (MIMIC)-IV publicly 
available community acquired pneumonia (CAP) 
dataset described in section 1, based on our proposed 
method. 
 
Table 1: Simulation results for 500 replicates of data 
(number of subjects =50, number of measurement 
occasions =8). GHQ, Gauss-Hermite quadrature, HL, h-
likelihood and C-HL corrected h-likelihood. 

 
Par. = parameter, SD = standard deviation, MSE = mean squared error. 
Cens. =censoring 

 
The dataset includes patients diagnosed with CAP 
(ICD-9 486) and admitted in ICU at the Beth Israel 
Deaconess Medical Center from 2008 to 2019. Our 
goal was to assess whether the longitudinal 
trajectories of CRP biomarker are associated with the 
risk of death in adult patients during a 30-day hospital 
stay. Each patient’s electronic record was accessed 
and recorded based on the first admission time 
(baseline). This analysis may be limited because it is 
intended primarily for illustration of our method. 
Since CRP test is a cheap and readily available, it can 
be ordered daily during in-hospital duration. Thus 
CRP measurements fit the characteristic of a 
longitudinal immune response of patients with 
primary clinical outcome being the time to hospital 
discharge or death (Figure 1 and 2). The key feature 
of this CAP dataset is the high censoring rate due to 
patients’ lost-to-follow up. 
 
4.2 Data models 
We used the R package “nlme” to fit linear mixed 
effect models and we obtained the Akaike 
Information Criterion (AIC) values to select the best 
longitudinal model for the data (Table 2). The model 
with the lowest AIC in boldface was selected for the 
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joint modelling analysis. The random intercept term 
was shared by all models formalized by equation (3). 
Finally, we used the Cox model with gender and age 
group as covariates to fit the event time model. We 
also conducted the analysis using the R package 
“JM” via GHQ maximum likelihood method with a 
piecewise constant baseline hazard. This was 
intended for a simple comparison since “JM” is a 
commonly used package for joint modelling analysis.  
 
Table 2. AIC values of linear mixed models for log10 CRP  

Models 
 

Random 
Effect 

AIC value 

Time, gender, age Intercept 9067 

Time, gender Intercept 9571 

Time, age Intercept 9074 

Time Intercept 9092 

 
4.3 Data analysis results 
Table 3 and 4 summarize all results and estimations 
based on the C-HL. Of 3469 medical records 
retrieved, 53% were females and 47% males. Age 
ranged from 18 to 89 with a median of 67 years. 
Patients were predominantly white (78%) and the 
median hospital stay was 7 days, and CRP levels 
measured as high as 397 mg/dL of blood serum. In 
total, 91.3% of the patients were censored. 
 Additionally, we focused on the inference on 𝛾 in 
the survival model (2), since it characterizes the 
association between the shared random intercepts in 
the longitudinal model (1) and the risk of death. We 
can see that both methods yield a positive association 
between CRP trajectories and the risk of death. 
However, this association is more pronounced in the 
C-HL method. Taken together, this suggests that the 
C-reactive protein is a non-specific biological marker 
and yet can somewhat predict the risk of death. 
Finally, consistent with CAP literature, we found that 
patients older than 65 years are at higher risk of death.  
 
5 Conclusion 
 
This paper proposed the regression calibration 
method of Wang et al., [15] to correct for the biased 
estimates in H-likelihood inference of the univariate 
joint model of longitudinal data and survival data in 
presence of high censoring. Our method shows 
efficiency improvement, which comes at a cost of a 
more expensive computation than the existing h-
likelihood approach. Last but not least, our C-HL 
method yields the best results for joint modelling of 
longitudinal and survival data in the presence of very 
high censoring. 

Table 3. Summary of demographic characteristics  

Demographic 
variable 

 N Mean (min, max)  
 n (%) 

Age  3469 67 (18, 89) 
Age group  3469  

65+   1644 (47%) 
<65   1825 (53%) 

Gender  3469  
Male   1644 (47%) 

Female   1825 (53%) 
Ethnicity  3469  

White   2702 (78%) 
Black   490 (14%) 

Hispanic   165 (5%) 
Asian   112 (3%) 

Hospital Stay  3469 7 (1, 30) 
CRP mg/dL  3469 98 (0.9, 397) 

Log10CRP  3469 1.73 (SD=0.76) 
Deaths  3469 301 (8.68%) 

min = minimum; max = maximum; n = number in category.  

 
Table 4. CAP data analysis of the joint model under the 
C-HL and GHQ 

D = var(bi) in the frailty model for death; Est. = point estimate;   
SE = standard error.  = association parameter in frailty model; 
JM(C-HL), joint model under corrected h-likelihood; P = p-value; 
JM(GHQ), joint model under Gauss-Hermite quadrature. 

 
Figure 1. All subject-specific trajectories of CRP 
measurements. The red line is marginal change. 
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Figure 2. Subject-specific trajectories of CRP 
measurement, separately by survival status. The red line is 
the marginal change. 
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