WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2021.18.14 Karl Stessy Bisselou, Gleb Haynatzki

Bias Corrected H-likelihood Approach for Joint Models of Longitudinal
and Survival Data, With Application to Community Acquired
Pneumonia

KARL STESSY BISSELOU, GLEB HAYNATZKI
Department of Biostatistics
University of Nebraska Medical Center
984375 Nebraska Medical Center, Omaha NE 68198
UNITED STATES

Abstract: - Time-to-event coupled with longitudinal trajectories are often of interest in biomedicine, and one
popular approach to analysing such data is with a Joint Model (JM). JMs often have intractable marginal
likelihoods, and one way to tackle this issue is by using the hierarchical likelihood (HL) estimation approach by
Lee and Nelder [12]. The HL approximation sometimes results in biased estimates, and we propose a bias-
correction approach (C-HL) that has been used for other models (eg, frailty models). We have applied, for the
first time, the C-HL in the context of joint modelling of time-to-event and repeated measures data. Our C-HL
method shows efficiency improvement, which comes at a cost of a more expensive computation than the existing
HL approach. Additionally, we illustrate our method with a new MIMIC-IV CAP dataset.
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1 Introduction In this paper, we propose a bias correction approach
for the H-likelihood estimators of a univariate joint
modelling Ha et al.,, [9-10]. The H-likelihood,
originally proposed in by Lee and Nelder, [12]
resolves the issue of intractability of integrals in
marginal inferences by treating the random effects as
parameters. This prevents integrating out random
effects over their respective distribution. However, in
presence of high censoring rate, the H-likelihood
tends to produce substantially bias parameter
estimates Jeon et al. [10]. Furthermore, literature of
the joint modelling cautions conducting separated
analysis of longitudinal measurements and event
times. Since these two data are observed directly
from a same individual, they are likely correlated.
Hence, ignoring this inherent association results in
biased regression coefficients [4]. There are several
methods capable to correct the all these bias; we use
the regression calibration method of Wang et al.,
[15]. Finally, we conduct a simulation study to assess
the performance of the proposed method, and we
illustrate it using the Medical Information Mart for
Intensive Care (MIMIC)-IV community acquired
pneumonia dataset (2008-2019) [2]. This research
applies, for the first time, the regression calibration
approach to the H-likelihood estimator in the context
of joint modelling. Additionally, we illustrate our
method with a new MIMIC-IV CAP dataset.

In community acquired pneumonia (CAP) studies, C-
reactive protein (CRP) blood concentrations are often
measured repeatedly over time and used to monitor
inflammatory response to bacterial infection in
hospitalized adult patients. When a person becomes
infected by a bacteria responsible for pneumonia
(e.g., Streptococcus pneumoniae), serum levels of
CRP begin to increase rapidly stimulated by
cytokines, such as interleukin (IL)-6.

The time to a patient’s discharge is usually of primary
interest; and frailty models are often used to measure
cluster specific-risk prediction. Our research interest
is to understand longitudinal trajectories of CRP
response association with time to discharge or death
using the hierarchical likelihood (H-likelihood)
estimation approach Ha et al. [5-9, 12]. Three
challenges pose in the analysis of such data; the
marginal likelihood can have analytically intractable
integrals as random effects get larger; the seemingly
high censoring rate resulting in bias parameter
estimates; and the interrelationship between CRP
serum levels and the risk of death. These issues can
only be properly accounted for in a joint model when
the primary intent is to predict the 30-day mortality
in adult CAP patients.
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2 Joint models formulation

It is intuitive to use joint modelling methods to
understand longitudinal trajectories of CRP response
association with the risk of one or multiple events
such as onset of an infection, sepsis or death etc. In
such study setting, an individual may experience
multiple outcomes that may be associated [3, 9]. So-
called “shared random intercepts” are widely used to
capture the association structure between the
longitudinal data and the time-to-event data [9, 14].

2.1 Modelling the longitudinal outcome

Let us denote by Y a random variable, and y;(¢;;) its
observed value for each subject (i =1,..., q)
measured at time t;;, (j = 1,...,n;) where n; is the
number of measurement occasions (clusters).

T .
¥i = (Vi1 -» Yin,) constitutes the n; X 1 vector of
CRP response for patienti. Let us also consider

X1 = (xll-l, s xlini)T the vector of covariates for y;
(possibly time-varying). It is common to use linear
mixed effects (LME) models to fit the observed value
for y;; with respect to some covariates. This can be
given by,

{yij = x1; (tij)B1 + zi;(ti;)b; + ey},
ey

b; " N(0,D); e;; ~ N(0, o1,),
where y;; is the immune response of subject i for the
Jj-th measurement occasions, x,;; and z;; are vectors
of covariates with mean and random effects
parameters  B1 = (B11..... Pip,)" and by,
respectively. D denotes the between subjects

unknown variance covariance matrix, o is the
variance  parameter for the  within-subject
measurements, e; = (eil, ...,eini)T is the vector of
the random errors, I is the g-th dimension identity
matrix, and iid refers to independent and identically
distributed. Other covariance structures such as
compound symmetric (CS), autoregressive (AR1) or
unstructured (UN) can also be used. The best fit for a
model’s variance-covariance structure can be
decided by estimating the Akaike information
criterion (AIC) with the lowest value relative to
models with other variance structures.

2.2 Modelling the time-to-event

The response profiles of a biomarker, namely C-
reactive protein in adult patients with community
acquired pneumonia, can be associated with the risk
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of death, since they are likely to be observed for a
same individual. Though, the intrinsic nature of this
association be may be complex in practice, we
assume that the time to death depends on essential
characteristic of the CPR trajectories.

Denote by T; the random variable of time to death and

X, = (x21, ...,xzq)T the g X 1 vector of covariates
(possibly time-varying) for T;. Denote also by C;, the
non-informative right censoring time with respect
to T;, t; = min(T;, C;) and 6; = I(T; < C;), where
I(-) is an event indicator function. In practice,
censoring time are non-negligible in 30-day mortality
for CAP studies. We fit the Cox model [3] for the
observed the survival times {(t;, 6;),i =1,...,q},
and can be given by,

2i(tlb) = 20(8) exp(xf,B; + zjbTY). ()
where, Ay(t) is an unspecified baseline hazard
function, B, is a p, X 1 vector of fixed effects, and y
is a real value parameter of association that links
positively (negatively) the CPR trajectories to the
risk of death. Thus y has a critical implication for our
joint model.

2.3 Joint modelling

The key assumptions below are essential for our joint
model:

(i). y; and T; given b; are conditionally independent
(i1). T; and C; given b; are conditionally independent
(iii). b; and e;; are independent.

Thus, the basic joint model can be given by,

yij = x13;(tij)Br + 2;(tij ) bi + ey
24(t1by) = Ao() exp(xS, B, + z;bTY)
bi % N(0,D); e;; % N(0, 01,). 3)
Now, let8 = (81", B2", bT)T be the collection of all
fixed effects parameter in our joint model, and denote
by & = (o,y,D) the collection of all dispersion
parameters. For all observed random variables y;,
and (t;, 6;), the marginal joint modelling inference is
given by,

q
10,9 = [/ roulbubyo)
i=1

X f(t{, 6o, B2, by, ¥)

X f(b;|D)db;
where, f(y;|B1,b;, o) is the conditional density in
(1), f(t],8;|1Aq, B2, b, v) is the survival function in
(2) and f(b;|D) is the density function for the
random intercepts given D. The dimension of b; can
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be large and integrating it out can be computationally
expensive or analytically intractable. The Fisher
likelihood does not provide inference on b;, and
evaluating L(0,¢&) using Bayesian MCMC yields a
slow convergence.

2.4 Corrected H-likelihood approach

For simplicity, suppose 7y;; = xfijﬂl + b;, and
N2i = X2:B, + vb;. Then, the log h-likelihood is
given by,

h = h(B4, B2, Mo, 0,D|b))

DI X8
ij i i
d

and,
¢y = log f(¥i|B1, by, 0)
= —%log(Zna) - i(%’j - 771ij)2,
21 = log f (£, 6:1B2, by, Ao)
=6; [103(/10(’5;)) + Uzi] — Ao (t]) exp(2:),
#3; = log f (by|D) = ;log(2mD) — 5= b7,

are the conditional log-likelihoods for y;;, (t;,d;)
and b;, respectively.

Thus, exp{—Ao (&) exp(120)} = Si(¢5 by, 5 is the
estimated survival function.

The maximum h-likelihood estimate can be obtained
using iterative approximation method based on the
score function (U), Hessian matrix (H) and Newton
Raphson method, and can be given by,

4)

oh
hald Tv _
vy =)= X Y-w 5)
on | \ZT(Y — Wy +Vp, )
ab
XWX X'wz
H(®) = <ZTWX 7wz + V§b>’ ©
where,

(X, 0 _(Z4 (Y
x=(o x)2=(2))7=(+})
oty N\ Wy 0
H= (”2)7),_ <y) ’W_ ( 0 y2W2)7
V},b = 04}/0b, and Vf,b = —0%¢,/0b?.
Following Ha et al., [5-6, 9], and Breslow [1], the

non-parametric maximum H-likelihood estimator of
the cumulative baseline hazard function can be given

by,

7\0(/32. b)) =
kX (st

Aok

Ay
k:X(k)stZi ER(X (1)) exp(12;)
where, Xy is the kth smallest distinct failure time of
the X(;j)’s, and R(X ) = {ij: Xij = Xy i = 1.,
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q,j =1,...,n) is the risk set at time X and dy) is
the number of failures at Xy,.

To estimate the mean parameter 8, we use the log-H
profiled likelihood h,, by substituting the estimated
baseline hazard Ay(-) = Ag(+) in (4). After some
algebra, we obtain the logH-profile likelihood

h, z L1 + Z dgo log 4o
ij k
P g W - ¢ ZiER(X(k))eXp(nzi)

+ Z 8if2i — Z dao + Z 3.

i k i
Then, the adjusted h-likelihood (h,) is used to obtain
estimates of the dispersion parameters ¢ by solving
the score equations dh,/0¢ = 0 and using Newton
Raphson approximation, respectively [12, 14]. The
adjusted h-likelihood,

1
hA = hlﬁ:B‘uzﬁ - Elog{det(H)}lﬁzﬁluzﬁ
Cre+d+1)
+———lo

2
where d is dispersion parameters, and p is the number
b

of fixed effects.

g2m

2.5 Derivation of the score equations

Given 0 = (B;", B,", b)T and ¢ = (5,y,D) the
maximum h-likelihood estimators for 8 are obtained
by solving dh, /96 = 0. In other words,

dh 041 1

iy W_ - T o (Veii —Pass

aBl i aﬂl O_Z‘Xll] (yll] 7711])

1
=Xl —m). )
dh d04,;
—P_ _lesz_((s._ )
aBZ i aﬂz i 20 i N2i
= X3(8 — 1a), ®)
dh df;; 1
D _ 30 _ T T _
l
+yZ,(8 — puz) — bD7Y, )

where py; = exp(logAg(t™) +1m,). Z; is nXxXq
cluster indicator matrix whose elements z;;, are
anlij/abi, (n = Zi Tli) and ZZ = Iq = Iqxq is an
identity matrix.

The maximum h-likelihood estimators ¢ of & can be
derived using iterative methods and the diagonal of
the Hessian matrix H and is given by,

XTW, X, 0 xiwiz,
H=|o0 XIWoX, X3 (YW2)Z,
ZIWi X, ZIJ(yWo)X, Z'WZ+ V%’b
ah _
where, W; = —ﬁ =0 11q,
3 9%h, 2 _ 9%h, 4
R 2 = ~opapr ~ P o>
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W—(W1 0 )
N0 yiw,/)

1
Ve,

1 T
=-D"'b,y = (y) and 1y = py.
We then can update the score equation (5) and the
Hessian matrix (6), where
(X, O Z, 0 Y,
x=(0 x,)2=(o z)7=(v)
(=03
r= (uz)”" (V B=g,)
We then take the partial derivative of the adjusted
profile likelihood, h, with respect to &,

% = % - ltraCe (H_l aH)‘
of  0flg 2 o
- aag (% log[det(H )]) |ﬁ:if.b=“0:z°
=0 n

This leads to the partial restricted maximum
likelihood estimate

6= -1)"—R)/(n— wp),and
D =b"b/(q — w,), where

_1 0H
wo = —0 X trace (H 1—)|A,
do/lg

_10H
w; = —D X trace (H 1—)|A.
oD/ g

The estimate of y is obtained through Newton-
Raphson method. For the partial derivative of hy

with respect to v,
oh, Oh 1 OH
—A= —p| — —trace (H'l—)‘ )
dy ay lg 2 ar/lg
the first term of dh, /0y
Ohy T T
W‘A = (Zb)"6 — d(Zb)

0

_ T(s

= (Zb)" (& — dy)) 5
and its the second term is,
OH _
ay
5 [XTWix (] XTw,z,
5 0 X;WZXZ X;(VWZ)ZZ

ZIW X, ZI(yW)X, Z'(W,+y*W,)Z+ D!
Since, W, = ———2%_ — XTy X, th
ince, Wy = — 7 5,1 = X2 H2X;, then,
aw, r
W = XA exp(n3) X,Zb
= XTu,X,Zb

Now, we take the partial derivative of dhy/dy with
respect to y to obtain the Hessian matrix Hy,

0%hy _ 0%h 10 _10H
AT gy2 T gy2 20y trace (H ay) 4’9\’

T
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9%h| _
avil, =
Finally, estimates of &, and y are obtained through
iterative approximation of the score function and

Newton-Raphson equation (11).

(Zb)"d 4 Zb| .

?(k+1) = )’;(k) + (H_ls(f))bf@@
where, @ = (B,b),and 0 = (ﬂ, b).

(11

2.6 Fitting procedure with bias correction
Following Ha et al., [9], the h-likelihood method can

be extended and calibrated. Let b = (bT, ...,bg)T
and starting with initial values(& 0 ) igo)), we
iterate in j-steps as follows:

(S1)  Set initial values (S, by, 19, $o)-

(S2)  Evaluate quantities $(@) and H(@) using
equation (5) and (6), respectively.

(S3)  Estimate B = BP, and b = bY) using the
Newton Raphson formula.

(S4)  Update HY) using B and bY) and estimate
H gjz) the lower right corner using H~'U) matrix.
(S5)  Estimate ial using results from (10), by
replacing b with E[b|B(j)] ={DpW) = pi)
where, { = ((1, s Zq), bW is the corrected random

effect at j" iteration,
sU-0

i

(i(f) = U-1 is the sample variance of

5Y™ . =H?, H; is the i
diagonal element of the lower right corner matrix of
2 x 2 H~'U) block matrix ((H _1)92) ) evaluated at
the j™ iteration. By asymptotic properties of b,
(H D)z = (Hz) ™"

(S6)  Update h by replacing b with b°U), and
exp(b) with E[exp(b)|bY)] = exp (3(1750') +
(5(1‘)(1 — zm)) /2 )

(S7)  Repeat steps S2 to S6 until the convergence
criteria is met, which is defined as

max{|[BU+D — B0, [50+D — 60|} < ¢,

where ¢ is a predetermined tolerance limit.

(S8)  Given (BU), 3 (j)) we obtain estimates of the
unspecified baseline hazard AOU ),

AP () =

q
i=1

> U-D () th
5bq > Tl'

8;1(t;=t)
Z;Llexp(x;riﬁgj+1)+(b(1'+1))Ty(1'+1))I(ti*2t) ’
where I(+) is an indicator function.

3 Simulation studies
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In this section, we conducted simulation studies,
based on 500 replicates to evaluate the performance
of the proposed bias corrected H-likelihood (C-HL)
univariate joint model with shared random intercepts.
We compared it with the H-likelihood (HL) approach
[5, 6, 9], and the Gauss-Hermite quadrature (GHQ)
approximation method. The R packages “frailtyHL”
[7] and “JM” [13] were used to fit the HL and the
GHQ (15 quadrature nodes), respectively. The initial
values of the parameters used for the simulation
below were the estimates obtained from fitting the
joint model to the CAP dataset.

From the joint model in (3), we generated random
subject intercepts b; ~ N(0,D = 0.70) for i =1,...,
50. Next, we obtained y;; for m; = 8 (cluster)
repeated measurements using the linear mixed
model:

Yij|bi~N(B1o + B11Age + By Time + by, 0 = 0.35),
where 8, = 1.50, $;1; = 0.15, f;, = 0.15. Age was
a binary random variable generated from the
Bernoulli distribution with probability 0.5 (where:
1 = 65 and older, 0 = less than 65), and Time =0, 5,
10, 15, 20, 25, 30 and 35 (days).

Next, we used the model in (2) to generate event
times for (t/, 5;),

A;(tlb;) = A¢(t) exp(Bo1Age + vby),

where 1y(t) =1, B,; = 0.60 and y = 0.20. Finally,
censoring rates were generated from the exponential
distribution resulting in three different cases of how
heavy the data are censored: 32%, 58% and 86%; and
the maximum follow-up time as equal to 35.

Results are summarized in Table 1. We
calculated mean, standard deviation (SD) and Mean
squared error (MSE) for 500 replicates to obtain 8
and €. Results suggest that the original HL estimators
6 and % of 0 = (B1o, P11, Prz> B21)" and & =
(0,y,D), respectively, are underestimated and this
bias increases with censoring. However, the C-HL
reduces this bias significantly as the censoring rate
increases. When the number of quadrature nodes
become larger, C-HL and GHQ estimates are closer
(results not shown). However, the computation cost
increases with the model complexity, the number of
quadrature points and the censoring rate [13]. Our
studies showed that for data with high censoring rate,
C-HL is preferred to the HL, particularly for y and
B, inferences. But C-HL becomes computationally
more intensive than HL since the sample variance for
the random intercepts are being recalculated; and this
trend is maintained as the sample size increases.
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4 Data analysis of CAP data

4.1 Data analysis results

In this section, we analyze the Medical Information
Mart for Intensive Care (MIMIC)-IV publicly
available community acquired pneumonia (CAP)
dataset described in section 1, based on our proposed
method.

Table 1: Simulation results for 500 replicates of data
(number of subjects =50, number of measurement
occasions =8). GHQ, Gauss-Hermite quadrature, HL, h-
likelihood and C-HL corrected h-likelihood.

C-HL
Mean _SD

Par. True GHQ HL
Mean _SD___MSE Mean__SD
LME fory
1482 0118
0.148  0.052
0.145 0034 0.009
0349 0099 0010
0696 0012 0012
Frailty Model for T
0601 0205 0.041
0198 0028 0022
LME for y
1495 0.147
0.146 0074
0139 0045
0333 0118 0041
0688 0021 0007
Frailty Model for T
0.603  0.037 0.021
0013

Cens.
rate (%)

MSE MSE

1.50 0.018

0.028

1.479
0.139
0.144
0.352
0.686

0.120
0.074
0.019
0.101
0.010

0.020
0.038
0.039
0.023
0.012

1.481
0.145
0.146
0.350
0.691

0.122
0.083
0.091
0.127
0.015

0.021
0.023
0.012
0.015
0.011

32 Bro
By 015
Bin 015
- 035
D 0.70

0.593
0.187

0.176
0.031

0.041
0.089

0.597
0.194

0.271
0.039

0.040

0.032

B 0.60
¥ 020

58 By 150
By 0.5

Bz 015
- 035
D 0.70

0.044
0.048
0.011

1.399
0.141
0.143

0.159
0.055
0.039
0.091
0.017

0.040
0.063
0.032

1.502
0.144
0.149
0.336
0.693

0.182
0.100
0.097
0.130
0.029

0.041
0.067
0.009
0.372
0.691

0.043
0.011

0.045
0.008

By 0.60
¥ 020

0.584
0.179

0.185
0.030

0.027
0.084

0.596
0.189

0.067
0.045

0.017
0191 0019 0013
LME for y

1501 0.205
0151 0.099
0148 0058 0014
0347 0.100 0.006
0688 0012 0.000
Frailty Model for T

0597 0242 0.001
0201 0.041 _0.000

86 Bo 150
By 015
B, 015
o 035
D 0.70

0.065
0.072

1414
0.132
0.144
0312
0.746

0.220
0.102
0.061
0.103
0.001

0.123
0.181
0.019
0.020
0.002

1.498
0.148
0.146
0.351
0.691

0.227
0.105
0.095
0.139
0.041

0.067
0.079
0.022
0.007
0.000

0.581
0.151

0.208
0.041

0.003
0.002

0.600
0.199

0337
0.054

0.001

B 0.60
Y 0.000

0.20

Par. = parameter, SD = standard deviation, MSE = mean squared error.
Cens. =censoring

The dataset includes patients diagnosed with CAP
(ICD-9 486) and admitted in ICU at the Beth Israel
Deaconess Medical Center from 2008 to 2019. Our
goal was to assess whether the longitudinal
trajectories of CRP biomarker are associated with the
risk of death in adult patients during a 30-day hospital
stay. Each patient’s electronic record was accessed
and recorded based on the first admission time
(baseline). This analysis may be limited because it is
intended primarily for illustration of our method.
Since CRP test is a cheap and readily available, it can
be ordered daily during in-hospital duration. Thus
CRP measurements fit the characteristic of a
longitudinal immune response of patients with
primary clinical outcome being the time to hospital
discharge or death (Figure 1 and 2). The key feature
of this CAP dataset is the high censoring rate due to
patients’ lost-to-follow up.

4.2 Data models

We used the R package “nlme” to fit linear mixed
effect models and we obtained the Akaike
Information Criterion (AIC) values to select the best
longitudinal model for the data (Table 2). The model
with the lowest AIC in boldface was selected for the
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joint modelling analysis. The random intercept term
was shared by all models formalized by equation (3).
Finally, we used the Cox model with gender and age
group as covariates to fit the event time model. We
also conducted the analysis using the R package
“JM” via GHQ maximum likelihood method with a
piecewise constant baseline hazard. This was
intended for a simple comparison since “JM” is a
commonly used package for joint modelling analysis.

Table 2. AIC values of linear mixed models for logio CRP

Models Random AIC value
Effect

Time, gender, age Intercept 9067

Time, gender Intercept 9571

Time, age Intercept 9074

Time Intercept 9092

4.3 Data analysis results
Table 3 and 4 summarize all results and estimations
based on the C-HL. Of 3469 medical records
retrieved, 53% were females and 47% males. Age
ranged from 18 to 89 with a median of 67 years.
Patients were predominantly white (78%) and the
median hospital stay was 7 days, and CRP levels
measured as high as 397 mg/dL of blood serum. In
total, 91.3% of the patients were censored.
Additionally, we focused on the inference on y in
the survival model (2), since it characterizes the
association between the shared random intercepts in
the longitudinal model (1) and the risk of death. We
can see that both methods yield a positive association
between CRP trajectories and the risk of death.
However, this association is more pronounced in the
C-HL method. Taken together, this suggests that the
C-reactive protein is a non-specific biological marker
and yet can somewhat predict the risk of death.
Finally, consistent with CAP literature, we found that
patients older than 65 years are at higher risk of death.

5 Conclusion

This paper proposed the regression calibration
method of Wang et al., [15] to correct for the biased
estimates in H-likelihood inference of the univariate
joint model of longitudinal data and survival data in
presence of high censoring. Our method shows
efficiency improvement, which comes at a cost of a
more expensive computation than the existing h-
likelihood approach. Last but not least, our C-HL
method yields the best results for joint modelling of
longitudinal and survival data in the presence of very
high censoring.
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Table 3. Summary of demographic characteristics

Demographic N Mean (min, max)
variable n (%)
Age 3469 67 (18, 89)
Age group 3469
65+ 1644 (47%)
<65 1825 (53%)
Gender 3469
Male 1644 (47%)
Female 1825 (53%)
Ethnicity 3469
White 2702 (78%)
Black 490 (14%)
Hispanic 165 (5%)
Asian 112 (3%)
Hospital Stay 3469  7(1,30)
CRP mg/dL 3469  98(0.9,397)

Logi/CRP 3469 1.73 (SD=0.76)
Deaths 3469 301 (8.68%)

min = minimum; max = maximum; n = number in category.

Table 4. CAP data analysis of the joint model under the
C-HL and GHQ

Parameter JM (GHQ) JM (C-HL)
Est. SE P Est. SE P
Longitudinal model

Intercept 1.48 0.02 <0.001 1.61 0.22 <0.001

Time 0.13 0.003 <0.001 0.03 0.00 <0.001

Age, >65 0.16 0.02 <0.001 0.13 0.02 <0.001

Male 0.066  0.02 0.006 0.08 0.02 0.00

Event time model

Age, >65 0.63 0.14 <0.001 0.62 0.14 0.00

Male 0.10 0.12 0.43 0.07 0.13 0.60
D 0.67 - - 0.34 - -
g 0.40 - - 0.17 - -
y 0.05 0.05 0.39 0.21 - -

D = var(b;) in the frailty model for death; Est. = point estimate;
SE = standard error. y = association parameter in frailty model;
JM(C-HL), joint model under corrected h-likelihood; P = p-value;
IJM(GHQ), joint model under Gauss-Hermite quadrature.

Figure 1. All subject-specific trajectories of CRP
measurements. The red line is marginal change.
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Figure 2. Subject-specific trajectories of CRP
measurement, separately by survival status. The red line is
the marginal change.
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