
 

Despite the major improvements in medicine, cancer 
remains one of the deadliest diseases. Chemotherapy is one of 
the main treatments against it. However, trying to find an 
equilibrium between the efficacy of the chemo-treatment and 
its side effects is a particularly challenging task. To this 
direction, many mathematical models have been proposed in 
the literature [1]-[3] trying to capture the tumor growth 
dynamics, its response to the treatment (i.e. chemotherapy, 
immunotherapy) and ultimately to provide a better 
understanding of its mechanics. These models can be used as 
a base for in-silico designs and evaluations of chemotherapy 
regimens during pre-clinical tests and clinical trials [2]. In 
addition, the use of these models in combination with optimal 
control theory [3]-[7] may also provide personalized treatment 
and lead to optimal chemotherapy dose schedules with 
minimum side effects. 

Even though such models provide good approximations of 
tumor’s growth, many of them are complex and therefore they 
are difficult to understand and to be used. Their complexity 
derives not only from their large number of biologically 
relevant parameters, but also from their effort to model 
specific processes and phenomena [2], [3] that take place in a 
malignant tumor’s microenvironment. A different approach to 
model the growth of a solid tumor under treatment is to 
consider its progression as a time series. Time series models 
can have many forms and have been extensively used for 
forecasting. Autoregressive moving average (ARMA) models 
[8] are one of the most popular tools to analyze data. This kind 
of systems are relatively simple in implementation and have 
been used in numerous applications, e.g., electricity load 
forecasting [9], electroencephalogram (EEG) analysis [10], 
applications in economy [8], etc. 

In this paper, a new approach to describe tumor growth 
inhibition (TGI) under the effect of single anti-cancer drugs is 
introduced. An ARMA system which models the growth of 
solid tumors is identified and evaluated using laboratory data 

of TGI experiments in mice [11]. Then, linear quadratic 
regulator (LQR)-based optimal control of tumor dynamics is 
used to explore possible optimal chemotherapy dosages for 
both periodic and intermittent treatment schedules. Finally, 
the simulations results are presented, discussed, and 
conclusions are drawn. 

Tumor weight data was derived from the experimental 
studies in human-to-mouse cancer xenografts reported by 
Bilalis et al. [11]. Fragments of AsPC-1 human pancreatic 
cancer cells were subcutaneous transplanted in male 
NOD/SCID mice. Gemcitabine was administered 
intraperitonously (i.p.) at dose levels of 100 mg/kg on days 19 
and 26 after the inoculation time (day 0). 

ARMA models have a long history in forecasting and time 
series analysis. Despite that, they have not been used 
extensively to model cancer’s growth, until now. An ARMA 
model is a combination of two linear models, the 
autoregressive (AR) and moving average (MA) models, 
respectively [8]. It can be defined as a linear input-output 
model which uses a weighted linear combination of past 
values of inputs and data observations (i.e. backfit to historical 
data) to perform predictions. An ARMA model can be 
described by (1):  

𝑤𝑘 = ∑ 𝑎𝑖𝑤𝑘−𝑖

𝑝

𝑖=1

+ ∑ 𝑏𝑗𝑢𝑘−𝑗

𝑞

𝑗=1

,   𝑘 ∈ ℤ, (1) 

where 𝑤𝑘 is the prediction (output of the model), 𝑤𝑘−𝑖, 𝑖 ≤ 𝑝 
are the past observations and 𝑢𝑘−𝑗, 𝑗 ≤ 𝑞 are the past inputs, 
with 𝑝 ≤ 𝑞. The set of parameters (𝑝, 𝑞) defines the order of 
the ARMA model. Parameters 𝑎𝑖 ∈ ℝ and 𝑏𝑗 ∈ ℝ are weights 
associated with each previous observation and input, 
respectively. In the present work, 𝑤 and 𝑢 correspond to the 
tumor weight observations and chemotherapy dosages, 
respectively.  

 

Discrete ARMA Model Applied for Tumor Growth Inhibition 

Modeling and LQR-based Chemotherapy Optimization 

 
SOTIRIOS G. LILIOPOULOS, GEORGE S. STAVRAKAKIS 

School of Electrical and Computer Engineering Technical University of Crete,  
Chania, GREECE 

 

 

 
Abstract—Mathematical models for tumor growth inhibition (TGI) are an important tool in the battle against cancer 
allowing preclinical evaluation of potential anti-cancer drugs and treatment schedules. However, most of these models are 
nonlinear and their structure is based on complex hypotheses. Therefore, tumor growth mathematical models with simple 
structure and minimal number of parameters could be of great importance. In this article, an autoregressive moving average 
(ARMA) model for cancer tumor growth and equivalent its state space representation are estimated, presented and 
evaluated based on laboratory data of TGI in mice. The proposed model was proven capable of describing with accuracy 
the tumor growth under single-agent chemotherapy. At the same time, an optimal control problem was formulated to 
identify optimal drug dosages for the tumor eradication. The linear quadratic regulator (LQR) controller was used with 
success in optimizing both periodic and intermittent chemotherapy treatment schedules reducing the tumor mass while 
keeping dosages under acceptable toxicity.  
 Keywords—Cancer, tumor growth inhibition (TGI), TGI ARMA model, optimal control, linear quadratic regulator (LQR), 
optimized periodic chemotherapy, intermittent chemotherapy 

Received: April 2, 2021. Revised: August 11, 2021. Accepted: August 21, 2021. Published: August 31, 2021. 

 
1. Introduction 

2. Materials and Methods  
2.1 Data Acquisition 

2.2 ARMA-models Backround 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2021.18.17 Sotirios G. Liliopoulos, George S. Stavrakakis

E-ISSN: 2224-2902 141 Volume 18, 2021



 The linear quadratic regulator (LQR) is a commonly used 
method that provides optimal state-feedback laws for linear 
systems. This practically enables closed-loop stability and 
high-performance design of systems. Given a discrete-time 
linear system of the following form: 

𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵𝑢[𝑘] (2) 
𝑦[𝑘] = 𝐶𝑥[𝑘]         (3) 

where 𝐴 ∈ ℝ𝑛×𝑛 , 𝐵 ∈ ℝ𝑛×𝑚 , 𝐶 ∈ ℝ𝑙×𝑛 , 𝑥[𝑘] ∈ ℝ𝑛  is the 
system state vector, 𝑢[𝑛] ∈ ℝ𝑚 is the input to this system (i.e. 
the chemotherapy drug amount) and 𝑦[𝑘] ∈ ℝ𝑙 is the output 
(i.e. the tumor weight) at time 𝑘, LQR tries to determine a 
control input that minimizes a performance index. The 
quadratic cost function is a typical form of this index and it is 
described by the following equation: 

𝐽 = ∑(𝑥𝑇[𝑘]𝑄𝑥[𝑘] + 𝑢𝑇[𝑘]𝑅𝑢[𝑘])

∞

𝑘=0

(4) 

where 𝑄 and 𝑅 are the real positive semi-definite and positive 
definite weighting matrices for each state 𝑥 and the control 
variable 𝑢, respectively. The selection of 𝑄 and 𝑅 matrices is 
not unique. There are many combinations which ensure the 
stability of the system and the optimal closed-loop 
performance. Even though it is a common practice to be 
selected through trial-and-error, sometimes this might be time 
consuming and therefore more sophisticated techniques such 
as the one proposed by Pouliezos [12] can be used. 

The cost function 𝐽 is minimized using the state-feedback 
controller described by the equation below: 

𝑢[𝑘] = −𝑅−1𝐵𝑇𝑆𝑥[𝑘] ≜ −𝐾𝑥[𝑘] (5) 

where 𝐾 = 𝑅−1𝐵𝑇𝑆 is the optimal feedback gain and 𝑆 is a 
positive definite symmetric matrix and the unique solution of 
the algebraic Riccati equation (ARE), below: 

𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑄 = 0. (6)  

The uniqueness of the ARE solution is implied by the 
controllability and observability of (𝐴, 𝐵)  and (𝐴, 𝐶) , 
respectively [13]. 

A crucial step when fitting an ARMA model to data (i.e. 
tumor weight progression) is the identification of its order, 
(𝑝, 𝑞). ARMA models of each possible order (𝑝, 𝑞), with 0 <
𝑝 ≤ 5 and 0 < 𝑞 ≤ 5 were fitted each time to the observed 
tumor growth data of [8]. The method of linear interpolation 
was used to approximate the tumor weight values in the time 
instants (i.e. days) that a measurement was not performed. 
Model parameters were estimated by using the nonlinear 
optimization Neural Network Algorithm (NNA) proposed by 
Sadollah et al. [14], while the order of the model was selected 
based on the Akaike information criterion (AIC) [8]. Based on 
AIC, an ARMA model of order (3,3) described by the 
following equation was selected: 

𝑤𝑘 = 𝑎1𝑤𝑘−1 + 𝑎2𝑤𝑘−2 + 𝑎3𝑤𝑘−3 +

+𝑏1𝑢𝑘−1 + 𝑏2𝑢𝑘−2 + 𝑏3𝑢𝑘−3 (7)
 

where 𝑎1 = 1.8812 , 𝑎2 = −0.6371 , 𝑎3 = −0.2443  and 
𝑏1 = 𝑏2 = −10−5, 𝑏3 = −17.847 are the estimated ARMA 

coefficients. In Fig. 1 below, the model-fitted tumor weight 
curve is plotted against the observed tumor growth data of 
[11]. It can be observed that the model was able to describe 
accurately the observed tumor growth under gemcitabine 
treatment. This fact can be also confirmed by the small values 
of the evaluation metrics, such as the root mean square error 
(RMSE) and the mean absolute percentage error (MAPE) (see 
Table I). 

 
Fig. 1. Observed/interpolated (•) and best fitted (3,3) model tumor growth 

curve obtained in mice given i.p. doses of gemcitabine (100 mg/kg on 
days 19 and 26). 

TABLE I.  ARMA (3,3) MODEL’S FITTING ERRORS 

Model order (p, q) AIC RMSE g MAPE (%) 

(3,3) -244.92 0.0302 12.31 

 

Optimal administration of chemotherapy drugs is a 
challenging problem. A solution to this problem can be 
accomplished with LQR controllers. Through linear state 
feedback, LQR can achieve closed-loop optimal control of the 
anti-cancer drug dose levels while at the same time 
eliminating the tumor. To do that, the system of (7) is 
necessary to be converted in a state-space form. This is 
feasible by calculating its transfer function 𝐻(𝑧). Generally, 
the transfer function of a system can be transformed to a non-
unique state-space representation using a discrete-time 
realization algorithm (DRA) [13]. The transfer function of (7) 
can be calculated as follows: 

𝑤[𝑘] = 𝑎1𝑤[𝑘 − 1] + 𝑎2𝑤[𝑘 − 2] + 𝑎3𝑤[𝑘 − 3]

+ 𝑏1𝑢[𝑘 − 1] + 𝑏2𝑢[𝑘 − 2] + 𝑏3𝑢[𝑘 − 3] 

   𝑊(𝑧) = 𝑊(𝑧)(𝑎1𝑧−1 + 𝑎2𝑧−2 + 𝑎3𝑧−3) + 𝑈(𝑧)(b1𝑧−1

+ 𝑏2𝑧−2 + 𝑏3𝑧−3) 

𝐻(𝑧) =
𝑊(𝑧)

𝑈(𝑧)
=

𝑏1𝑧−1 + 𝑏2𝑧−2 + 𝑏3𝑧−3

1 − 𝑎1𝑧−1 − 𝑎2𝑧−2 − 𝑎3𝑧−3
 

𝐻(𝑧) =
−10−5 𝑧−1 − 10−5 𝑧−2 − 17.847 𝑧−3

1 − 1.8812 𝑧−1 + 0.6371 𝑧−2 + 0.2443 𝑧−3
(8) 

Among several equivalent state-space forms of the above 
transfer function, the observable canonical form ensures the 

2.3 LQR Optimal Control [12],[13] 

3. Results and Discussion  
3.1 Model Development 

3.2 LQR Optimal Control Treatment 
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observability of the derived system [13]. The state-space 
representation of (8) in observable canonical form is described 
by the equations below: 

𝑥[𝑘 + 1] = [
0 1 0
0 0 1

−𝑎3 −𝑎2 −𝑎1

] 𝑥[𝑘] + [

𝑏1

𝑏2

𝑏3

] 𝑢[𝑘] (9) 

     𝑦[𝑘] = [1 0 0] 𝑥[𝑘]                                   (10) 

Although the derived state-space system is not stable, it is 
both observable and controllable. Thus, it is feasible to 
perform TGI LQR optimal control based on it. The weighting 
matrices 𝑄 and 𝑅 were selected as diag{0.01 0.01} and 104, 
respectively [12].  

While the main goal of the optimal control problem is to 
eradicate the tumor, it is particularly important this to be done 
with the minimum cost, i.e. minimal side effects. High dose 
levels may lead to acute toxicity on healthy cells and severe 
side effects. To avoid such phenomena, it is necessary to 
impose hard constraints on the system’s control variable 𝑢, i.e. 
the chemotherapy dosage. Therefore, when the proposed by 
the LQR controller dose level exceeds a predefined threshold, 
the control signal is constrained by the following inequality:  

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 (11) 

where 𝑢𝑚𝑖𝑛 = 0  and 𝑢𝑚𝑎𝑥  are the minimum and the 
maximum dose levels, respectively. In order to balance 
toxicity and chemo treatment efficacy, 𝑢𝑚𝑎𝑥 was set to 200 
mg/kg (i.e. 5.4e-3g for mouse body weight of 27g). The initial 
values of the states are 𝑥[0] = [𝑥1(0), 𝑥2(0), 𝑥3(0)]𝑇 =
[0.02, 0.0334, 0.0468]  (obtained from the laboratory 
measurements) and the optimal feedback gain matrix is 𝐾 =
[0.0039, 0.0135, −0.0189] , derived by applying the 
MATLAB’s dlqr function. 

 Several cases of different periodic treatment schedules 
were examined. More specifically, optimal doses of 
gemcitabine for five different treatment schedules were 
explored. In the first case, i.e. Case 1, the controller calculated 
doses for continuous (i.e. every day) drug administration. For 
the rest of the cases, i.e. cases 2, 3, 4 and 5 the controller 
calculated optimal drug doses for periodic treatments (see 
Table II).  

TABLE II.  PERIODIC LQR TREATMENT RESULTS 

Cases Dose schedule 𝒖𝒕𝒐𝒕𝒂𝒍 (mg/kg) 𝒚𝒎𝒂𝒙 (g) 𝒚𝒛𝒆𝒓𝒐 (days) 

Case 1 Continuous 50.57 0.0659 23 

Case 2 every 2 days 58.46 0.0924 29 

Case 3 every 3 days 68.24 0.1256 35 

Case 4 every 5 days 97.67 0.2226 46 

Case 5 every 7 days 148.21 0.3900 57 

 
 Gemcitabine was administered every 2, 3, 5 and 7 days for 
the Cases 2, 3, 4 and 5, respectively, until the tumor’s 
eradication achievement. The response of the state-space 
system (i.e. the tumor growth in g) along with the optimal 
control input (i.e. the gemcitabine dose levels in mg/kg) for 
each case are shown in Fig. 2-6. In all cases, the chemotherapy 
treatment begins at day 3 with dose administrations in the 
range of 10 to 15 mg/kg. Then, the estimated dose levels are 
gradually decreased until the tumor is fully eradicated at the 
57th day in Case 5. Moreover, it can be clearly seen that 
increasing the interval between the doses, leads to increased 

dose levels proposed by the controller. Particularly, in the 
cases 4 and 5 (see Fig. 5 and 6) the control signal (i.e. dose 
levels) initially increases linearly until it reaches a plateau and 
then decreases until the tumor is fully eradicated.  The total 
amount of the drug 𝑢𝑡𝑜𝑡𝑎𝑙 required to inhibit the tumor growth 
is also increased. The same happens for the treatment duration 
𝑦𝑧𝑒𝑟𝑜. It is also important to note that in all these cases studied 
the proposed dosages did not exceed the defined hard bounds.  
 

 
Fig. 2. System’s response (i.e. tumor weight) and optimal control input (i.e. 

dose level). Continuous treatment (Case 1). 

 
Fig. 3. System’s response (i.e. tumor weight) and optimal control input (i.e. 

dose level). Periodic treatment of (1-2) days (Case 2). 

 
Fig. 4. System’s response (i.e. tumor weight) and optimal control input (i.e. 

dose level). Periodic treatment of (1-3) days (Case 3). 
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Fig. 5. System’s response (i.e. tumor weight) and optimal control input (i.e. 

dose level). Periodic treatment of (1-5) days (Case 4).  

 
Fig. 6. System’s response (i.e. tumor weight) and optimal control input (i.e. 

dose level). Periodic treatment of (1-7) days (Case 5).  

 Whereas in the abovementioned cases the tumor was 
successfully eliminated, chemotherapy resistant scenarios 
might occur due to the long exposure to the drug. Cancer 
chemotherapy resistance is a phenomenon where the 
neoplastic cells develop the ability to evade the effects of the 
chemotherapeutic treatment, leading to failure in drug 
response [15], [16]. To this direction, optimal drug dosages 
for intermittent chemotherapy schedules were also explored. 
To be more precise, optimal dosages for two cases of different 
intermittent treatment schedules were investigated. In both 
cases chemotherapy was administered every 3 days for four 
times, i.e. q3dx4. Then, to avoid toxicity and drug resistance, 
the treatment paused for a period of 𝑡𝑟𝑝 = 7  and 14 days, 
respectively. Finally, it is restarted with dose administrations 
every 5 days for four times, i.e. q5dx4. A summary of the 
results is presented in Table III. The tumor weight curves and 
the optimal dosages are shown in Fig. 7-8. It can be observed 
that in all cases the tumor size was minimized in a period of 
~50 days.  

TABLE III.  INTERMITTENT LQR TREATMENT RESULTS 

Cases Dose schedule 
𝒕𝒓𝒑 

(days) 
𝒖𝒕𝒐𝒕𝒂𝒍 

(mg/kg) 
𝒚𝒎𝒂𝒙 

(g) 
𝒚𝒛𝒆𝒓𝒐 

(days) 

Case 6 q3dx4, q5dx4 7 71.27 0.1394 43 

Case 7 q3dx4, q5dx4 14 85.63 0.1908 52 

 
Fig. 7. System’s response (i.e. tumor weight) and optimal control input (i.e. 

dose level). Intermittent treatment (Case 6). 

 
Fig. 8. System’s response (i.e. tumor weight) and optimal control input (i.e. 

dose level). Intermittent treatment (Case 7). 

Another important observation is that when increasing the 
length of chemotherapy holidays, the total amount of drug is 
also increasing. Despite that, these treatment pauses may act 
positively for the patient by significantly reducing the adverse 
effects of toxicity and consequently improving their quality 
of life [17], [18].  

Anti-cancer chemotherapy is a heavy systemic treatment.  
This means that chemo drugs travel through the patient’s 
bloodstream and they might affect not only cancerous cells at 
the tumor site but also the healthy ones. Therefore, prolonged 
exposure, in combination with high levels of drug 
concentrations might cause acute toxicity and side effects. 
Mathematical modeling of tumor growth along with optimal 
control theory application may provide a solution towards this 
problem. 

In this work, a new approach to model tumor growth under 
chemotherapy treatment was presented. More specifically, an 
ARMA (3,3) model for cancer growth under chemotherapy 
along with its equivalent state space representation were 
developed, estimated using laboratory data and evaluated. A 
model of this form does not require knowledge of the drug’s 
pharmacokinetics (PK); thus, it is easier to be implemented 
and used. The results showed an excellent fit to the tumor 
weight data of [11], under the effect of gemcitabine in mice. 

4. Conclusion 
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Then, the optimal control theory through the LQR control 
method was used to determine optimal dose regimens that can 
minimize the tumor size. Furthermore, to avoid extreme levels 
of toxicity hard bounds to the drug dosages were applied. In 
all such cases studied, i.e. continuous and periodic drug 
administration, the tumor was annihilated in an acceptable 
time period. However, in cases where the treatment duration 
is long and the dose levels are high, the patient might face 
significant side effects. Intermittent treatment schedules are an 
alternative solution which can offer reduced toxicity and 
improve the patient’s quality of life. To this direction, several 
optimal intermittent chemotherapy schedules were explored. 
In all these cases, the cancerous cells were successfully 
eradicated while at the same time the exposure to the drug was 
minimized and the introduced chemotherapy holidays help the 
patient to avoid severe side effects. 

In conclusion, the use of estimated (based on laboratory 
data) linear mathematical models of TGI and LQR optimal 
control in the fight against cancer is proven essential. The 
presented methodology can provide oncologists with 
computational tools to design optimal and patient-specific 
chemotherapy schedules to confront cancer successfully, 
while improving the quality of life of the patients. Studies 
have shown that metronomic chemotherapy (mCHT) (i.e. the 
continuous or frequent administration of chemo drugs at low 
dosages) may be a promising strategy to control tumor growth 
[19]-[21]. For this reason, scientists should focus on the 
identifying optimal metronomic schedules using not only 
optimal control but also artificial intelligence and machine 
learning algorithms [21]. Last but not least, further research 
has to be done to explore optimal treatment schedules not only 
for cancer monotherapies but also for multi-drug regimens 
which have been proven to be more effective. 

The authors would like to thank I. Brellas for his thoughtful 
comments that helped to improve the manuscript. 
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