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Abstract: - The goal of the present paper is to study the propagation of action potential in cardiac tissue using 
the cable equation. The paper discusses one-dimensional models of continuously coupled myocytes. Electrical 
behavior in cardiac tissue is averaged over many cells. Therefore, the transmembrane potential behavior for a 
single cell is studied. Using the monodomain model, in the absence of current at the beginning and end of the 
cable (cell), the initial boundary problem is posed and solved analytically. The paper also discusses a one-
dimensional mathematical model of conduction in discretely coupled myocytes. The electrical behavior in the 
tissue is studied in individual myocytes, each of which is modeled as a continuum connected through 
conditions at the cell boundaries, which represent gap junctions. A stationary passive problem with Dirichlet 
boundary conditions is stated and solved analytically using the bidomain model. The problems are solved by 
the method of separation of variables. Numerical modeling of transmembrane potential propagation is 
performed using MATLAB software. Transmembrane isopotential contours, and 2D and 3D graphs 
corresponding to the obtained numerical results are presented. 
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1 Introduction 
The article studies the propagation of action 
potential in cardiac tissue using the cable equation. 
Cable theory, one of the main problems of which is 
the calculation of the membrane potential and which 
has been developed in recent decades, is older than 
the cable equation itself. It is a variation of the 
equations developed by Lord Kelvin to model the 
propagation of electrical signals in underwater 
telegraphs. The cable theory was originally applied 
to conducting potentials in the axon, for example, 
by, [1]. Cardiomyocytes (heart muscle cells) differ 
from nerve axons in their shape and size - roughly 
they are very small cylinders. Variations of the 
cable equation led to passive one-dimensional (1D) 

cable equations, which are monodomain and 
bidomain models and describe the electrical 
behavior of cardiac tissue cell membranes and 
propagation of action potentials. 

Heart diseases are one of the leading causes of 
death in the world, and there are many scientific 
papers devoted to the study of the causes and 
mechanisms of heart problems. The study, [2], 
determined the distribution of intracellular, 
extracellular, and transmembrane potentials induced 
by current injection in the tissue in question. The 
study, [3], describes the simulation of excitation 
propagation in cardiac tissues based on nonlinear 
reaction-diffusion type models taking into account 
the monodomain model. The study, [4], investigates 
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the mathematical model of heart tissue based on the 
explicit representation of individual cells. A detailed 
mathematical model is used in, [5], to study the 
conductivity properties in small collections of 
cardiomyocytes. 

Although the monodomain and bidomain models 
describe only the macroscopic behavior of syncytial 
(cellular) tissue, they are used to explain passive 
current measurement results in the lens, [6], 
measurements of cable constants, [7], and 
measurements of intracellular resistances in cardiac 
vessels in cardiac tissue filaments, [8], 
electrocardiogram, [9], [10], magnetocardiogram, 
[11], four-electrode impedance measurements, [12], 
and extracellular measurements of electrical 
potentials generated in atrial or ventricular muscles, 
[13], [14], [15], [16].  

The current work discusses a one-dimensional 
model of continuously coupled myocytes. In this 
case, the electrical behavior in cardiac tissue is 
averaged for many cells. So, the distribution of the 
transmembrane potential in a single cell is studied. 
Using a monodomain model, the propagation of the 
transmembrane potential in a thin cylindrical 
excitable myocyte is studied in the absence of 
current at the beginning and end of the myocyte. A 
1D mathematical model of the conductivity of 
discretely coupled myocytes is also discussed. 
Electrical behavior in the tissue is considered in 
individual myocytes, each of which is modeled as a 
continuum bound through conditions at cell 
boundaries that represent gap junctions. A stationary 
passive problem with Dirichlet boundary conditions 
is posed and solved analytically using the bidomain 
model. These problems are solved by the method of 
separation of variables. Numerical results of 
transmembrane potential propagation in 
cardiomyocytes are obtained using MATLAB 
software, and transmembrane isopotential contours, 
and 2D and 3D graphs of the obtained numerical 
results are presented. 
 

 

2 Theoretical Aspects 
The heart consists of transversely striated muscle 
tissue, which ensures the rapid spread of the wave of 
fiber contraction. As a result, all sections of the 
heart contract as a single entity. The homogeneous 
representation of cardiac tissue involves a large 
number of identical myocytes, which can be thought 
of as two interconnected spaces - intracellular and 
extracellular. The cells are connected by gap 
junctions (Figure 1). 

 
Fig. 1: Schematic drawing of cardiac tissue 
 

The cardiac muscle action potential (membrane 
potential) is a brief change in voltage on the cell 
membrane in heart cells caused by the movement of 
charged atoms (ions) into and out of the cell via 
proteins called ion channels. The cell membrane 
separates extracellular and intracellular spaces with 
potentials e  and i , while eiV    is the 
transmembrane potential. 

An action potential is an excitation wave, which 
as a brief change of the membrane potential in the 
membrane of a living cell moves to a small area of 
an excited cell (neuron or cardiomyocyte), as a 
result of which the outer surface of this area 
becomes negatively charged compared to the inner 
surface of the membrane, while it is positively 
charged in a non-excitation state. Sometimes the 
action potential is called a propagating potential 
because the excitation wave is actively transmitted 
along the fiber of a neuron or muscle cell. 
Cardiomyocytes are approximately cylindrical (very 
small, measured in microns) whose length (e.g., x in 
the direction of the cylinder’s long axis) is 
sufficiently greater than its diameter. So we can 
assume that the action potential of the cell depends 
only on the length variable, and the problem can be 
reduced to a single measurement. Thus, the article 
discusses both continuously and discretely coupled 
1D myocyte models. Intracellular, extracellular, and 
transmembrane potentials are vector fields in space 
and time,  

i.e.  txii ,  ,  txee ,  ,  txVV , . 
The electrical behavior of the cell membrane of 

cardiac tissue and the propagation of the action 
potential are described by monodomain and 
bidomain models (equations). Both models use the 
representation of cardiac muscle as two 
interconnected spaces, intracellular and 
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extracellular. In contrast to the monodomain model, 
the bidomain model does not ignore the 
extracellular space; rather, it takes into account 
conductivity and the current flowing through it. The 
state of the bidomain system is described by 
intracellular 

i and extracellular 
e  potentials. For 

these models, the search variable is the 
transmembrane potential eiV   , and iV   
for monodomain. 

Using the passive 1D cable equation derived in 
Appendix A, the standard formulations for 
monodomain and bidomain models are presented 
below as extensions or variations of the cable 
equation. 
 
2.1 Monodomain Model 
The monodomain model (equation) for the 
transmembrane potential  txV ,  is an extension of 
the cable equation presented in Appendix A. The 
equation relates the spatial distribution of the 
transmembrane potential to reaction conditions that 
locally control (determine) the transmembrane 
potential. 1D monodomain equation (A3) related to 
the kinetics of the time-dependent active ion 
channel  tIion   and external stimulus  tIstim ,  can 
be written as: 

    ,2

2



















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t

V
c

x

V
stimionmi         (1) 

where  txV ,  is the transmembrane potential, 
i

  is 
the effective intracellular conductivity,   is the 

tissue surface-to-volume ratio, and 21 cmFcm   
is the membrane capacity. Let us divide equation (1) 
by   and mc  and we will gain: 

    tItI
ct

V

x

V
D stimion

m









 1
2

2

, 

where 

m

i

c
D




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The monodomain equation is often presented in this 
form and D  is described as a diffusion coefficient. 
 
2.2 Bidomain Model 
The bidomain model, [17], [18], is a 
phenomenological model that aims at encapsulating 
the action of single-cell ion channels in a 
homogenized representation of cardiac tissue 
consisting of a large number of identical myocytes. 
The model assumes the coexistence of two 
continuous domains (intracellular and extracellular) 

at all points in space. A rigorous mathematical 
representation of the bidomain model was realized 
by, [19]. There are alternative mathematical 
formulations of the bidomain equations; the 
standard version presented here belongs to, [17].  

The bidomain equations are derived from 
Maxwell’s equations of electromagnetism with 
certain assumptions: 1) the first (quasi-static) 
assumption is that intracellular current can only 
flow between the intracellular and extracellular 
regions, and the intracellular and extra-myocardial 
regions can communicate with each other. So, the 
current flows into and out of extra-myocardial 
regions, but only in the extracellular area; 2) the 
second assumption is that the heart is isolated. So, 
the current leaving one domain must enter another. 
In addition, the current density in each intracellular 
and extracellular domain must be the same in 
magnitude but opposite in sign and can be 
determined as the product of the surface-to-volume 
ratio of the cell membrane and the transmembrane 
ionic current density per unit area. 

According to Ohm’s Law: 
EJ  , 

where J  is the electrical current,    is the 
conductivity of space, and Ε is the electric field. 

 Using the quasi-static assumption, the electric 
field Ε is defined as the gradient of the scalar 
potential  : 

.Ε  
As a result, we will gain: 

.J  
Assume, i  and e  are the conductivity of 

intracellular and extracellular spaces, respectively. 
According to Ohm’s Law and the quasi-static 
assumption, we will gain the following expressions 
for iJ  (intracellular) and eJ  (extracellular) current 
densities in each domain: 

.iii  J  
.eee  J  

The change in current density in each domain is 
equal to the current flowing through the membrane; 
under the second assumption, we will gain: 

,mmei IA JJ  
where   and    are the gradient and divergence 
operators, respectively, mA  is the ratio of the cell 
membrane surface to volume, and mI  is the 
transmembrane current density per unit area. By 
combining the two equations above, we gain 

  ,mmii IA                                (2) 
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  ,mmee IA                             (3) 
By summing up these equations, we will gain:  

   .eeii    
Let us subtract  ei    from both sides. We 
will gain: 

       .eieeeiii    
By using denotation 

eiV    we will gain: 
    .eeii V           (4) 

By inserting equation (2) in monodomain equation 
(1), we will gain: 
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





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t

V
c  

By subtracting and adding  ei    and 
considering eiV    notation, we will gain: 

  .












 ionmi I

t

V
cV                (5) 

 By combining equations (4) and (5) and adding 
time- and space-dependent stimulus  ),txIs , a 
bidomain model is obtained: 

     ,1seeii IV        (6) 

  ,2sionmi II
t

V
cV 













   

where   is the surface-to-volume ratio of the cell 
membrane, i  and e  are intracellular and 
extracellular conductivity, mc  is the membrane 
capacity per unit area, ionI  is the sum of all ionic 

currents, and 
is

I  is the external stimulus. 
It should be noted that the bidomain model can 

be reduced to a monodomain model in two 
particular cases: when the extracellular potential can 
be neglected because of the extracellular 
conductivity, and when the anisotropy ratio between 
the effective intracellular and extracellular 
conductivities is the same, [20]. In the latter case, 
the intracellular and extracellular conductivities are 
proportional and can be related as follows: 

ie    
By inserting this expression in equation (6), we will 
gain: 

,
1 2sionmi II

t

V
cV 


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









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





 




 

which is identical to the monodomain equation, if 

we choose the effective conductivity i








1
. 

 

3 Problem Statement and Solution 
 
3.1 Monodomain Model 
In this section, we discuss the 1D model of 
continuously coupled myocytes. Because of the 
assumption of continuity, in this case, the electrical 
behavior in the tissue is averaged over many cells.  
So, we will study the propagation of the 
transmembrane potential for one cell. 

Consider a thin cylindrical excitable cell of 
length L . Let us solve the passive cable equation 
(see Appendix A) with the following boundary and 
initial conditions: 1) there is no current flowing into 
the cable (myocyte) (at the beginning of the cable) 
or out of the cable (at the end of the cable), and 2) at 
the beginning of time interval, the current is a 
function only of the spatial coordinate x  of the 
cable. 1) is a problem analogous to the insulated-end 
beam thermal conductivity problem. Thus, the 
boundary and initial conditions will be written as 
follows: 

 

  ,0,   :For   
,0,   :0For   

,

,
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

txVLx
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x
                         (7) 

   .0,   :0For  xfxVt                      (8) 
Using the method of separation of variables (see 
Appendix B: after calculations of the integrals 
included in (B12) and elementary algebraic 
transformations) and considering the boundary (7) 
and initial (8) conditions, we will obtain the 
following expression: 
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3.2 Bidomain Model 
The present section discusses the 1D mathematical 
model of conductivity in discretely coupled 
myocytes. Electrical behavior in the tissue is 
considered in individual myocytes, each of which is 
modeled as a continuum bound through conditions 
at the cell boundaries, which are gap junctions. 

Consider a chain consisting of cylindrical 
myocytes of length L and radius a. The myocytes 
are connected through gap junctions, as described 
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by, [21]. The cylindrical coordinate system  zr ,,  
is defined by zx :  in the direction of the myocyte 
length. The extracellular space has a cross-sectional 
area  x , which changes along x . The 
intracellular potential  txVi ,  is defined in 
myocytes, and extracellular potential  txVe ,  is 
defined in the extracellular space. The 1D bidomain 
model is constructed x  by determining the average 
intracellular  txVi ,  and extracellular  txVe ,  
potentials as well as the transmembrane potential 

  eim VVtxV , . 
 The cable equation for each cell is as 

follows: 

.11
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Here: 
i

i
i

A

R
r   and 

e

e
e

A

R
r  , where iR , eR  are 

resistances of intercellular and extracellular spaces, 
respectively. 2aAi   and eA  are the average 
intracellular and extracellular cross-sectional areas 
of the cell, respectively,  mC  the membrane 
capacity, and ap 2  the cell circumference. The 

intracellular current is given as 
x

V

r

i

i 

1  and is 

continuous in the cell. ionI  is the sum of all ionic 
currents, which is taken as a constant current 
applied to all points of the cell membrane, i.e.: 

.
m
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m
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
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Assuming that gap junctions behave as ohmic 
resistors, the potential drop at the junctions is 
proportional to the current flowing through the 
junctions. 

  ,1
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


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where  iV  is the leap in intracellular potential 

along the gap junction, and jr  is the effective 
resistance of the gap junction. 

 The steady-state passive problem with 
Dirichlet boundary conditions is solved by the 
method of separation of variables. For a constant 
stimulus at one end of the cable (Dirichlet boundary 
conditions), let us take the solution with a 
geometrically decaying solution, [21], 
   ,xVLxV ii     xVLxV ee   for the 

decay constant 1 . The decay constant is related 

to the space constant g by the following 
expression:  

.gL
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
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For a given cell, the analytical solution of this 
stationary problem can be found, which for the n-th 
cell is proportional to: 
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Thus, in the case of the stationary state, equation 
(9) can be written as follows: 
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The solution of this equation is given as follows: 
   ,expexp 21 kxckxc mmm   

where  ei
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p
k 2 . So, the solutions are given 

by the following formulas: 
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Using the boundary conditions of current 
continuity and continuity of the extracellular 
potential and the leap in the intracellular potential at 
the gap junction, the constants are determined by the 
following formulas: 
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where   is the root of the following characteristic 
equation: 
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m
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j
R

Lpr
R   is the effective dimensionless 

resistance of the gap junction.  
 

 

4 Numerical Realization 
 
4.1 Realization of the Monodomain Model 
The numerical simulations for the 1D model of 
continuously coupled myocytes in the absence of 
current at the beginning and end of the cable (cell), 
were performed using MATLAB software for the 
following data:  time ( ranges from 2.5 to 4.5 ms 
in humans) and length (  ranges from 1.3 to 2.2
mm ) for four pairs of constants:  
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1) mmms 3.1   ,5.2   ; 2)
mmms 6.1   ,8.2   ; 

3) mmms 8.1   ,3    and  
4) mmms 2.2   ,5.4   , myocyte (cell) length: 

mmmL 135.0135   , spatial (lengthy) 
discretization mmmx 006.06    and temporal 
discretization mst 02.0  were used. Numerical 
values of the transmembrane potential V  were 
obtained during the variation of x  (from mm006.0  
to mm135.0 ) and t  (from ms02.0  to ms03.0 ). 

In practice, a system of contours (isolines) is 
often used to analyze the measurement results. For 
myocytes, some contours of transmembrane 
potential V for the plane area in the vector field of 
space (length) x  and time t  are presented. (It is 
possible to find such a system of points, in which 
numerical values of transmembrane potentials V are 
equal. By connecting them, we get lines of equal 
transmembrane potentials, so-called isopotential 
contours). Figure 2 shows myocyte transmembrane 
isopotential contours for four values of   and  . 
As Figure 2 shows, the transmembrane isopotential 
contours in all four cases look similar, in particular, 
all of them are almost elliptic lines, and only their 
numerical values differ slightly.  

Figure 3 shows three-dimensional (3D) graphs 
of the distribution of the transmembrane potential  
V in the vector field of space and time for the 
myocyte for four values of   and  . As the Figure 
shows, in all cases, the 3D graphs look almost the 
same and only their numerical values differ slightly. 

 

 
Fig. 2: Transmembrane isopotential contours for 
different fixed values of time and space constants 
(upper left figure: mmms 3.1   ,5.2   , upper 
right figure:  mmms 6.1   ,8.2   , lower left 

figure: mmms 8.1   ,3   , lower right figure:  
mmms 2.2   ,5.4   ) 

 

 
 
Fig. 3: 3D graphs of the distribution of V
transmembrane potential in the x  t  vector field for 
different fixed values of time and space constants 
(upper left figure: mmms 3.1   ,5.2   , upper 
right figure: mmms 6.1   ,8.2   , lower left 
figure: mmms 8.1   ,3   , lower right figure:  

mmms 2.2   ,5.4   ). 
 

Figure 4 gives the graphs of variation of V
transmembrane potential along x  for four different 
fixed constant values of   any length   and 
different fixed values of t , in particular: upper left 
figure: mst 01.0 , upper right figure:  mst 02.0

, lower left figure: mst 05.0 , lower right figure:  
mst 09.0 . Figure 4 shows: 1) as the value of t  

increases different fixed constant values of   and 
length  , the graph of variation of transmembrane 
potentials get close to each other meaning that the 
transmembrane potential will change after some 
time only slightly when   and   change; 2) in all 
four cases, as 075.0x , for all four values of time 
and length constants, the transmembrane potential 
  138.0, txV . 
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Fig. 4:  Graphs of variation of transmembrane 
potential V along x  for different fixed values of 
time   and space   constants and different fixed 
values of t , in particular: upper left figure: 

mst 01.0 , upper right figure:  mst 02.0 , lower 
left figure: mst 05.0 , lower right figure:  

mst 09.0 . 
 

Figure 5 shows the graphs of variation of 
transmembrane potential V as t  changes for 
different fixed values of time   and space   
constants and different fixed values of x  in 
particular upper left figure: mmx 006.0 , upper 
right figure:  mmx 012.0 , lower left figure: 

mmx 03.0 , lower right figure:  mmx 054.0 . 
In all four cases, 2D graphs look very similar and 
only their numerical values differ slightly. Besides, 
in all four cases 02.0t , transmembrane potential 
  138.0, txV .   

 

 
Fig. 5.  Graphs of variation of transmembrane 
potential V , in case of t  change, for different fixed 
values of time   and space   constants and 
different fixed values of x , in particular: upper left 
figure: mmx 006.0 , upper right figure:  

mmx 012.0 , lower left figure: mmx 03.0 , 
lower right figure:  mmx 054.0 . 
 
4.2 Realization of the Bidomain Model 
The 1D mathematical model of conductivity in 
discretely coupled myocytes discussed in section 
3.2, was realized numerically, in particular, for 16 
cells at fixed potentials at both ends of the myocyte 
in the steady state. Numerical simulation was done 
with MATLAB software for the following data 
based on the obtained analytical solution: 

cmL 012.0 , 26104 cmAi

 , 
261065.1 cmAA ie

 , 

 62 104,  aaAi  cmg 09.0 , 
27000 cmRm  , cmRi 150 , cmRe  75 , 

cmR j 110 .  The graphs corresponding to the 
analytical solution are shown in Figure 6, in 
particular, graphs of changes in the intracellular 
potential iV , extracellular potential eV  , and 
transmembrane potential V  for different fixed 
values of space constant g : upper left figure: 

mmg 09.0 , upper right figure: mmg 05.0 , 

lower left figure: mmg 03.0 , lower right figure:  

mmg 01.0 . As the figure shows, by reduction 

g , the geometric decay of intracellular, 
intercellular, and extracellular transmembrane 
potentials accelerates.  
 

 

 
Fig. 6: Graphs of intercellular iV , extracellular eV  , 
and transmembrane V  potentials, as the functions 
of space for different fixed values of space constant 
(upper left figure: mmg 09.0 , upper right 
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figure: mmg 05.0 , lower left figure: 

mmg 03.0 , lower right figure:  mmg 01.0 ). 
 
 
5 Conclusion 
In this paper, the theoretical matters for models of 
cardiac electrophysiology are considered, including 
the introduction of single-cell action potential 
models and the continuum tissue model.  
Mathematically describing the local continuous or 
discontinuous excitation of tissue is the focus of this 
work. 

The principal results presented in the paper can 
be formulated as follows: 

 Using the passive 1D cable equation, the 
standard formulations for monodomain and 
bidomain models are given as extensions of the 
cable equation.  

 The transmembrane potential propagation for a 
single cell is studied; in particular, the 
transmembrane potential propagation of a thin 
cylindrical excitable cardiomyocyte in the 
absence of current at the beginning and end of 
the cardiomyocyte is studied.  

 A 1D mathematical model of the conductivity of 
discretely coupled cardiomyocytes is discussed. 
The electrical behavior in cardiac tissue is 
studied in individual cells, each of which is 
modeled as a continuum bound through 
conditions at cell boundaries that represent gap 
junctions. 

 Using MATLAB software for the above 
problem, numerical results for the 
transmembrane potential are obtained, from 
which the contours of the transmembrane 
isopotential for the plane area in the vector field 
of length x  and time t are construed. Some 2D 
and 3D graphs are plotted. 

 One of the most surprising (interesting) results 
we obtained is that after a certain time, the 
transmembrane potential almost stops changing 
when   and   changes (Figure 4). It is 
important to verify these theoretical predictions 
experimentally. 
 
Cardiovascular disease remains the leading 

cause of death worldwide, most notably, heart 
failure due to heart attack and fatal arrhythmias. The 
immediate cause of fatal cardiac arrhythmias is still 
not thoroughly understood, but in many cases, it 
may be related to an improper spread of the cardiac 
action potential. It should be noted that, despite 
many years of research, the distribution of the action 

potential of the heart muscle is still not fully 
understood. So its study remains a pressing topic of 
many modern scientific studies. 

This research can be used in electrophysiology 
to examine a wide range of arrhythmias to 
understand the etiology of the disease and figure out 
the solution. Also, the data can be used for some 
electrophysiologic medical devices to perform a 
comprehensive electrophysiologic study. 

The work can be considered to be combined 
with artificial intelligence in the future for more 
efficacy of electrophysiologic diagnostic and 
treatment devices.  
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APPENDICES 
 
Appendix A.  Derivating passive 1D cable 

equation 
Let us consider a long enough thin cylindrical 
excitable cell. Let us denote the specific resistance 
of the cell by , the membrane resistance by , 

and the membrane capacity by .   
The variation of transmembrane potential 

within a short interval  is formulated as 
follows: , where   is the resistance of 

the cell cytoplasm per unit length and  is the 
current along the membrane. Let us assume that

,  

                             (A1) 

The current along the membrane can be described 
with the following formula: , where   
is the transmembrane current per unit of length. 
Again, letting , 

                              (A2) 

Transmembrane current at every point x is the 
combination of capacitance current  and 
membrane leakage current corresponding to the 
membrane resistance . The capacitance  current 
within the membrane area of a given volume is 
expressed with the formula:  

 

The current due to membrane resistance is 
expressed by Ohm’s Law: 

 

By combining these two members, we gain:  

  

Then, by inserting these two members in (A2) and 

by considering (A1) (from (A1), ), the 

following expression is obtained:  

 

Therefore, the passive cable equation will be written 
down as follows:  

,                      (A3) 

where  denotes intercellular current. 

Then, by an algebraic transformation of the 
passive cable equation, namely by multiplying 
equation (A3) by , the number of parameters is 
reduced to two basic parameters. Thus, the passive 
cable equation will be written as follows: 

,                         (A4) 

where  is the constant of the space (length) of the 
passive cable equation and is expressed by the 
following formula:  

 

which determines the distance along the cell at 
which the injected potential decreases by factor e. 
By defining the spatial constant  as the distance at 
which the potential at a cell point decreases by 
factor e, it can be calculated that for healthy tissue, 
the spatial constant is much greater than the length 
of an individual cell, in particular for normal cardiac 
excitation the spatial constant  is much greater 
than the length of one myocyte ( , [22], or 

, [23], compared to the average 
myocyte length of ). This means that the 
change in potential along the length of an individual 
cell is very small, and thus homogenizing the tissue 
to represent the continuum without considering the 
change in length of an individual cell is an 
acceptable approximation. 

 is a time constant and is defined by the following 
formula: 

 
It determines the length of time over which the 
injected potential decreases by factor e. Space and 
time constants are useful parameters used to 
measure and characterize specific properties of 
excitable tissues. 
Instead of passive membrane resistance, the 
currents, due to active ion channels, may be 
replaced by passive transmembrane currents. So:  

, 

where each ion is the transmembrane current 
due to the motion of a particular type of charge-
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bearing ion. Then the equation of the passive cable 
can be written as follows:  

 

 

Appendix B. Method of separation of 

variables 
 After separating the variables, let us write down 

 as follows: 
                           (B1) 

 After substituting (B1) into equation (A4), we gain: 
 

Moving the members and equating them to the 
negative characteristic  yields: 

 

As a result, the following equations are gained: 
                         (B2) 

                       (B3) 
The solution of equation (B2) is [24]: 

.)( )/( 2
mtk

cetT


                         (B4) 

As for the solution of (B3), if we assume that
,  then the roots of the equation are complex. If 

, then the roots will be real and the solution 
will be as follows, [24]: 

 

This will not serve because in this case, the 
boundary conditions do not allow for unique values 
of a and b, and only trivial solutions are obtained. 
So, if we consider that , we will get the 
following expression, [24]: 

  (B5) 

By substituting equalities (B4) and (B5) into 
expression (B1), we will obtain:  
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           (B6) 

Boundary conditions  and  
mean the following: 

 

Hence:  
 

The following expression is obtained from (B1), 
(B6) and : 
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The term containing sine drops out and  will 
remain. Thus, from (B5) we will gain:  

                   (B7) 

By applying the second boundary condition
, we will gain: 

 

Generally, ,  when  
, thus, we will gain: 

              (B8) 

Hence:  

                       (B9) 

By substituting equality (B8) into (B7), we will 
gain:  

      (B10) 

By substituting equalities (B9) and (B10) into (B6), 
we will gain: 

. 
Now, let us insert  

. 

Hence, we will have the Fourier decomposition with 
cosines: 

.  (B11) 
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By considering the initial condition , 
the exponential term drops out: 

. 

The Fourier decomposition with cosines will be 
written down as follows: 

. 

By substituting this into (B11), the following 
expression is obtained: 
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