
Custom Automatic Segmentation Models for Medicine and Biology 

based on FastSAM 

 
SANTIAGO PARAMÉS-ESTÉVEZ1,2, DIEGO PÉREZ-DONES3,4, IGNACIO REGO-PÉREZ5, 
NATIVIDAD OREIRO-VILLAR5, FRANCISCO J. BLANCO5, JAVIER ROCA PARDIÑAS6, 

GERMÁN GONZÁLEZ PAZÓ7, DAVID G. MÍGUEZ3,4, ALBERTO P. MUÑUZURI1,2 

1Group of NonLinear Physics,  
University of Santiago de Compostela, 

Facultade de Física, Rúa Xosé María Suárez Núñez, s/n, 15782, Santiago de Compostela,  
SPAIN  

 
2Centro de Investigación e Tecnoloxía Matemática de Galicia, CITMAga,  

Plaza do Obradoiro, Colexio de San Xerome, s/n, 15705, Santiago de Compostela, 
SPAIN 

 
3Departamento de Física de la Materia Condensada,  

University Autónoma de Madrid, 
Avda. Reina Mercedes, s/n, 28792, Miraflores de la Sierra, Madrid, 

SPAIN 
 

4Centro de Biología Molecular Severo Ochoa, 
University Autónoma de Madrid,  

Calle de Lavoisier, 4, 28049, Madrid, 
SPAIN 

 
5Servicio de Reumatologia. GIR-INIBIC, 

Hospital Universitario de A Coruña, Sergas, University of A Coruña, 
As Xubias, 84, 15006 A Coruña, 

SPAIN 
 

6Department of Statistics and O.R. & SiDOR Group,  
University of Vigo, 

Faculty of Economic and Business Sciences, As Lagoas, Marcosende, 36310, Vigo, 
SPAIN 

 
7Healthcare innovation Advisor, 

Merasys, 
Avenida Ramiro Pascual S/N- Nave C 36213, Vigo, Pontevedra, 

SPAIN 
 
Abstract: - FastSAM, a public image segmentation model trained on everyday images, is used to achieve a 
customizable and state-of-the-art segmentation model minimizing the training in two completely different 
scenarios. In one example we consider macroscopic X-ray images of the knee area. In the second example, 
images were acquired by microscopy of the volumetric zebrafish embryo retina with a much smaller spatial 
scale. In both cases, we analyze the minimum set of images required to segmentate keeping the state-of-the-art 
standards. The effect of filters on the pictures and the specificities of considering a 3D volume for the retina 
images are also analyzed. 
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1  Introduction 
Training and designing an image segmentation 
model from scratch is not accessible to everyone or 
every project. In most cases, the problem is related 
to the impossibility of accessing large numbers of 
images. Achieving custom competent models 
requires experts, enormous amounts of data, 
computational power, and time. These resources are 
scarce for small companies and investigation 
groups, leading to an undesired imbalance in our 
globalized world.  

It has been noted in the literature that, while 
large groups develop and furnish existing ideas with 
their abundant resources, underfunded small groups 
still are who, proportionally, propose more 
groundbreaking ideas that revolutionize science, as 
studied in [1]. One of the main advantages of large 
teams is the ability to access big databases and 
computational resources. Achieving similar results 
with less data and power would greatly benefit small 
groups and, therefore, science. 

Automatic segmentation is becoming 
increasingly relevant, specifically in medical and 
biological environments, where large amounts of 
images must be processed to screen patients or to 
supervise the evolution of biological experiments, 
examples can be found in completely different fields 
ranging from cardiology, oncology, radiology, 
biology in general, cell segmentation, etc. as can be 
seen in studies [2], [3], [4], [5], [6]. Also, a study 
with more details on the benefits of implementing 
automatic segmentation in existing workflows can 
be found in [7]. 

In the absence of public or commercial tools for 
a specific case of study, by default, this task tends to 
be performed manually resulting, in some cases, in 
suboptimal health service or a reduction in the scope 
of the biological studies. Also, some useful data can 
be abandoned instead of being used to train models 
to accelerate or even completely automatize 
acquisition or labeling processes. With this work, 
we would like to help small groups develop their 
custom models by showing the viability of our 
approach for creating performant models with as 
few resources as possible. 

In this direction, several studies have been 
conducted to apply recent general segmentation 
models like the Segment Anything Model (SAM) 
from MetaAI, described in [8]. In [9], SAM is 
directly evaluated on tens of thousands of medical 
images extracted from openly available datasets. 
The model requires the user to specify points or 

regions of interest to segment the desired object. 
This general approach works very well in normal 
photographs, where objects are usually easy to 
identify. Nevertheless, for medical or biological 
images, the result is not always as good as expected 
or requires too much user input to be used in an 
automated framework. The alternative is to finetune 
SAM and for that in [10] a dataset of 1.5 million 
images was developed and used in conjunction with 
20 A100 GPUs to train and test MedSAM. This 
model is a finetuned version of SAM that achieves 
high performances at segmenting several kinds of 
medical conditions (tumors, cuts, dark spots, etc.) 
and image types (X-ray, CT, MRI, etc.). It should be 
noted that having access to all those resources is not 
trivial, even for big companies. Therefore, 
discovering approaches to achieve similar results 
with a small fraction of that computational power 
and data has a lot of interest for reproducibility and 
potential future studies. That is why we will explore 
in this study the possibilities of using FastSAM for 
similar purposes since it claims to be a lighter 
alternative to SAM as shown in [11]. 

This manuscript will use two completely 
different sets of images to prove this approach's 
viability. On the one hand, knee X-ray images from 
the OAI (OstheoArthitis Initiative), presented in 
[12] and on the other, microscopical images of the 
3D retina nuclei from a zebrafish embryo. In the 
first case, the bones observed are, in most of the 
cases, clearly separated from the surrounding tissue 
while, in the second example, the objects to analyze 
are composed of a myriad of small objects, thus, 
complicating the task of recognizing the ensemble 
for a non-trained eye. 

Our approach consists of finetuning FastSAM 
with unconventional data to see if its behavior can 
be generalized to other more scientific non-trivial 
settings. FastSAM can tell apart objects with clear 
boundaries, but more subtle cases, that require 
instruction even for human eyes, are more 
complicated to solve.  

To tackle this problem with as little data as 
possible, we will trade FastSAM’s generality for the 
performance at finding a single type of object, 
reducing drastically the resources needed to achieve 
significant results. 

In this work, we demonstrate how FastSAM, a 
public image segmentation model trained on 
everyday images, can be used to achieve a 
customizable and state-of-the-art segmentation 
model with very few resources. 
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The next section describes the images used and 
their specificities. Also, the parameters that describe 
the goodness of the training are introduced in this 
section. The following section shows the results for 
the two cases considered and the manuscript 
finishes with a discussion and conclusions section. 

 
 

2  Background and Methodology 
To approach the problem of giving access to custom 
segmentation models to small groups, we tried to 
move away from conventional segmentation models 
such as U-Net, which are more challenging to 
implement and may require the presence in the 
research group of a person with experience in 
artificial intelligence, which may not be available to 
all small groups. Nevertheless, in [13], similar 
efficiencies for FastSAM and U-Net were observed 
when segmenting brain tissue (Dice score of ~0.95). 
Said work relied on the general capabilities of the 
pre-trained FastSAM model to segment the visible 
brain during surgery. This was done by giving it an 
ROI (region of interest), which in their setting is 
easier to set since the camera is always fixed. If the 
camera were to move, this process would benefit 
from finetuning FastSAM as we will show in this 
work. 

Another alternative, as commented in the 
previous section, is using directly SAM, but this 
also has some disadvantages, like how heavy the 
model is to train and evaluate. Also, in [13], an 
implementation with SAM was made, but it was 
determined impractical due to high computational 
times, a lot greater than the time needed to do a 
manual segmentation. This shows the relevance of 
evaluation speeds for our purpose, the models 
obtained must be fast to be useful. 

FastSAM is intended to be a model capable of 
segmenting any object with a prompt from the user, 
just like SAM, except FastSAM also allows text 
prompts. When fine-tuning FastSAM to only 
recognize one class of name “object”, the human 
interaction is removed by simply prompting said 
keyword to get the segmentation. 

All of this makes FastSAM a very powerful 
candidate for custom design and automatic 
segmentation models with few resources as we will 
show in this section. 
 
2.1  Model 
FastSAM is a model based on YOLOv8, presented 
in [14], that has been trained with 2% of all SA-1B 
datasets. It achieves similar results to SAM, as 
shown in [8], but 50 times faster. To finetune it, the 

datasets must be crafted in the COCO format, 
described in [15]. 

The model is designed so it can take images 
with any aspect ratio. To do so, the shortest 
dimension is padded to create a square image and 
then scaled to the size specified when loading the 
model to train or evaluate. This is particularly useful 
for evaluating X-ray images from different 
equipment, which may have varying resolutions and 
shapes. 

The models were trained in a node with 5 
Nvidia A100 GPUs hosted by CESGA. All the 
models trained for this work were evaluated on a 
desktop computer with an Intel i5-13500 CPU 
(notice that this is common equipment for any lab). 
The parameters chosen to train the models and 
approximate training and inference times can be 
seen in Table 1. 

 
Table 1. Summary of the parameters chosen to train 
models with each type of image. Image size has a 
noticeable impact on training time, but inference 

time per image is unchanged. 

Model 
Train Configuration Times 

Epochs Image Size Batch 
Train 

(min) 

Evaluate 

(s/image) 

Tibia 200 1536x1536 30 ~50 ~5 
Retina 200 1024x1024 40 ~15 ~5 
 
2.2  Data Acquisition and Preprocessing  
We will be working with large-scale X-ray images 
and microscopical images of a 3D object to show 
the viability of this method independently on the 
application, scale of the objects analyzed, etc. 

X-ray data was acquired from the OAI, a 
database with more than 4000 patients with images 
periodically taken over up to 10 years with several 
devices at different hospitals. Each image has two 
knees, to train the model they were separated into 
two images, so the model only sees one knee at a 
time. Originally, images were stored in 16-bit but 
later converted to 8-bit RGB images in grayscale 
(same value for each pixel at the three channels).  

Suboptimal acquisition conditions (i.e., wrong 
placement of the patient in the X-ray machine, non-
standard functional settings of the machine, 
existence of spurious objects, etc.) can lead to the 
appearance of fog and illumination gradients in X-
ray images, hiding from the human eye features that 
can be hard to see even under normal conditions. To 
aid in the manual segmentation of tibias, the knee 
images were enhanced with CLAHE (Contrast 
Limited Adaptive Histogram Equalization) which 
has been reported to be a good filter for medical 
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images in [16], [17]. This filter reduces both effects, 
clarifying most of the cases.  

The segmented region of the tibia excludes 
areas that become visible when the knee is slightly 
rotated during the image acquisition. Under ideal 
conditions the front and the back of the tibia’s head 
align, showing a clear border in the image. When 
the bone is rotated (due to imperfections during the 
image acquisition process or to the non-standard 
shape of the patient’s knee) the desired border 
becomes a lot less visible due to the superposition. 
The images were meticulously segmented in 
collaboration with a medical specialist to find this 
border. The process was repeated for the femur, but 
its discussion will be omitted, since it must be 
segmented as a whole, and the problem is not as 
challenging (nevertheless a summary is presented in 
Appendix A). 

A transgenic zebrafish line was used in the 
experiment to obtain the other set of images on the 
microscopic scale, expressing a fusion protein 
composed of histone2b and RFP which labels all 
nuclei in the fish. Embryos were collected at around 
20 hours post fertilization, based on visual 
inspection, as specified in [18] and immobilized for 
imaging in a 1.5% agarose gel matrix. Images were 
taken in a confocal microscope STELLARIS 8 
coupled to an inverted microscope model DMi8 
(Leica), capturing the whole volume of the retina, 
with a section thickness of 1µm and overlapping 
between sections of 0.2µm. Typically, 151 retina 
sections are taken at every instant of time, the first 
corresponding to the upper part of the retina and 
then moving deeper into it. Frames were taken with 
a 1h time-step between them. A white laser diode of 
the microscope was adjusted to emit at 555 nm in 
wavelength to maximize fluorophore excitation and 
emission.  

Histone 2b is a well-characterized protein 
produced by all cells which works as a scaffold for 
chromatin packaging, as described in [19]. This 
protein, along with other histones, has been 
extensively used along with fluorescent proteins, to 
label cell nuclei in in vivo tissues.  

In our specific case, this histone has been fused 
with RFP, a fluorescent protein that has reddish 
fluorescence when excited, described in [20]. The 
general idea of the process is, as H2B protein is 
expressed in all cells and located in their nuclei, 
when the fusion protein is exposed to a specific light 
wavelength (555nm) the fluorophore emits 
fluorescence in a different wavelength (583nm) 
which is then captured by the microscope camera. 
By this means, each H2B-RFP present in the nuclei 

of the tissue would emit a fluorescent signal that can 
be later analyzed. 

In other words, the fusion protein provides two 
different things, first H2B gives certainty of nuclear 
localization of the fluorescent protein, whereas RFP 
is the one in charge of providing a signal which can 
be captured in a fluorescence microscope. 

The animals are maintained and bred according 
to protocols established in [21]. 

 
To improve cell nuclei visibility, images were 

also enhanced with a global histogram contrast 
equalization and then normalized. This effect is 
most noticeable at the bottom slices of each time 
frame, where light has to transverse more tissue and 
gets absorbed easily due to light scattering, letting 
less light reach the microscope. 
 

2.3  Statistical and Control Parameters 

To evaluate the performance of the trained models 
we have chosen as evaluation parameters precision 
(fraction of the prediction correctly guessed), recall 
(fraction of the ground truth correctly predicted), 
and the Dice or F1 score, as seen in the bibliography 
[2], defined in equations (1) and (2), 

 Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
;  Recall = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
,             



 Dice score = 
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 ,                      

 
where TP, TN, FP, and FN are the fractions of 
pixels classified as true positives, true negatives, 
false positives, and false negatives, respectively [2], 
[3] . 

The performances of the retina models were 
also compared with the mean image brightness and 
the number of retina nuclei in each slice. 

The number of objects per slice was obtained 
using an in-house developed algorithm, described in 
[22] and based on top-hat transform. To count the 
retina nuclei, the algorithm was fed with the images 
intersected with the ground truth, so only the nuclei 
of interest can be counted. 
 
2.4  Dataset Creation 
All the segmentations were stored as binary images 
and converted to the COCO dataset format to train 
FastSAM, to generate masks with holes for the 
retina dataset, code from [23] was used.  

A dataset consists of two folders, one with the 
images and the other with a text file per image, 
where the contour of a mask is specified as a row 
per object. The first number of each row represents 
the class associated with its object, while the rest are 
its contour points stored as alternating pairs of x and 
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y normalized coordinates (x1,y1,x2,y2,…,xn,yn). In 
this work training samples only have one object per 
image and models were trained with only one class. 
These changes greatly reduce the complexity of the 
task, reducing the amount of information required to 
build a performant model. 

The total number of segmented images is 166 
tibias and 1960 retinas. Since the objective is to 
achieve usable models with a training set of images 
as small as possible, only some of those images 
were used to train the models with increasing 
amounts of training samples. 

The number of samples used to train each model 
was increased progressively by adding more images 
to the original set (3, 15, 41, 83, and 125 for the 
tibia and 124, 248, and 372 for the retina). The data 
that was not included in the training sets was used to 
test all the models, keeping the evaluation set 
constant ensures all the models are evaluated under 
the same conditions. FastSAM was finetuned with 
the original images as well as with their enhanced 
versions to study if the improvement in visibility for 
the human eye also helps FastSAM achieve better 
results.  

The combination of all these changes results in 
a total of 16 different models, 10 for tibias and 6 for 
retinas, that will be evaluated in the following 
section. 
 

 

3  Results 
A total of 16 models were evaluated using their 
corresponding test datasets (10 for tibias and 6 for 
retinae). Dice score, recall, and precision values for 
each one can be found in Fig. 1, it seems the mean 
performance of all the tibia models is almost 
independent of whether it was filtered or in the 
number of images used to train the model. This is 
not the case for the retina model, which seems to 
benefit from using enhanced images or more 
training data. More information can be found in 
Table 2, the average of each one of the distributions 
shown in Fig. 1 is indicated, these parameters have 
also been calculated using femur segmentations as 
shown in the Appendix, in Table A1 and Figure A1 
in Appendix, respectively. This gives a numerical 
reference of the performance for all the trained 
models. Increasing the number of training images 
has a slight positive effect on the performance of 
tibia models shown by a subtle increase in the 
average dice score. The effect of enhancing the tibia 
images is almost imperceptible, with 3 train samples 
the performance decreases compared with its non-
enhanced counterpart, but for the rest of the models, 

the performance seems to be independent of the 
number of training samples.  

A possible explanation for this phenomenon 
could be that standardizing the brightness reduces, 
even more, the complexity of the dataset, making 
the gradual progression observed for the non-
enhanced case imperceptible. In other words, a 
performant model is achieved faster. This effect is 
also present in the retina models. The non-enhanced 
model with fewer train images has much worse 
performance than its enhanced counterpart, probably 
due to the diversity in brightness in the retina set of 
slices, dependent on depth and time of acquisition. 
This can be seen, for example, in Fig. 3a, where the 
image is brighter the closer it gets to the eye surface 
(slice 15) and darker at the deepest slices (slice 
140). In contrast, all enhanced retina images (i.e. 
Fig. 3d) have similar brightness levels and therefore 
the models can generalize more easily. 

Graphic comparisons between enhanced and 
non-enhanced models are shown in Fig. 2 for tibia 
and, in the Appendix, Figure A2, for femur. Once 
again knee model performances are almost 
invariant, while the retina models seem to benefit 
from increasing the number of patients. Once again, 
this makes sense, since one frame (the whole 3D 
image of the retina) has 151 different slices, training 
with fewer data means more extrapolation to unseen 
slices and thus, more failure. Also, the set of slices 
obtained for a retina are quite different depending 
on their position, therefore, a significant number of 
slices covering the whole retina needs to be used for 
training to achieve acceptable results. We observe 
that for all the cases considered the performance of 
the models is very high, only in the retina images 
the performance is observed to improve 
significantly as the number of training images 
increases up to 248 and ahead. Also, note that 
filtering the images to enhance the contrast did not 
result in any significant advantage (except for the 
one trained with 124 zebra fish images). To 
summarize, the performance of a retina model 
trained with few images is far worse than its 
analogous for tibias. This is related to the fact that 
each zebrafish image is taken at a different focal 
plane and, thus, effectively corresponds with a 
different object as the retina geometry differs 
greatly. 

All knee models have very similar and high 
performances and this is exemplified in Fig. 2, 
where a slight improvement in the dice score can be 
appreciated with the increase in the number of 
patients used to train. This is particularly relevant in 
the areas close to the boundary, which are better 
detected as the number of training images increases. 
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Since the most difficult section of the tibias is in the 
head, to check for a bias in the scores due to long 
straight bone regions, they were recalculated for 
each model using only the upper third of each 
segmentation. Since the results were almost 
identical to those shown in Fig. 1, they have been 
omitted. 

The retina model trained with the least amount 
of non-enhanced images had the lowest performance 
overall (Fig. 3a), where the predicted masks 
couldn’t accurately find the retina nuclei. With more 
training images, the retina is properly recovered.  

 
 

 

 

 
Fig. 1: Comparison of the performance of each model with enhanced and non-enhanced images. (a, b, c) Tibias. 
(d,e,f) Retinae. The distribution of values is shown with box plots, which mark the values from Q1 to Q3 with a 

box, the median is marked with a black vertical line in each box. Points found further than 1.5 times the box 
length are marked as outliers with small translucent circles. In blue, models trained with Non-Enhanced (NE) 

images, while in orange; with them Enhanced (E) 
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Table 2. Summary of the Dice, Recall (Rec.), and 
Precision (Prec.) average values achieved for each 

model 

 
 Non Enhanced Enhanced 

Training 

images 
Dice Rec. Prec. Dice Rec. Prec. 

Ti
bi

a 

3 0.951 0.939 0.967 0.811 0.786 0.960 

15 0.965 0.960 0.971 0.969 0.970 0.969 

41 0.966 0.964 0.968 0.969 0.970 0.968 

83 0.969 0.970 0.968 0.969 0.969 0.968 

124 0.970 0.972 0.968 0.969 0.972 0.967 

R
et

in
a 

124 0.503 0.925 0.360 0.856 0.848 0.897 

248 0.843 0.856 0.872 0.870 0.868 0.886 

372 0.869 0.875 0.889 0.862 0.860 0.899 

 

 

 

 
Fig. 2: Contours of ground truth (white) and 
predictions (red). Rows a), b), c), d), and e) were 
trained with the original images, while f), g), h), i), 
and j) with their enhanced counterparts. At the left 
of each row, the number of images used to finetune 
the applied model is shown 
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Fig. 3: Contours of ground truth (white) and 
predicted masks for each model (red). To illustrate 
the performance of the model at three sections of the 
retina (beginning, middle, and end), the index of the 
corresponding slices has been marked with its index 
on top of each column, the total number of slices per 
frame is 151. Rows a), b), and c) were evaluated 
with models trained and evaluated with 124, 248, 
and 372 of the original images, respectively, while 
rows d), e), and f); with 124, 248, and 372 of the 
enhanced images 
 

It is important to note that, for this example, the 
retina is composed of many small-size objects 
(making it difficult for the non-trained eye to detect 
them) but the models can recover the structure with 
high precision when the number of training images 
is above 228. 

As indicated in the methods section, the retinae 
correspond with a 3D structure, thus, for each 
experiment a stack of images is acquired 

corresponding with different sections of the retina. 
Typically, between 100 and 200 sections are 
acquired. In the present case, 151 slices were 
captured at each instant of time. Fig. 4 shows the 
quality indicators for each frame averaging over 11 
different acquisitions comparing enhanced and non-
enhanced images. For each slice (corresponding 
with a particular section of the retina) we plot the 
dice score, the average light intensity in the image, 
and the number of nuclei (the small objects that 
constitute the whole retina). Note that when non-
enhanced images are used (Fig. 4a), the Dice score 
does not perform well at all depths, in particular, the 
first and latest slices are badly recovered. 
Nevertheless, when the initial enhancing filter is 
applied (Fig. 4b), the dice score improves, and the 
latest slices are now well recovered. This indicates 
that if the number of constituents of the retina 
(nuclei) is large (as it happens in the latest slices), 
the contrast enhancement may play a significant 
role, while for the first slices as the number of 
nuclei is small, increasing the contrast does not 
improve the result.  

 

Fig. 4: Several retina image properties are compared 
with the Dice scores at each frame 
 

The curves were obtained by averaging the 
values measured at each slice at 11 human-labeled 
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frames, the shaded regions correspond to the values 
closer to one standard deviation from the mean. 
Both models were trained with 372 images. Pixel 
intensity and number of cells were normalized. a) 
shows values obtained for non-enhanced images, 
while b) for their enhanced counterpart. 

In this section, we have characterized the 
performance of finetuned models for each dataset 
and how the variation of some of the parameters, 
like the number of train samples or the 
preprocessing, affect their overall performance. We 
have also proven how our approach can be applied 
to both 2D and 3D images, very common types of 
data in both medical and biological settings, but also 
several branches of science and engineering. As a 
result, we have obtained very performant, specific, 
and light models that anyone with enough labeled 
images can reproduce. 
 

 

4  Conclusion 
We demonstrate in this manuscript that the use of a 
model trained with general images such as 
FastSAM, makes it possible to achieve competitive 
results for specific non-trivial applications. We 
consider two examples with images acquired by 
completely different means and scales, 
corresponding to situations with several difficulties. 
In both cases the protocol succeeded, and the 
segmentation was possible even after training the 
models with a small number of images. Additional 
cases such as the femur (also present in the X-ray 
images) were also analyzed and successfully 
segmented (see results in Appendix A). 

With the zebrafish retina, we have also shown 
that for volumetric images a single model is enough 
to obtain a performant segmentation model. And 
that experimental image acquisition conditions can 
be filtered to improve the performance of the model. 

This study also shows how finetuning FastSAM 
can be advantageous since it gives a lot of flexibility 
in the format of the input data, and also is faster and 
cheaper to achieve than finetuning SAM. It also 
requires less knowledge than training a U-Net (or 
finetuning if a compatible model is available) or 
other typical image segmentation models from the 
literature. All these factors prove once again that 
this approach is not only very viable for low-
resources or non-expert groups but also useful to 
expand the frontiers of science, giving power to 
those who lack resources but exude innovation. 

Following the approach presented in this 
contribution, it is possible to envision a path to 
develop equivalent tools for many diverse 
applications in a great variety of systems such as the 

ones presented here. We demonstrated that our 
training mechanism achieves results with equivalent 
accuracy to other non-pretrained methods, thus, 
competing with state-of-the-art models by taking 
advantage of all the information already embedded 
in FastSAM. 
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APPENDIX 

 
The same techniques used on the tibia have 

been applied to the femur, resulting in 10 additional 
models evaluated under the same conditions. 
 

Table A1. Summary of the average value of Dice 
score (Dice), recall (Rec.), and precision (Prec.) for 

each model 

 
 Non Enhanced Enhanced 

Training 

images 
Dice Rec. Prec. Dice Rec. Prec. 

Fe
m

ur
 

3 0.883 0.846 0.978 0.864 0.828 0.979 

15 0.973 0.977 0.969 0.971 0.972 0.970 

41 0.974 0.975 0.973 0.974 0.975 0.973 

83 0.974 0.976 0.973 0.974 0.975 0.973 

124 0.975 0.976 0.974 0.974 0.975 0.973 

 

 
Fig. A1: Graphic summaries of all test images 
evaluated with all femur models. In blue, models 
trained with Non-Enhanced (NE) images, while in 
orange; with them Enhanced (E) 
 

Given the nature of femur segmentations, the 
problem is more similar to what FastSAM was 
trained for, the whole segmentation of an object. As 
shown in Fig. A1, this translates into a very good 
performance as soon as a few femurs are shown to 
the model, adjusting it to find this type of object but 
applying the same strategy as the one used in its 
original training dataset SA-1B. Also, no significant 
differences were found between models trained with 

the same amounts of both types of images 
(enhanced and non-enhanced). In Table A1, a 
numerical representation of the performance of each 
femur model is shown with the average of the dice 
score distributions shown in Fig. A1. Identically to 
the case studied for the tibia, the non-enhanced 
models gradually increase their performance with 
more train samples, while the enhanced version 
saturates faster, needing fewer samples to achieve 
similar results. Probably because of a reduction in 
the complexity of the problem due to 
standardization in illumination conditions and 
visibility overall. 

In Fig. A2 examples of the performance of each 
model are shown for the femur. With 3 patients in 
the training dataset, the shape is almost completely 
captured and with 15 training images onwards the 
predictions get asymptotically better. 
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Fig. A2: Contours of ground truth (white) and 
predictions (red). Rows a), b), c), d), and e) were 
trained with the original images, while f), g), h), i), 
and j) with their enhanced counterparts. At the left 
of each row, the number of images used to finetune 
the applied model is shown. 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

Data curation, S.P.-E. and D.P-D.; Formal analysis, 
S.P.-E., and D.P.-D.; Funding acquisition, F.J.B., 
J.R.P., G.G.P., D.G.M., and A.P.M.; Investigation, 
S.P.-E., and D.P.-D.; Methodology, S.P.-E., D.P.-
D., and A.P.M.; Project administration, A.P.M.; 
Resources, S.P.-E., D.P.-D., I.R.-P., N.O.-V., 
D.G.M. and, A.P.M.; Software, S.P.-E., and D.P.-
D.; Supervision, A.P.M.; Validation, S.P.-E., and 
D.P.-D.; Visualization, S.P.-E.; Writing—original 
draft, S.P.-E., and D.P.-D.; Writing—review and 
editing, A.P.M. All authors have read and agreed to 
the published version of the manuscript 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

We acknowledge financial support under grant 
PID2022-138322OB-100 funded by MCIN/AEI/ 
and by “ERDF A way of making Europe”. Also, 
Xunta de Galicia funded this research under 
Research Grant No. 2021-PG036. We also 
acknowledge the research network RED2022-
134573-T as well, funded by Ministerio de Ciencia 
e Innovación (MCIN/AEI/10.13039/501100011033) 
and by ‘ERDF: A way of making Europe’, by the 
European Union. And finally; the project 
PMPTA22/00115 DEL ISCIII, MADRID SPAIN. 
 

Conflict of Interest 

We declare no conflict of interest. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 

 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2024.21.38

Santiago Paramés-Estévez, Diego Pérez-Dones, 
Ignacio Rego-Pérez, Natividad Oreiro-Villar, 
 Francisco J. Blanco, Javier Roca Pardiñas, 

Germán González Pazó, David G. Míguez, Alberto P. Muñuzuri

E-ISSN: 2224-2902 384 Volume 21, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



