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Abstract: Traditional mathematical modeling and computational efforts have primarily focused on
isotropic and linear diffusion or convection of living organisms, assuming uniform motion in all di-
rections. However, these traditional models fail to capture the complexities of the real world where
competitive interactions among species in nature often involve spatially heterogeneous and anisotropic
diffusive behaviors. Another challenging aspect of such modeling involves scenarios in fluid dynamics,
where species’ movements are influenced by the flow of the medium. Besides the well-posedness of the
mathematical model, this paper is also devoted to investigate an efficient and robust combined finite
volume-nonconforming finite element scheme for two-species chemotaxis-fluid models including all layers
of complex geometrical configurations. Moreover, numerous simulations through a developed code, cover
the anisotropic dynamics of species in fluids which ensures the scheme’s applicability to real-world bio-
logical problems. Furthermore, the training data generated through this flexible generalized numerical
method may be enhanced with artificial intelligence techniques to improve the predictive capabilities.

Key-Words: Chemotaxis-fluid models, Anisotropic tensors, Degenerate coefficients, Global existence,
Finite Volume method (FV), Finite Element method (FE), Interspecies competition.

1 Introduction
The exploration of biological mechanisms
through mathematical and numerical analysis
has significantly advanced over the past decade.
This shift has transformed any experimental
science into a predictive one through compu-
tational simulations. Before presenting our
comprehensive model that incorporates all po-
tential constraints, it is essential to review the
relevant literature. One of the basic models is
the predator-prey system, initially introduced by
Lotka in [1] and further developed by Volterra
in [2]. These models describe the dynamics of
two interacting species through a set of ordinary
differential equations (ODEs):{

Ṁ = µ1M(1−M − α1W )
Ẇ = µ2W (1−W − α2M).

(1)

In this system, M and W represent the pop-
ulations of the predator and prey, respectively.
The parameters µ1 and µ2 are the growth rates,
while α1 and α2 denote the interaction coef-
ficients between the species. System (1) has
four critical points O(0, 0), N1(1, 0), N2(0, 1) and
N3( 1−α1

1−α1α2
, 1−α2

1−α1α2
). The solutions of the system

(1) exhibit different behaviors depending on the
values of α1 and α2. In the weak competition
regime, where α1, α2 ∈ (0, 1), the solutions con-

verge to the stable node N3 that represents a co-
existence equilibrium. In contrast, in the strong
competition regime, where 0 < α1 < 1 < α2 or
0 < α2 < 1 < α1, the solutions tend towards the
stable nodes N1 or N2, indicating the dominance
of one species over the other. For more results on
related competitive systems, the reader may refer
to [3] and [4].

The dynamics of various populations is also
based on the species’ capacity to orient their
movement in response to chemical gradients.
This attraction or repulsion is called chemotac-
tic motion. For a single species, the most classi-
cal model of chemotaxis was introduced by Keller
and Segel in [5], and it has been extensively stud-
ied in [6] and recently in weighted networks in
[7]. To simulate complex behaviors such as prey
evasion or predator pursuit, the Lotka-Volterra
species competition and chemotactic effects were
combined in [8]. Extensive research has also
been conducted on coupling chemotaxis effects
with SIR-type equations to investigate the spa-
tial spread of pandemics (see [9]). Further inquiry
into the persistence of competitive exclusion, in-
corporating chemotaxis and competitive interac-
tions between two species, can be found in the
relevant literature [10, 11].

This paper is devoted to the numerical anal-
ysis of the following system including all these
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complex scenarios in fluid environments,



∂tM −∇ ·
(
Q(x)

(
a(M)∇M − χ1(M)∇C

))
+U · ∇M = µ1M(1−M − α1W ),

∂tW −∇ ·
(
R(x)

(
b(W )∇W − χ2(W )∇C

))
+U · ∇W = µ2W (1−W − α2M),

∂tC −∇ · (S(x)∇C) + U · ∇C
= −(αM + βW )C,

∂tU − ν∆U + κ(U · ∇)U +∇P
= −(γM + λW )∇φ,

∇ · U = 0, in Ω×]0, T ],
(2)

where Ω is an open bounded domain in Rd (d ≤ 4)
with smooth boundary ∂Ω. The system is sup-
plemented by the following boundary conditions
on ∂Ω× (0, T ),

Q(x)a(M)∇M ·η = 0, R(x)b(W )∇W ·η = 0, (3)

S(x)∇C · η = 0, U = 0,

where η is the exterior unit normal to ∂Ω. The
initial conditions on Ω are given by,

M(x, 0) = M0(x),W (x, 0) = W0(x), (4)

C(x, 0) = C0(x), U(x, 0) = U0(x) .

The details, regarding all the variables of the sys-
tem (2), are provided in the Table 1.

This model incorporates the dynamics of the fluid
through the Navier-Stokes equations, or alterna-
tively by the Stokes equations when the parame-
ter κ equals zero. The diffusion equations exhibit
a ”volume-filling” biological condition, which pre-
vents the overcrowding of the species. This ef-
fect is achieved through the diffusion coefficients
a(M) and b(W ), which approach zero as the pop-
ulation densities M and W approach a certain
threshold.

This threshold represents the environment’s
carrying capacity, and in normalized form, it is
set to 1. A common example of a diffusion-
density coefficient is a(M) = M(1 − M) for
M ∈ [0, 1], reflecting natural constraints on move-
ment. The chemotactic sensitivity, denoted as χ1

or χ2, indicates whether the species are attracted
to or repelled from the chemical signals. A posi-
tive sign signifies attraction, while a negative sign
indicates repulsion. In our model, the fluid is cou-
pled to the chemotaxis equations through both

Table 1: Variables description

Variables Description
M , W The density of species 1 and 2
C The concentration of the

chemical
U , P The velocity and the pressure

of the fluid
Q, R and S The anisotropic diffusive ten-

sors
a(M), b(W ) The density-dependent diffu-

sion coefficients
χ1(M), χ2(W ) The chemotactic sensitivity

functions
µ1, µ2 > 0 The growth rate of popula-

tions 1 and 2
α1, α2 > 0 The strength of populations 1

and 2
in competition

α, β > 0 The consumption rate of
chemicals
by populations 1 and 2

−(γM +
λW )∇φ

The external gravitational
force exerted by
the species 1 and 2 on the fluid

the transport of species and chemical substrates
U · ∇M , U · ∇M , U · ∇C. Additionally, the sys-
tem incorporates the effect of an external grav-
itational force g acting along the upwards unit
vector ~z.

First, the question of the global existence of
weak solutions of the model (2) has been well
investigated and hence our system is well-posed.
Recently, subsequent research has established the
asymptotic dynamics for the two-species linear
isotropic chemotaxis-fluid equations under suffi-
cient conditions in 2D and 3D (see [12] and [13]).

Next, this paper aims to study the system (2)
numerically. Unfortunately, the most results in
the literature are for systems with linear non-
degenerate isotropic diffusion in a fluid at rest
(see [14]). Additionally, this paper presents a
developed numerical algorithm to consider two
species instead of one and to incorporate com-
petitive kinetics instead of zero logistic source
terms. This implementation is notably powerful
and can be easily generalized to to enhance the
understanding of the multiple swimming compet-
ing species responding to various chemical stim-
uli. , the directed movement of organisms in re-
sponse to chemical gradients, is crucial in vari-
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ous biological processes like embryogenesis, im-
munology, cancer growth and wound healing. It
allows organisms to find nutrients, avoid preda-
tors or locate mates. For instance, cellular slime
molds move towards higher chemical concentra-
tions secreted by amoebae, while bacteria swim
towards areas with more oxygen. In pancreatic
cancer therapy, iodine acts as a chemoattractant
to destroy cancer cells.

2 Setting of the problem
The assumptions given in this section, ensure
that our model remains biologically realistic and
mathematically well-posed. We suppose initially
that χ1(0) = χ2(0) = 0 and that the chemotac-
tic sensitivities χ1 and χ2 vanish when M ≥ 1
and W ≥ 1. This threshold condition, needed to
prevent overcrowding, has a clear biological in-
terpretation called the volume-filling effect (see
[15]). The main assumptions are as follows:

The functions a, b, χ1, χ2 belong to the set
(5)

{w ∈ C([0, 1],R+) such that w(0) = w(1) = 0} .
The potential function φ = φ(x) satisfies

∇φ ∈ (L∞(Ω))d . (6)

The permeabilities Q, R and S in Md(R) are
symmetric and verify:

Qi,j , Ri,j and Si,j ∈ L∞(Ω), ∀i, j , (7)

and there exist cQ ∈ R∗+, cR ∈ R∗+ and cS ∈ R∗+
such that a.e. x ∈ Ω,∀ξ ∈ Rd,

Q(x)ξ · ξ ≥ cQ|ξ|2, R(x)ξ · ξ ≥ cR|ξ|2 (8)

and S(x)ξ · ξ ≥ cS |ξ|2 .

Next, we require that there exist D, D1 ∈ R∗+
such that a.e. x ∈ Ω, ∀M ∈ [0, 1],

||D(x,M)||Md(R) = ||Q(x)a(M)||Md(R) ≤ D ,
(9)

||D1(x,M)||Md(R) = ||Q(x)χ1(M)||Md(R) ≤ D1 .

and there exist E and E1 ∈ R∗+ such that a.e.
x ∈ Ω, ∀W ∈ [0, 1],

||E(x,W )||Md(R) = ||R(x)b(W )||Md(R) ≤ E ,
(10)

||E1(x,W )||Md(R) = ||R(x)χ2(W )||Md(R) ≤ E1 .

Furthermore, the initial conditions are bounded
as follows:

0 ≤M0 ≤ 1, 0 ≤W0 ≤ 1, C0 ≥ 0 a.e. in Ω (11)

and C0 ∈ L∞(Ω) .

Finally, we introduce basic notations associ-
ated to the Navier-Stokes equation,

U0 ∈ H and g ∈ L2(0, T ;V ′) such that (12)

℘ = {U ∈ D(Ω),∇ · U = 0}, V = ℘̄H
1
0 (Ω)

and H = ℘̄L
2(Ω) .

Moreover, the form

B(U, V1, V2) =

∫
Ω

(U · ∇V1)V2 dx is continuous

(13)

over H1
0 (Ω)×H1(Ω)×H1(Ω); B(U, V, V ) = 0 .

Definition 2.1. A quadruple (M,W,C,U) is
called a weak solution of (2) if

0 ≤M(x, t) ≤ 1, 0 ≤W (x, t) ≤ 1, C(x, t) ≥ 0

M,W ∈ Cw(0, T ;L2(Ω)),

∂tM,∂tW ∈ L2(0, T ; (H1(Ω))
′
),

A(M) :=

∫ M

0
a(r)dr, B(W ) ∈ L2(0, T ;H1(Ω)) ,

C ∈ L∞(QT )∩L2(0, T ;H1(Ω))∩C(0, T ;L2(Ω));

U ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ Cw(0, T ;H);

∂tC ∈ L2(0, T ; (H1(Ω))′),
dU

dt
∈ L1(0, T ;V ′),

and (M,W,C,U) satisfy∫ T

0
< ∂tM,ψ1 >(H1)′,H1 dt (14)

+

∫∫
QT

[Q(x)(a(M)∇M − χ1(M)∇C)] · ∇ψ1 dxdt

−
∫∫

QT

MU · ∇ψ1 dxdt

= µ1

∫∫
QT

M(1−M − α1W )ψ1 dxdt ,∫ T

0
< ∂tW,ψ2 >(H1)′,H1 dt (15)

+

∫∫
QT

[R(x)(b(W )∇W − χ2(W ))∇C] · ∇ψ2 dxdt
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−
∫∫

QT

WU · ∇ψ2 dxdt

= µ2

∫∫
QT

W (1−W − α2M)ψ2 dxdt ,

∫ T

0
< ∂tC,ψ3 >(H1)′,H1 dt (16)

+

∫∫
QT

S(x)∇C · ∇ψ3 dxdt−
∫∫

QT

CU · ∇ψ3 dxdt

= −
∫∫

QT

(αM + βW )Cψ3 dxdt ,∫ T

0
< ∂tU,ψ >V ′,V dt (17)

+ν

∫∫
QT

∇U · ∇ψ dxdt+ κ

∫∫
QT

(U · ∇)U ψ dxdt

= −
∫∫

QT

(γM + λW )∇Φψ dxdt ,

for all ψ1, ψ2, ψ3 ∈ L2(0, T ;H1(Ω)) and ψ ∈
C0
c (]0, T [;V ),

where C0
c (]0, T [;V ) denotes the space of con-

tinuous functions with compact support and
Cw(0, T ;L2(Ω)) denotes the continuous functions
onto L2(Ω) endowed with the weak topology.

Theorem 2.2. Given assumptions (5)-(13), the
system (2) is globally well-posed in spatial di-
mensions d ≤ 4.

Indeed, the presence of singular degenerate
diffusive terms can present challenges, such as
limited regularity properties and difficulties in
establishing uniform bounds of solutions. For
that, a semi-discretization in time technique was
used to construct an approximate solution for
the non-degenerate problem. Then, we obtain
a weak solution of the degenerate problem
through tending the regularization parameter
to zero. Moreover and for this system coupled
with Stokes equations that assume negligible
inertial forces, the uniqueness of weak solutions
is well guaranteed under further conditions on
the regularity of the initial data.

Next, this paper aims to combine the rigor-
ous theoretical Theorem with the comprehensive
numerical study of system (2). The validation
of the theoretical results through the numerical
analysis provides a robust framework for under-
standing the dynamics of competitive species in-
fluenced by anisotropy, chemotactic sensitivities,
and fluids. The accuracy and the reliability of
our model enhance its predictive capabilities for
real-world biological systems.

3 Numerical combined FV-FE
Scheme

This section is dedicated to formulating a com-
bined scheme for the competitive two-species
chemotaxis model (2) in fluid environments. The
finite volume (FV) techniques impose restrictions
on mesh structures, making them less flexible for
complex geometries. On the other hand, the fi-
nite element (FE) methods often face instabili-
ties, particularly in convection-dominated cases.
Moreover, some FE numerical studies relates the
accuracy of their solutions with the quality of
the mesh, implying a significant limitation. This
gap highlights the need for more robust numeri-
cal methods that can handle anisotropic diffusion,
mesh flexibility, extension of one-species models,
competitive Lotka-Volterra interactions and ro-
bustness in convection-dominated case. Conse-
quently, recent numerical studies have explored a
robust FV-FE scheme for parabolic equations in
[16], for anisotropic Keller-Segel models in [17],
and for one-species, anisotropic Keller-Segel-fluid
model without logistic sources in [18]. In this
paper, we extend this combined scheme: finite
volumes and nonconforming finite elements, for
a two-species chemotaxis-fluid model (2) incor-
porating Lotka-Volterra competition. First, we
start by describing the space and time discretiza-
tion and by defining the needed approximation
spaces.

3.1 Space and Time Discretizations
We consider a family Th of meshes of the domain
Ω, consisting of disjoint closed simplices. The size
of the mesh Th is defined by h:=max

K∈Th
diam(K).

Then, we construct a dual partition Dh of di-
amonds, called control volumes of Ω such that
Ω̄ = ∪D∈Dh

D̄. Indeed, a unique diamond D is
associated to each each side σD = σK,L of the
initial mesh. We construct it by connecting the
barycenters of every K ∈ Th that contains σD
through the vertices of σD. The point PD is re-
ferred to as the barycenter of the side σD. For
all D ∈ Dh, denote by |D| the measure of D, by
N (D) the set of neighbors of the volume D, by
σD,E the interface between a dual volume D and
E and by ηD,E the unit normal vector to σD,E
outward to D (see Fig. 1).

A discretization of [0, T ] is given by Ñ ∈ N∗
such that tn = nτ, for n ∈ {0, ...., Ñ} and a con-
stant step τ . The discrete unknowns are denoted
by
{
wnD, D ∈ Dh

}
n∈{0,...,,Ñ} where w = M, W, C

or U .
On the other hand, the approximate spaces are
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Figure 1: Primal and dual meshes.

defined as:

Xh := {ϕh ∈ L2(Ω); ϕh|K is linear ∀K ∈ Th,
(18)

ϕh is continuous at the points PD, D ∈ Dinth } ,

X0
h := {ϕh ∈ Xh; ϕh(PD) = 0, ∀D ∈ Dexth } .

The basis of Xh is spanned by the shape functions
ϕD such that ϕD(PE) = δDE , E ∈ Dh, δ being
the Kronecker delta. The semi-norm ||Mh||2Xh

:=∑
K∈Th

∫
K
|∇Mh|2dx becomes a norm on X0

h .

3.2 Numerical algorithm
Due to the incompressibility condition ∇ · U = 0
and to approximate the space V defined in (12),
even for Stokes equations, is very challenging.
The simple finite elements, related to the di-
mension d of the space are very weak, since
there is no basis for the approximate space Vh.
Hence, we approach the fluid equations using
nonconforming finite element methods to avoid
all constraints.

Let us denote the approximation of the flux
Q(x)∇C · ηD,E (resp. U · ηD,E) on the interface
σD,E by δCD,E (resp. UD,E). Then, to approx-
imate the numerical flux Q(x)χ1(M)∇C · ηD,E ,
we use the values MD,ME and δCD,E through a
numerical flux function G(MD,ME , δCD,E)
satisfying stability and consistency prop-
erties. Similarly, we approximate the flux
MU · ηD,E as an upwind convection function

G1(MD,ME , UD,E) = U+
D,END − U−D,ENE ,

where U+
D,E and U−D,E denote the positive

and negative parts of UD,E , respectively.

Moreover, for all Mh =
∑
D∈Dh

MDϕD ∈ Xh,

we define a discrete function of A(Mh) as

Ah(Mh) =
∑
D∈Dh

A(MD)ϕD .

We are able now to explain the procedure
for solving numerically the system (2). Given

the solution (M̃n
h , W̃

n
h , C̃

n
h , U

n
h , P

n
h ) at time tn,

we first calculate (Un+1
h , Pn+1

h ), at time tn+1,
through discretized fluid equations. Then, a
Newton algorithm is implemented to compute
the solution (M̃n+1

h , W̃n+1
h , C̃n+1

h ) of the non-
linear chemotaxis competitive system coupled
with a bigradient method to solve linear systems
arising from the Newton process. Below is the
detailed iterative algorithm used in our approach.

First step: (Computation of Un+1
h and Pn+1

h )
The Navier-Stokes equations are interpreted as
a variational problem with linear constraints.
Given M̃n

h =
{
Mn
D

}
D∈Dh

, W̃n
h =

{
Wn
D

}
D∈Dh

, Unh
and Pnh at time tn:

We compute Un+1
h ∈ Xh and

Pn+1
h ∈ Yh as the limits of the sequences

(Un+1,r
h )+∞

r=0 and (Pn+1,r
h )+∞

r=0 using a classical
Uzawa’s algorithm.

Second step: Consider Un+1
h from the first

step and the initial variables,

M0
D =

1

|D|

∫
D
M0(x) dx, W 0

D =
1

|D|

∫
D
W0(x) dx,

(19)

C0
D =

1

|D|

∫
D
C0(x) dx, ∀D ∈ Dh .

Then, for all n ∈ {0, 1, ..., Ñ}, the following up-
dates are performed through the following com-
bined discrete scheme:

|D|
Mn+1
D −Mn

D

∆t
−
∑
E∈Dh

QD,EA(Mn+1
E ) (20)

+
∑

E∈N (D)

G(Mn+1
D ,Mn+1

E ; δCn+1
D,E )

+
∑

E∈N (D)

G1(Mn+1
D ,Mn+1

E ;Un+1
D,E )

= µ1M
n+1
D (1−Mn+1

D − α1W
n
D) ,

|D|
Wn+1
D −Wn

D

∆t
−
∑
E∈Dh

RD,EB(Wn+1
E ) (21)
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+
∑

E∈N (D)

G(Wn+1
D ,Wn+1

E ; δCn+1
D,E )

+
∑

E∈N (D)

G1(Wn+1
D ,Wn+1

E ;Un+1
D,E )

= µ2W
n+1
D (1−Wn+1

D − α2M
n
D) ,

|D|
Cn+1
D − CnD

∆t
−
∑
E∈Dh

SD,ECn+1
E (22)

+
∑

E∈N (D)

G1(Cn+1
D , Cn+1

E ;Un+1
D,E )

= −(αMn+1
D + βWn+1

D )Cn+1
D .

The new transmissibilities

QD,E = −
∑
K∈Th

(Q(x)∇ϕE ,∇ϕD)0,K ,

for each pair of diamonds D and E ∈ Dh,
are the elements of the stiffness matrix of the
nonconforming finite element method. Hence,
the discrete diffusive fluxes are proved to be con-
servative, coercive and continuous. Additionally,
the transmissibilities are bounded.

Remark 3.1. To maintain the discrete maxi-
mum principle, we assume that all transmissibil-
ities are positive. If not, one can use a nonlinear
technique inspired by [19] to correct the diffusive
flux blocking the discrete maximum principle and
to maintain the monotonicity and the convergence
of the corrected numerical scheme.

3.3 Convergence of the numerical
scheme

To ensure the reliability and accuracy of
our combined scheme, we investigate the
convergence properties of the numerical
solutions. We define two types of ap-
proximate solutions: A finite volume solu-
tion

(
M̃h,∆t(x, t), W̃h,∆t(x, t), C̃h,∆t(x, t)

)
=(

Mn+1
D , Wn+1

D , Cn+1
D

)
defined as piecewise

constant on the dual volumes D in space and
piecewise constant in time (represented by the
red points in Figure 1) and a nonconforming
finite element solution (Mh,∆t, Wh,∆t, Ch,∆t) as
a piecewise linear and continuous in the barycen-
ters of the interior sides in space and piecewise
constant in time (represented by the black
points of Figure 1). Again, the numerical

solutions are bounded and hence biologically
admissible. Indeed, ∀D ∈ Dh, k ∈ {0, 1, ..., Ñ},

0 ≤Mk
D ≤ 1, 0 ≤W k

D ≤ 1 and 0 ≤ CkD ≤ ζ .

Furthermore, if U0 ∈ L∞(Ω) then

||U0||L∞(Ω) − (T + 1)||∇φ||L∞(Ω) ≤ Ukh

≤ ||U0||L∞(Ω) + (T + 1)||∇φ||L∞(Ω),

for all k ∈ {0, ..., Ñ} and kτ ≤ T . We now state
the main convergence Theorem for the discrete
Navier-Stokes equation, extended from

[
[20], ch.

VII, Proposition 6.7
]
.

Theorem 3.2. (Convergence of the discrete
NS equations) Assume (12)-(13), then:
a) There exists a unique discrete solution Uh,∆t if
d = 2 and there exists at least one such solution
if d ≤ 4.
b) As h and ∆t tend to zero, and modulo subse-
quences:

Uh,∆t → U ∈ L2(QT ) strongly and Uh,∆t
∗
⇀ U in

L∞(0, T ;L2(Ω)) .

Theorem 3.3. (Convergence of the com-
bined scheme)

1) There exists a solution (M̃h,∆t, W̃h,∆t, C̃h,∆t)
of the discrete system (20)-(22) with initial data
(19).
2) Any sequence (hm)m decreasing to
zero possesses a subsequence such that
(Mhm

,Whm
, Chm

, Uhm
) converges a.e. on QT to

a solution (M,W,C,U) of the chemotaxis-fluid
system (2) in the sense of Definition 2.1 .

For the discrete two-species chemotaxis model,
many estimates for system (2) remain true due
to the discrete maximum principle well-satisfied
and to the boundedness of all logistic sources in
L∞. Using the same guidelines of the discrete
one-species chemotaxis model, the existence of
discrete solutions and the convergence towards a
weak solution of the continuous problem are well
proved.

4 Numerical Simulations
Numerical discrete solutions are presented in this
section to validate the theoretical approach, to
handle complex anisotropic two-species models in
fluids and to understand the complex competitive
dynamics of the living organisms. An extended
Fortran code implements the combined scheme
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Figure 2: Dual Mesh, fluid flow and random ini-
tial densities of species .

and hence it is adaptable to various mesh config-
urations and to general parameter settings. The
simulations aim to answer how current-related
organisms affect competition and survival rates,
explore defense strategies over time and deter-
mine critical thresholds where significant changes
in populations occur in response to variations in
model parameters.

To reflect the habitat heterogeneity and the
diffusion anisotropy of species, we consider the
full system (2) with corresponding diffusive
and convective coefficients. The simulations
are performed on the mesh given in Figure
2, with random initial conditions for species
densities M0(x, y) and W0(x, y) between 0 and
1. Moreover, the initial chemical concentra-
tion C0(x, y) = 1 is defined by regions. The
fluid flow surrounding the species is given as a
driven cavity (see Figure 2) which is created by a
zero initial velocity vector with a constant speed
(1, 0) on the top wall of the domain. Then,
the following parameters are used: the time step
dt = 0.0005 along with the model parameters
α = 0.06, β = 0.08, γ = 0.01, λ = 0.01,
c1 = 0.001, c2 = 0.001, c3 = 0, D̃1 = 0.001,
c4 = 0.1, D̃2 = 0.001, c5 = 0.1, D̃3 = 10−5,
ν = 0.001, κ = 1 and ∇φ = (0.1, 0.1). Addition-
ally, the logistic growth rates are µ1 = µ2 = 1
and the competition coefficients are α1 = 4 >
1 > α2 = 0.01. Next, distinctive heteroge-
neous and anisotropic tensors are chosen: species
1 uses a homogeneous anisotropic tensor Q =[

8 −7
−7 20

]
, whereas species 2 employs a hetero-

geneous rotational anisotropic tensor R(x, y) =
1

x2 + y2

[
y2 + 0.01x2 −(1− 0.01)xy
−(1− 0.01)xy x2 + 0.01y2

]
. Fig-

ure 3 illustrate the behavior of the species within
the fluid environment over time. The simulations
demonstrate that the species 2 exhibits a faster
victory in competition compared to species 1 af-
ter 20 seconds.

Otherwise, to simulate the collaboration be-

Figure 3: Density of species 1 after 20 s ; 10−23 ≤
M ≤ 10−11 (left). Density of species 2 after 20 s;
0.994 ≤W ≤ 0.999 (right).

Figure 4: Coexistence case: avoiding enemies and
predators. .

tween species to avoid chemicals, a second test
has been given with α1 = α2 = 0.1 < 1 within
an oblique fluid flow. In this case, the tensors are

chosen to be Q = R =

[
8 −7
−7 20

]
. The evolu-

tion of the variables is given in Figure 4. To sum
up, these numerical results align with the theoret-
ical coexistence or extinction of species, related to
the values of αi; i = 1, 2 and with the survival be-
havior of living organisms in fluid environments.

5 Conclusion
The combination of theoretical insights and com-
putational simulations in this work offers a com-
prehensive understanding of the dynamics involv-
ing anisotropic species interactions in fluid envi-
ronments. The global existence of weak solutions
is the first theoretical contribution due to regu-
larization techniques and suitable estimates. The
second main contribution is the numerical anal-
ysis of the model. This includes addressing the
specific challenges of different possible scenarios
in [21]. Finally, a series of numerical tests are con-
ducted to reveal a range of outcomes from stable
coexistence to competitive exclusion. As a per-
spective to this work, all the numerical data may
be collected to train computers and can be en-
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hanced with artificial intelligence techniques to
calibrate the model parameters to reduce the loss
error between the numerical and the real data.
Moreover, this mathematical study may be ap-
plied to haptotaxis-fluid models and hence to a
deeper and a predictive analysis of the cancer tu-
mor growth models.
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