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Abstract: - High-performance prosthetic and exoskeleton systems based on EEG signals can improve the 
quality of life of hand-impaired people. Effective controlling of these assistive devices requires accurate EEG 
signal classification. Although there have been advancements in the assistive Brain-Computer Interface (BCI) 
systems, still classifying the EEG signals with high accuracy is a great challenge. The objective of this research 
is to investigate the accuracy of the EEG signal classification of the Spiking Neural Network (SNN) classifier 
for factual and exact control of prosthetic and exoskeleton systems for individuals with hand impairment. The 
EEG dataset has been taken from the BNCI Horizon 2020 website, which is for hand movement-relax events of 
a patient with high spinal cord injury (SCI) to operate a neuro-prosthetic device attached to the paralyzed right 
upper limb. The fusion of Dispersion Entropy (DE), Fuzzy Entropy (FE), and Fluctuation based Dispersion 
Entropy (FDE) with mean and skewness features are extracted from the Motor Imagery (MI) EEG signals and 
applied to the Spiking Neural Network (SNN) classifier. To compare the performance of this algorithm, these 
same features have been used in Convolutional Neural Network (CNN), Random Forest (RF), Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR) classifiers. It has been found that 
SNN has given the highest classification accuracy of 80% with a precision of 80.95%, recall of 77.28%, and 
F1-score of 79.07%. This indicates that SNN with these five features has greater potential in BCI system-based 
applications.  
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1  Introduction 
This research has been aimed to assess the 
performance of Spiking Neural Network (SNN) 
classifier with the fusion of five time-domain 
features - Dispersion Entropy (DE), Fuzzy Entropy 
(FE), and Fluctuation-based Dispersion Entropy 
(FDE), mean and skewness for accurately 
differentiating hand movement and relaxation 
events from the EEG signal of a patient with hand 
disabilities due to Spinal cord injury (SCI), [1]. 
Spinal cord injuries (SCI), [2], [3], brain stem 
strokes, amyotrophic lateral sclerosis (ALS), [4], 
and other disorders can cause paralysis and impair 
voluntary motor function in the arms along with in 
the trunk, legs, and pelvic organs that range from 
minor and manageable to severe and permanent, [5]. 
Advances in prosthetic technology have allowed 

patients to walk again using lower-limb prosthetics, 
[6], [7]. As our hands perform various activities, the 
reproducing function has been more complex and 
complicated for upper-limb prostheses than lower-
limb prosthetic devices, [8], [9], [10]. Tendon 
transfer and Tenodesis can restore arm and hand 
functionality in SCI but they depend on the 
availability and quality of compatible tendons and 
muscles and also there are operational risks, [11]. 
Tenodesis allows paralyzed persons to indirectly 
grasp objects by extending the wrist but the grasping 
force is often poor for performing basic daily 
activities like lifting a water bottle, holding cutlery 
for eating, etc., [12]. Recent progress in neuro-
technology and robotics can help to restore hand and 
arm function after SCI or stroke without surgery, 
[13], [14], [15]. Scalp electroencephalogram (EEG) 
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based Brain-Computer Interfaces (BCIs) can decode 
EEG signals to provide information about motor 
tasks that an individual performs (ME - motor 
execution), or attempts to perform (MI - motor 
imagery),  into device control commands, [16], [17], 
[18]. As EEG signals contain a large volume of 
information, it is hard to analyze EEG data visually. 
When designing a BCI system, it is essential to 
classify EEG signals correctly to gain insight into 
the desired cognitive processes and translate them to 
seamlessly operate neuro-prosthetic devices and 
exoskeleton systems that assist movement or 
augment the abilities of the human body, [19],  [20], 
[21]. The wrong command will make the patient 
feel discomfort. Assume that a patient wants to 
move his hand but the device maintains hand 
relaxation. This will happen frequently if the 
classification accuracy is poor. So, the classification 
accuracy must be high to achieve high performance 
for the BCI systems, [22], [23], [24]. The key way 
to achieve this goal is by preprocessing EEG signals 
followed by feature extraction, and classification 
using classifiers that relate bioelectrical brain 
signals with physical actions, [25], [26], [27].  

There are several feature extraction techniques, 
such as time domain, frequency domain, and time-
frequency-based feature extraction techniques, [28], 
[29]. Entropy-based time domain features have been 
successful in classifying EEG signals in numerous 
studies, [30], [31], [32]. Among different variants of 
entropy, such as sample entropy (SE), approximate 
entropy (AE), permutation entropy (PE), and 
dispersion entropy (DE), the latter has shown better 
performance for time series data analysis, [33], [34], 
[35]. Dispersion Entropy (DE) is better for capturing 
the temporal changes in the signal because it 
considers both the amplitude differences and the 
resemblance between adjacent signal points in 
addition to their similarity, [36]. The study reported 
in  [37],  applied a support vector machine (SVM) to 
DE and also to different variants of entropy such as 
SE, and PE, and found that DE has shown better 
performance compared to other entropies. Fuzzy 
Entropy (FE) is robust to noise but sensitive to 
signal complexity that computes the relative degree 
of uncertainty of the signal, [38]. Fluctuation Based 
Dispersion Entropy (FDE) is used to determine the 
dynamic changes of the fluctuations of the signal, 
[39]. Also, the mean and skewness features which 
provide statistical information about the distribution 
and asymmetry of the EEG signal, allow the 
classifier to make more refined distinctions between 
hand movement and relaxation events from the EEG 
signal.  

To classify EEG signals Machine learning (ML) 
algorithms such as K-nearest neighbor (KNN), 
random forest (RF), support vector machine (SVM), 
Logistic Regression (LR) fuzzy nearest neighbor 
(FNN), etc. have been extensively used in research 
due to their ability to extract meaningful features 
and classify EEG signals with high accuracy, [40], 
[41], [42]. Artificial Neural Networks (ANN) are a 
class of Machine Learning (ML) algorithms inspired 
by the structure and function of biological neurons 
in the brain. Due to their capacity to recognize 
complex nonlinear relationships between the input 
features and the output classes, ANNs are more 
efficient than conventional statistical methods for 
classifying EEG signals, [43]. Spiking Neural 
Networks (SNN), Convolutional Neural Networks 
(CNN), etc. are subclasses of ANN. Unlike 
traditional ANN which uses continuous valued 
activation, SNN uses discrete time spikes to process 
and transmit information, [44], [45]. Thus it is more 
energy efficient, consumes less power, and is robust 
to noise, [46]. Due to its more biologically 
interpretable network structure and training 
principles, SNN is faster and more applicable to 
spatiotemporal data, [47], [48], [49].  

 
1.1  Related Works 
Many research studies have already been done 
where researchers applied different methods for 
decoding different hand movement attempts from 
EEG signals of persons with upper limb disabilities 
due to SCI or any other reasons.  Researchers in 
[50],   demonstrated the detection of different hand 
movement classes from low-frequency EEG signals 
of 10 individuals with SCI. They filtered the 
preprocessed EEG signal to 0.3-3Hz which was 
used as input to shrinkage linear discriminant 
analysis (sLDA) classifier. Besides, causal and non-
causal time points of the EEG were given to the 
classifier. The obtained classification accuracy for 
five different hand movement classes (hand open, 
palmar grasp, lateral grasp, pronation, and 
supination) was 45%. They also tested their method 
online on a person with cervical SCI for palmar 
grasp and open class with 68.4% accuracy.  
Utilizing the same dataset used by [50],  the authors 
in [51], employed movement-related cortical 
potentials (MRCPs), and time-frequency domain 
representation (Scalogram) of the dataset for 
classifying the EEG signal into five different hand 
movement classes (hand open, palmar grasp, lateral 
grasp, pronation, and supination). They used 
ConvNet AlexNet classifier for classification. They 
were able to obtain 76% average classification 
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accuracy for classifying these five different classes 
by their proposed method.   Authors in [52], 
reported a study where four chronic tetraplegics 
performed a complex sequence of EEG-controlled 
bilateral grasping of two exoskeletons. The 
researchers used a hierarchical classifier for the 
classification of different hand movements (left vs 
right, left vs rest, right vs rest). The EEG signals 
were Laplace filtered to detect the event-related 
desynchronization (ERD) at the C3 (left 
hemisphere) and C4 (right hemisphere) electrodes. 
If the classifier found ERD at C3 (left hemisphere) 
then it would identify the left exoskeleton, if ERD 
was at C4 (right hemisphere) then it would identify 
the right exoskeleton, and if the detected ERD was 
below a threshold, then the classifier would detect 
relax mode. Using this method, the average 
accuracy was found 58.68%.  Researchers in [53], 
developed and estimated the accuracies of a P300-
based BMI to operate a robotic arm orthosis. For 
this study, the authors used regularized linear 
discriminant analysis (RLDA) to classify target vs 
non-target from the EEG signal of 8 amyotrophic 
lateral sclerosis (ALS) patients. Here, target means 
the specified option to which the participants had to 
give focus, and non-target means the other options 
to any of those the participants should not give 
focus. In this study, linear combinations or 
projections of the EEG signal were extracted 
through spatial filtering by using canonical 
correlation analysis (CCA). The resulting projected 
signal was the extracted feature which was a set of 
signals with improved separability between the 
target and non-target classes. Using this feature and 
RLDA classifier, the average accuracy was found 
58.68% for target vs non-target classification from 
the EEG data of 8 ALS patients.  

In [50], and [53], researchers used sLDA and 
RLDA classifiers respectively and both of these 
classifiers are linear classifier which finds a linear 
combination of features that are mostly suitable for 
differentiating different classes, [54]. EEG signal is 
a non-linear signal with high temporal dynamics, so 
the classifiers used in those studies might face 
difficulties in effectively capturing the temporal 
dynamics existing in the EEG signal. In [51], 
researchers used ConvNet AlexNet which consumes 
high energy for processing due to the convolutional 
layer, [55]. Besides, the recorded accuracy in those 
studies is not so high, so the BCI systems may not 
do the best control.  

Although there have been significant 
advancements in BCI technology, achieving high 
classification accuracy from the signal to obtain the 

best control over the neuro-prosthetic devices is still 
a great challenge. Besides, faster response with high 
accuracy for real-time operation of these assistive 
devices and energy-efficient methods are very 
important. By exploring new methods addressing all 
these issues, the quality of life of persons with hand 
impairments can be improved.  

Reviewing the literature, it is anticipated that a 
Spiking Neural Network (SNN) classifier with time 
domain features that carry temporal information of 
EEG signal can be more suitable for EEG signal 
classification. That's why, in this research, we have 
proposed a method using a Spiking Neural Network 
(SNN) classifier with five time-domain features - 
Dispersion Entropy (DE), Fluctuation-based 
Dispersion Entropy (FDE), Fuzzy Entropy (FE), 
mean and skewness features to classify Motor 
Imagery (MI) EEG signal of a patient with spinal 
cord injury to operate a neuro-prosthetic device 
joined to the paralyzed right upper limb. To 
compare the performance of this method, the same 
features have been applied to Convolutional Neural 
Network (CNN), Random Forest (RF), Support 
Vector Machine (SVM), K-Nearest Neighbors 
(KNN), and Logistic Regression (LR). The 
contributions of this research are as follows: 
1. In this study, we shall apply SNN on time 

domain features (DE, FDE, FE, mean, and 
skewness) to classify EEG signals to detect 
hand movement and relaxation events. To our 
knowledge, the proposed method has not been 
applied to any dataset before to classify EEG 
signals. 

2.  To compare the performance of SNN, we shall 
apply five different classifiers (CNN, RF, SVM, 
KNN, LR) on these same features extracted 
from the same dataset.  

3.  The proposed method is expected to show better 
performance for classifying MI EEG signals for 
BCI system-based applications and critical 
diagnosis compared to other state-of-the-art MI 
EEG signal-based classifiers. 

 
 
2  Methodology 
Figure 1 shows the framework of the proposed 
method for classifying hand movement-relax EEG 
signals. At first, the recorded data is pre-processed 
using EEGLAB software. Then feature extraction is 
done from the selected channel using MATLAB. 
Dispersion entropy (DE), fluctuation-based 
dispersion entropy (FDE), fuzzy entropy (FE), mean 
and skewness features have been calculated from 
the EEG data. Finally, in Google Colab, the spiking 
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neural network (SNN) has been applied to the 
extracted features to observe the performance of 
SNN in classifying the EEG dataset in terms of 
accuracy, precision, recall, and F1-score. To 
compare the performance of SNN, different 
classifiers such as CNN, Random Forest, KNN, 
SVM, and Logistic Regression were applied to the 
extracted features.     
 

 
Fig. 1: Flowchart for Methodology 
 

2.1  EEG Dataset Description 
The EEG dataset has been collected from the BNCI 
(Brain-Neural Computer Interaction) Horizon 2020 
database with the dataset accession number 002-
2015 under the terms of the Creative Commons 
Attribution Non-commercial No Derivatives 
License (CC BY-NC-ND 4.0) granted by the 
Applied Neurotechnology Lab, Institute of Medical 
Psychology and Behavioral Neurobiology and 
Department of Psychiatry and Psychotherapy, 
University Hospital of Tübingen, Germany, [56].   

The dataset contained EEG data of a subject 
(gender: male, age: 48) with high spinal cord injury. 

The paradigm was created to control an EEG/EOG 
hybrid BNCI to operate a neuro-prosthetic device 
attached to the paralyzed right upper limb of the 
patient through two different visual signal-based 
tasks that randomly appeared to the subject as 
shown in Figure 2. Thoughts of movement of the 
right hand (class 1) or close the exoskeleton upon 
seeing a “green square” and rest or no movement 
(class 2) when the subject sees a “red square”. The 
data was recorded in three different runs and in each 
run the two tasks appeared 24 times each in total 
separated by 4-6 seconds of inter-trial intervals 
(ITIs). Each indication (hand close or relax) was 
displayed for 5 seconds after which the exoskeleton 
was reset into the open position which required 1 
second. The participant was allowed to freely make 
the exoskeleton motion to stop and go to the neutral 
position by using full left or right eye movements. 
While the EEG/EOG signals were recorded, the 
subject was seated comfortably at the desk. The 
dataset was saved in the Matlab format (.mat) 
containing the following information for each of the 
three different runs:  Raw data in the format 
Samples x Channels, information about each trial 
start and end in samples (24 per run), the 
corresponding class for each trial (either 1 or 2), the 
sampling rate, information about each class, gender, 
and age of the subject.  

The EEG signal was recorded from 5 channels 
(F4, T8, C4, Cz, P4) by maintaining an international 
10/20 standard electrode placement system at a 
sampling frequency of 200 Hz, band-pass filtered at 
0.4-70 Hz using an active electrode EEG system 
with a reference electrode placed at FCz and a 
ground electrode at AFz.  

 

 
Fig. 2: Timing arrangement of the BNCI pattern 

 
2.2  Preprocessing 
The recorded EEG signal contains various types of 
noise, including environmental noise, muscle 
artifacts (electromyographic interference), eye 
movements (electrooculographic artifacts) 
electrode-related noise, etc. To remove this 
undesired noise and artifacts, preprocessing is done 
which enhances the signal quality.  
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Fig. 3: Raw EEG Signal 

 

 
Fig. 4: Pre-processed EEG Signal 
 

In this study, the hand movement-relax EEG 
dataset has been loaded to EEGLAB for 
preprocessing. Figure 3 shows the raw EEG signal. 
In this dataset, there are 6 channels, among them 5 
are used for EEG recording and 1 is used for EOG 
signal recording. As we are intended to classify only 
the EEG signal, five EEG channels are kept and one 
EOG channel is removed. After loading the EEG 
signal, common average referencing is done. Then 
this data is filtered at 0.5-50 Hz using a basic FIR 
Filter to remove the undesired noise, and the clean 
line is done at 50Hz. Finally, to eliminate the 
artifacts caused by the muscle activity and eye 
blinking effect, independent component analysis 
(ICA) is done. The preprocessed EEG signal is 
shown in Figure 4. 
 

2.3  Feature Extraction  
In this study, we have made a feature matrix 
containing Dispersion Entropy, Fluctuation-based 
Dispersion Entropy, Fuzzy Entropy, Mean and 
Skewness features and the last column of the matrix 
shows the output class. The dataset we are working 
with has 2 classes- one is the movement class in the 
feature matrix denoted by 0 and another is the relax 
class in the feature matrix denoted by 1. All the 
features we have used are time domain features. 

This dataset of the paralyzed patient had three 
runs and each run had 24 events. The events were of 
two types, namely, ‘thoughts of movement’ of a 
neuro-prosthetic device attached to the paralyzed 
right hand and ‘rest or no movement'. Each event 
lasted for 5 seconds. The EEG dataset was recorded 
from 5 channels at a sampling rate of 200 Hz. So, 
for 3 runs from each channel, we get (200 × 5 × 24 
× 3) = 72000 data points and for all the 5 channels 
we get (72000 × 5) = 360000 data points.   

To calculate features for 1 second, we have 
made a sliding window of 200 data points to slide 
over all the EEG data points. Thus, the dimension of 
the feature matrix for each channel with all the 3 
runs will be 360 × 6 where the first 5 columns 
contain features and the last 1 column represents the 
corresponding output class. Also, for all the 5 
channels and 3 runs, the dimension of the feature 
matrix will be 1800 × 6. To maintain balance, we 
have taken an equal number of rows for each class 
and finally have got a 1350 × 6 dimension feature 
matrix. 

For calculating mean and skewness, we have 
used the mean () and skewness () functions of 
MATLAB 2023a. To extract DE, FDE, and FE, we 
have developed code using the basic theory of these 
variants of entropies using MATLAB 2023a 
software. 

 
2.3.1  Dispersion Entropy (DE) 

Dispersion Entropy (DE) is a non-linear metric to 
determine the complexity or irregularity in time 
series data, [35]. If a time series data does not 
contain any irregularity or complexity, there will be 
no dispersion (zero dispersion) between consecutive 
data points. In that case, the DE value will be zero 
(0) which indicates uniformity of the data series. 
Conversely, if a time series data contains high 
irregularity where values of data points vary 
significantly concerning time, the DE value of the 
data series will be high indicating greater 
complexity and unpredictability in the data. To 
compute DE from time series data, it is transformed 
into a new signal with a few different patterns to 
detect the variations effectively existing in the 
signal, [36]. Unlike other variants of entropy such as 
Sample entropy, which primarily considers the 
frequency of patterns, DE measurement is sensitive 
to both the amplitude and frequency, [36]. As EEG 
data has high temporal dynamics which indicates 
high irregularity, so DE measurement from EEG 
signal might be advantageous. That is why in this 
study DE feature has been used from the MI EEG 
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signal for hand movement vs relax event distinction.  
To calculate DE from the preprocessed EEG 

data the following steps have been carried out. 
i. Obtain a time series of data points. 
ii. Select the embedding dimension (m) and a time 

delay (d). 
iii. Create vectors of length m by embedding a time 

series with a delay of d. This entails using 
sequential data from the time series as vector 
coordinates. 

iv. Calculate the Euclidean distance between each 
pair of points in each vector. 

v. Count the number of distinct distances achieved 
in step four.  

vi. Divide the count of each distance by the total 
number of vectors to compute the probability 
distribution of these unique distances. 

vii. The dispersion entropy is then calculated using 
the following formula: 
 

𝐷𝐸(𝑥, 𝑚, 𝑐, 𝑑) =  

− ∑  𝑝(𝜋𝜈0𝜈1…𝜈𝑚−1
). ln (𝑝(𝜋𝜈0𝜈1…𝜈𝑚−1

))

𝑐𝑚

𝜋=1

 

 
For this study, the value of 𝑚 = 2, the length of 

the vector is 200 for the paralyzed patient's dataset 
as the sampling frequency was 200 Hz. The value of 
𝑐 is 100, as the EEG signal amplitude is discretized 
into 100 levels and 𝑑 is 1. 
 

2.3.2  Fluctuation-Based Dispersion Entropy  

Fluctuation-based dispersion Entropy (FDE) 
considers the differences between adjacent elements 
of dispersion patterns. This forms vectors with 
length (𝑚 − 1), where each element changes 
from−𝑐 + 1 to 𝑐 − 1. Consequently, (2𝑐 − 1)𝑚−1 
potential fluctuation-based dispersion patterns are 
formed. The only difference between DE and FDE 
is the potential patterns used in the two approaches. 
For this study, we set 𝑚 = 3 and 𝑐 = 100. 
 
2.3.3  Fuzzy Entropy (FE) 

Fuzzy Entropy (FE) is a measure of the relative 
degree of uncertainty that is applied to estimate the 
fuzziness in a fuzzy set of EEG signals, [38]. It is 
robust to noise but sensitive to signal complexity, 
[38]. For a time-series data 𝑥𝑖 with sample 𝑁, 
where, 𝑖 = {1, 2, 3, … , 𝑁}, and embedding 
dimension 𝑚, form a vector sequence as follows: 

𝑋𝑚(𝑖) = {𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2, … , 𝑥𝑖+𝑚−1} − 𝑥0(𝑖) 
where, 𝑖 = 1, 2, … , 𝑁 − 𝑚 + 1. Here, 𝑋𝑚(𝑖) denotes 
𝑚 succeeding 𝑚 values beginning with 𝑖𝑡ℎ point 
and generalized by eliminating a baseline: 

 𝑥0(𝑖) = (
1

𝑚
) ∑  𝑚−1

𝑗=0 𝑥𝑖+𝑗 
 
To calculate Fuzzy Entropy from the vector 𝑋𝑚(𝑖), 
the following steps have been followed. 
i. For each 𝑋𝑚(𝑖) the distance between vectors 

𝑋𝑚(𝑖) and 𝑋𝑚(𝑗) has been calculated by using 
the following equation.  

𝑑𝑖𝑗
𝑚 = [𝑋𝑚(𝑖), 𝑋𝑚(𝑗)] 

=𝑚𝑎𝑥𝑘=0,…,𝑚−1|𝑋𝑖+𝑘 − 𝑋0(𝑖) − 𝑋𝑗+𝑘 − 𝑋0(𝑗)| 
with 𝑖, 𝑗 = 1, … , 𝑁 − 𝑚, 𝑗 ≠ 𝑖. 

ii. The degree of similarity 𝐷𝑚,𝑖𝑗  between 𝑋𝑚(𝑖) 
and 𝑋𝑚(𝑗) has been determined from: 

𝐷𝑚,𝑖𝑗 = exp (−
𝑑𝑖𝑗

𝑚

𝑟
 )𝑛 

where, 𝑟 = the width of the boundary, 𝑛 =boundary 
gradient of the exponential function, 𝑑𝑖𝑗

𝑚 = 
maximum absolute difference between 𝑋𝑚(𝑖) and 
𝑋𝑚(𝑗) 

iii. Then the co-efficient ∅𝑚(𝑛, 𝑟) has been 
calculated based on the similarity degree 𝐷𝑚,𝑖𝑗 
as follows: 

∅𝑚(𝑛, 𝑟) =
1

𝑁−𝑚
∑ (

1

𝑁−𝑚−1
∑ (𝐷𝑚,𝑖𝑗)𝑁−𝑚

𝑗=1 ) 𝑁−𝑚
𝑖=1 ; 

where, j ≠ i. 
iv. Finally, Fuzzy Entropy has been calculated 

using the following equation: 
𝐹𝐸(𝑚, 𝑛, 𝑟, 𝑁) = ln ∅𝑚(𝑛, 𝑟)

− ln ∅𝑚+1(𝑛, 𝑟) 
 
In this study, 𝑥𝑖 refers to the EEG signal’s data. We 
set 𝑁 = 200, 𝑚 = 10, 𝑛 = 3, 𝑟 = 4. 
 
 
3  Classifiers 
This section presents a brief description of the 
classifiers used. In each classifier, 80% of the data 
have been used for training and the remaining 20% 
of data have been used for testing purposes. 
 
3.1 Classification by Spiking Neural 

 Network  
A Spiking Neural Network (SNN) is a type of 
neural network inspired by the way biological 
neurons communicate in the brain. Unlike 
traditional neural networks that use continuous 
values, SNN processes information through spikes 
which makes it suitable for handling temporal data. 
So, SNN can handle high temporal dynamics 
existing in the data. Also, as the spike firing is not 
continuous, so it consumes lower power which 
makes it energy efficient.  

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2025.22.16

Mohammad Rubaiyat Tanvir Hossain, 
Md. Shafiul Islam Joy, 

Mohammed Hasibul Hasan Chowdhury

E-ISSN: 2224-2902 138 Volume 22, 2025



 

 

After extracting features from the dataset, the 
spiking neural network (SNN) was trained and 
tested on those features and corresponding event 
values. Among several techniques of spike encoding 
such as rate coding, latency coding, and delta 
modulation, in this study rate coding was used to 
convert the feature values into spikes. 

Leaky Integrate and Fire (LIF) neurons are used 
in SNN as the Hodgkin-Huxley Neuron Model 
increases complexity and the Artificial Neuron 
Model increases power consumption. LIF neurons 
are modeled after biological neurons. Each LIF 
neuron can be modeled by an RC circuit where C 
symbolizes the capacitance between conductive 
extracellular and intracellular medium and R 
denotes the biological neuron's current through ion 
channels. 

According to the model, the membrane potential 
rises in response to an input current until it reaches a 
constant threshold voltage 𝑉𝑡ℎ, at which point a 
delta function spike occurs as output, and the 
membrane potential gets reset.  
In biological neurons, the membrane potential is: 

𝑈𝑚𝑒𝑚(𝑡) =  𝐼𝑖𝑛(𝑡)𝑅 + (𝑈0 − 𝐼𝑖𝑛(𝑡)𝑅)ⅇ−
𝑡

𝑅𝐶 
 
In analogical SNN neurons the membrane potential: 

𝑈[𝑡 + 1] =  𝛽𝑈[𝑡] + (1 − 𝛽)𝐼𝑖𝑛[𝑡 + 1] 
 
Here, 𝛽 is the decay rate. 

𝛽 = 1 −
1

𝜏
= 1 −

1

𝑅𝐶
 

 
For deep learning purposes, the weighting factor 

of input, which is (1 − 𝛽), is considered the 
learnable parameter, 𝑊 and 𝐼𝑖𝑛[𝑡] is replaced by 
𝑋[𝑡], which is an input voltage or spike. So, in SNN 
neuron membrane potential is: 

𝑈[𝑡 + 1] =  𝛽𝑈[𝑡] + 𝑊𝑋[𝑡 + 1] 
 

LIF neuron takes the sum of weighted inputs 
and integrates the input over time with a leakage. If 
the integrated value exceeds a threshold, a voltage 
spike will be emitted from the LIF neuron. Output 
spike, 

𝑆[𝑡] = 1, 𝑤ℎⅇ𝑛 𝑈[𝑡] > 𝑈𝑡ℎ𝑟 
𝑆[𝑡] = 0, 𝑤ℎⅇ𝑛 𝑈[𝑡] ≤ 𝑈𝑡ℎ𝑟 

 
After a spike is triggered, the membrane 

potential is reset by subtraction. So, after 
considering resetting, the membrane potential, 

𝑈[𝑡 + 1] =  𝛽𝑈[𝑡] + 𝑊𝑋[𝑡 + 1] − 𝑆[𝑡]𝑈𝑡ℎ𝑟 
 
In this study, we have done two types of 

simulation. One uses summative data from five 

channels and another uses data from individual 
channels. For both cases, we have used similar 
values of hyperparameters except for the batch size. 
The list of hyperparameters that are used in SNN is 
shown in Table 1. 

 
Table 1. List of Hyperparameters used in SNN 

Hyperparameters Value 

No. of neurons in the input layer 5 

No. of neurons in the hidden layer 200 

No. of neurons in the output layer 2 

Number of time steps 25 

Decay Rate (Beta) for LIF Neurons 0.95 

Optimizer type ADAM optimizer 

Learning rate 5×10-4 

Beta1 (β1) 0.9 

Beta2 (β2) 0.999 

Loss function type Cross Entropy Loss 
 

Fig. 5: Structure of SNN used in this study 
 

 The modeled SNN had three layers of neurons. 
The input layer has 5 LIF neurons, the hidden layer 
has 200 neurons and the output layer has 2 neurons. 
The structure of the SNN used in this study is shown 
in Figure 5. For both five-channel data classification 
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and single-channel data classification this same 
structure of SNN has been used. 
 
3.2 Classification by Convolution Neural 

Network (CNN) 
Convolutional Neural Network (CNN) is a deep 
learning (DL) model that can automatically capture 
spatial patterns from data, which makes it highly 
effective for image classification and spatial data 
analysis. It consists of several layers. The 
convolution layer is used to detect specific features 
such as, for image classification the features can be 
edges, textures, or simple shapes. The max-pooling 
layer is used to reduce the dimensionality of the 
extracted features by decreasing the number of 
features and retaining the most important features. 
The flatten layer makes 2D feature maps into 1D 
vectors and the dense layer is used for decision-
making. 

CNN is a Deep Learning algorithm that is used 
for classification purposes. The structure of CNN 
we have used in this study is shown in Figure 6. It 
consists of the input layer, 1 convolutional layer 
with ReLu activation function, 1 max-pooling layer, 
2 fully connected dense layers, and a softmax layer 
which performs the classification tasks.  

 

 
Fig. 6: Structure of CNN used in this study 

 
The first layer is the input layer that defines the 

input shape and the shape of the input is 5 × 1. The 
second layer is the convolutional layer (Conv1) 
which has 8 learnable filters with a kernel size of 3 
× 1 and convolves with the input. The third layer is 
the max-pooling layer with a kernel size of 2 × 1 
which extracts the main features and speeds up the 
calculation. The extracted main features of the third 
layer are flattened by the Flatten Layer and used as 
input of Dense1 which has 100 hidden neurons and 
then another dense layer (Dense2) with 10 neurons 
and finally ends with a softmax layer having 2 
neurons which predicts the classes. The proposed 
CNN has been implemented in Python with Keras 
and Tensorflow as the backend. It has been trained 
using the default parameters of the adaptive moment 

estimation (ADAM) optimizer for 50 epochs and a 
batch size of 32 until the cross-entropy function 
converges. For both five-channel data classification 
and single-channel data classification this same 
structure of CNN has been used. The 
hyperparameters used for this simulation are given 
in Table 2. 
 

Table 2. List of Hyperparameters used in CNN 
Hyperparameters Value 

Input Shape (5, 1) 

Number of Convolutional Layers 1 

Number of Filters (Conv Layer) 8 

Kernel Size (Conv Layer) 3×1 

Padding (Conv Layer) same 

Activation Function (Conv Layer) ReLU 

Batch Normalization Yes 

Pool Size (MaxPooling) 2 

Strides (MaxPooling) 2 

Flatten Layer Yes 

Number of Dense Layers 2 

Number of Neurons (Dense Layer 1) 100 

Activation Function (Dense Layer 1) ReLU 

Number of Neurons (Dense Layer 2) 2 

Activation Function (Output Layer) Softmax 

Optimizer Type ADAM 
optimizer 

Learning Rate Default 

Loss Function Type Sparse 
Categorical 

Cross-
entropy 

 
3.3  Classification by Random Forest (RF) 
Random Forest (RF) is an ensemble learning 
method that is used for both classification and 
regression tasks. It combines the results of multiple 
decision trees to produce an output to improve 
accuracy and reduce overfitting issues. 

It is based on the concept of bagging where 
subsets are generated from the training data and then 
they are used to train multiple decision trees 
independently. Each decision tree makes its own 
prediction and the final output is determined by 
averaging the results in case of regression or taking 
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a majority vote in case of classification. This 
approach helps RF to capture diverse patterns that 
are presented in the data and provides robustness 
and helps to make reliable predictions. 

In this study, we used 100 decision trees where 
the Gini Index was used as a quality measure in 
each tree node (n_estimators=100, criterion='gini'). 
These same hyperparameters were used for both 
individual channel-wise EEG signal classification 
and multiple channels’ EEG signal classification. 
 
3.4 Classification by Support Vector 

 Machine (SVM) 
Support Vector Machine (SVM) is a supervised 
machine learning algorithm that is used for both 
classification and regression tasks.  This algorithm 
focuses on finding the optimal hyperplane 
(boundary) to maximize the distance between this 
hyperplane (boundary) and the closest data points of 
different classes. By maximizing this distance, SVM 
ensures the best possible separation of data points to 
enhance its generalization ability. SVM can handle 
both linear and non-linear data. For non-linear data, 
SVM uses kernel functions to transform data into 
higher dimensions that allow for linear separation.  

In this study, we used kernel='poly', C=15 for 
individual channel-wise EEG signal classification 
and kernel='sigmoid', C=5 for multiple channels’ 
EEG signal classification. 
 
3.5  Classification by K-Nearest Neighbors  
K-Nearest Neighbors (KNN) is an instance-based 
machine learning (ML) algorithm that is used for 
both classification and regression purposes. It stores 
all the training data, so when a new data point (test 
data) needs to be predicted, it computes the distance 
between the new point and all existing training data 
points. The computed distance can be Euclidean 
distance, Manhattan distance, or Minkowski 
distance. The smallest distance indicates the nearest 
neighbor. The most crucial step is to choose the 
number of nearest neighbors (k) which has a direct 
influence on the performance of this ML algorithm. 
In the case of classification, prediction is based on 
the majority class among the number of nearest 
neighbors (k) but in the case of regression, 
prediction is based on the average value of the 
number of nearest neighbors (k).  

In this study, we used 10 numbers of nearest 
neighbors (k) for both individual channel-wise EEG 
signal classification and multiple channels’ EEG 
signal classification. 
3.6 Classification by Logistic Regression 

(LR) 

Logistic Regression (LR) is a machine learning 
(ML) algorithm that is used for binary classification. 
It models the probability of a given input data 
belonging to a particular class by fitting a logistic 
function to the data. This function is: 
 

𝑦 = (𝑤, 𝑥) =
1

1 +  ⅇ𝑤0+𝑥1𝑤1+⋯+𝑥𝑛𝑤𝑛
 

 
where, 𝑥 = input features 
𝑤 = corresponding weights of input features 

 
For binary classification by using this algorithm, 

the output of the function y must be 0 and 1, and 
weights (w) of corresponding features are computed 
using a solver which has to meet the condition. 

In this study, we used penalty='l2', C=1.0, 
solver='newton-cg', class_weight='balanced', and 
max_iter=1000. These similar hyperparameters 
were used for both individual channel-wise EEG 
signal classification and multiple channels’ EEG 
signal classification. 

 
 

4  Results and Analysis 
This section presents the simulation results and 
analyzes the performance of the proposed SNN 
classifier with five different classifiers (CNN, RF, 
SVM, KNN, LR) using the same feature matrix. 
Also, a comparative analysis with some similar 
research works related to different upper limb 
movement classifications using EEG signals has 
been illustrated. First, we made a feature matrix by 
extracting DE, FDE, FE, mean, and skewness 
features from the EEG signal using MATLAB 
2023a software and stored it in a text file. Then the 
text file was loaded to Google Colab to run the 
classification algorithm using different classifiers 
(SNN, CNN, RF, SVM, KNN, LR). For determining 
the performance metrics, the elements of the 
confusion matrix were assigned as (2,2): true 
positive (TP), (1,1): true negative (TN), (1,2): false 
positive (FN), and (2,1): false negative (FP). We 
have used the same feature matrix for all the 
classifiers so that we can investigate the 
performance of SNN with other classifiers (CNN, 
RF, SVM, KNN, LR). For comparative analysis 
among the classifiers two types of simulation have 
been conducted: 1) using the combined EEG data 
from five channels (F4, T8, C4, Cz, P4), and 2) 
using EEG data from individual channels separately.  
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4.1 Performance comparison of Classifiers 

using Summative Data from Five 

Channels 
Table 3 shows the performance of different 
classifiers based on the simulation results using the 
feature matrix derived from the combined EEG data 
of the five channels (F4, T8, C4, Cz, P4) in terms of 
accuracy, precision, recall, and F1 score. Here, we 
observe that Spiking Neural Network (SNN) has 
given the highest performance for all metrics, with 
an accuracy of 80%, precision of 80.95%, recall of 
77.28%, and an F1-score of 79.07% among all the 
classifiers. This indicates that SNN is highly 
effective at leveraging the complexity of the 
features we have used. The high accuracy indicates 
that SNN can correctly predict both classes (either 
hand movement or relaxation) with high accuracy 
across all the predictions. The high precision of 
SNN reflects the accuracy of correctly identifying 
hand relax events concerning the total number of 
events that the SNN classifier predicted as hand 
relax events while the strong recall suggests its 
ability to identify hand relax events among the total 
number of hand relax events that actually occurred 
in the dataset.  
 

Table 3. Classification Performance of Different 
Classifiers for Classifying EEG signal using 5 

channels’ (F4, T8, C4, Cz, P4) data 

Classifier 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

SNN 80 80.95 77.28 79.07 

CNN 64.07 69.41 58.33 63.4 

RF 71.85 74.42 69.06 71.64 

SVM 63.33 68.52 53.24 59.92 

KNN 63.33 69.23 51.8 59.26 

LR 64.81 70.75 53.96 61.22 
 

The balanced F1-score means the effectiveness 
of SNN in maintaining a strong balance between 
precision and recall which ensures both accurate 
identification and comprehensive detection of 
relevant instances. Random Forest (RF) classifier 
shows competitive performance with an accuracy of 
71.85%, precision of 74.42%, recall of 69.06%, and 
an F1-score of 71.64% but compared to SNN, RF’s 
performance is slightly lower. Still, it has a good 
balance between precision and recall which implies 
RF can effectively handle the diverse patterns in 
EEG data. Logistic Regression (LR) exhibits 

moderate precision but has given lower recall which 
means it is less effective in identifying all relevant 
instances of hand relax event. Like LR, the 
performance of Convolution Neural Network 
(CNN), Support Vector Machine (SVM), and, K-
Nearest Neighbors (KNN) classifiers is lower 
compared to RF and SNN which indicates these 
classifiers are less effective at leveraging the 
complexity of the features we have used. 

Figure 7, Figure 8, Figure 9, Figure 10, Figure 
11 and Figure 12, show the confusion matrix 
obtained from different classifiers for classifying the 
combined EEG data of five channels (F4, T8, C4, 
Cz, P4) that gives further insights into their 
performance. For the SNN classifier, the confusion 
matrix shown in Figure 7 reveals a balanced 
distribution of correctly and incorrectly predicted 
samples among different classes which indicates 
robust performance in identifying the true hand 
movement and relax events and minimizes wrong 
identification of these events. SNN's balanced 
performance compared to other classifiers suggests 
its suitability for applications requiring high 
accuracy and reliability in detecting actual 
commands from the EEG signal such as neuro-
prosthetic device control or brain-computer 
interfaces, etc. 

 
 

 
Fig. 7: Confusion Matrix obtained from SNN 
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Fig. 8: Confusion Matrix obtained from CNN 
 

 
Fig. 9: Confusion Matrix obtained from RF 

 

 
Fig. 10: Confusion Matrix obtained from SVM 
 

 
Fig. 11: Confusion Matrix obtained from KNN 
 

 
Fig. 12: Confusion Matrix obtained from LR 

 
4.2 Performance Comparison of Classifiers 

using Data from Individual Channel    
For classification using a feature matrix derived 
from EEG data of individual channels (F4, T8, C4, 
Cz, P4), the same features have been used for 
different classifiers (SNN, CNN, RF, SVM, KNN, 
and LR). Performance (accuracy, precision, recall, 
and F1-score) of different classifiers based on the 
simulation outcomes are illustrated in Table 4, Table 
5, Table 6, Table 7, Table 8 and Table 9. 

Table 4 represents the performance of the SNN 
classifier for 5 single channels’ EEG data 
classification. Among the 5 channels, we have got 
the highest classification accuracy of 79.17% from 
the EEG data of channel F4 with a precision of 
85.7%, recall of 87.3%, and the F1-score of 86.49%. 
Conversely, Channel Cz shows the lowest accuracy 
of 58.33%, with a precision of 56.14%, recall of 
86.49%, and F1-score of 68.09%. For the remaining 
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channels (T8, C4, and P4), the obtained accuracies 
are at a moderate level, with T8 at 68.06%, C4 at 
73.61%, and P4 at 68.05%. 
 

Table 4. Results for EEG signals classification by 
Spiking Neural Network (SNN) 

Channel 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

F4 79.17 85.7 87.3 86.49 

T8 68.06 67.86 88.37 76.77 

C4 73.61 73.02 95.83 82.88 

Cz 58.33 56.14 86.49 68.09 

P4 68.05 67.69 95.65 79.28 
 

Table 5 represents the classification results of 
CNN for individual channel’s EEG data 
classification. Here, channel C4 has the highest 
classification accuracy of 72.22% but precision, 
recall, and F1-score, all are 0. This indicates that 
CNN has been unable to correctly classify any 
positive instances (hand relax event) for this 
channel, resulting in no true positives (true relax 
prediction). In Contrast, channel P4 shows the 
lowest accuracy of 51.39%, with a precision of 
54.17%, recall of 35.14%, and F1-score of 42.63%. 
For the remaining channels (T8, Cz, and F4), the 
obtained accuracies are at a moderate level. 

 
Table 5. Results for EEG signals classification by 

Convolutional Neural Network (CNN) 

Channel 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

F4 56.94 17.86 38.46 24.39 

T8 69.44 0 0 0 

C4 72.22 0 0 0 

Cz 59.72 56.67 51.52 53.97 

P4 51.39 54.17 35.14 42.63 
 

Table 6 presents the classification results for 
single channel’s EEG signals using the Random 
Forest (RF) classifier. Here both channel F4 and P4 
have achieved the highest classification accuracy of 
77.78% but other performance metrics are not the 
same. For channel F4, precision is 81.4%, recall is 
81.4%, and F1-score is 81.4% whereas for channel 
P4 precision is 76%, recall is 90.47%, and F1-score 
is 82.61%. On the other hand, C4 has given the 
lowest classification accuracy of 68.05% with a 
precision of 61.82%, recall of 94.44%, and F1-score 
of 74.73%. 

Table 6. Results for EEG signals classification by 
Random Forest (RF) Classifier 

Channel 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

F4 77.78 81.4 81.4 81.4 

T8 72.22 80 76.6 78.26 

C4 68.05 61.82 94.44 74.73 

Cz 76.38 85.71 76.6 80.9 

P4 77.78 76 90.47 82.61 
 

From Table 7, it is observed that the highest 
classification accuracy of 73.63% has been achieved 
from data of both channels F4 and Cz. For Channel 
F4, the precision is 71.43%, recall is 93.02%, and 
F1-score is 80.81%, indicating strong detection of 
true positives and a balanced performance. 
However, channel Cz shows high precision but a 
lower recall.  

 
Table 7. Results for EEG signals classification by 

Support Vector Machine (SVM) 
Channel 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

F4 73.61 71.43 93.02 80.81 

T8 61.11 69.39 72.34 70.83 

C4 50 50 100 66.67 

Cz 73.61 96.67 61.70 75.32 

P4 59.72 61.02 85.71 71.29 
 

According to Table 8, for single channels’ EEG 
data classification by using KNN, channel F4 has 
given the highest classification accuracy of 72.22%, 
with a precision of 75.56%, recall of 79.07%, and 
F1-score is 77.27% indicating a well-balanced 
performance.    

 
Table 8. Results for EEG signals classification by 

K-Nearest Neighbors (KNN) 

Channel 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

F4 72.22 75.56 79.07 77.27 

T8 59.72 68.75 70.21 69.47 

C4 54.17 52.83 77.78 62.92 

Cz 55.56 66.67 63.83 65.22 

P4 41.67 50 50 50 
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From Table 9, we can see that both the Cz and 
P4 channels’ data have given the highest 
classification accuracy of 72.22%. For Channel Cz, 
the precision is 93.55%, the recall is 61.70%, and 
the F1-score is 74.36% which shows high precision 
but lower recall. For Channel P4, the precision is 
82.35%, the recall is 66.67%, and F1-score is 
73.68% which indicates a balanced performance.   

In most of the cases of classifying EEG data 
taken from a single channel, it has been observed 
that SNN, RF, SVM, and KNN classifiers have 
achieved high classification accuracy by classifying 
EEG data of channel F4 and the accuracy values are 
79.17%, 77.78%, 73.61%, 72.22% respectively. 
Also, for the remaining classifiers, obtained 
classification accuracy by using data from channel 
F4 is passable. Among all the classifiers, Spiking 
Neural Network (SNN) has shown the best 
performance which is consistent with our previous 
findings where classification was done using 
summative EEG data taken from five channels. 

 
Table 9. Results for EEG signals classification by 

Logistic Regression (LR) 
Channel 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

F4 69.44 86.21 58.14 69.44 

T8 68.06 78.57 70.21 74.16 

C4 62.5 63.64 58.33 60.87 

Cz 72.22 93.55 61.70 74.36 

P4 72.22 82.35 66.67 73.68 
 
From the simulation results of both cases we 

found that SNN has shown superior performance 
compared to other classifiers (CNN, RF, SVM, 
KNN, LR) we have used in this study. It might be 
because SNN is designed such that it can effectively 
capture temporal dynamics existing in data. SNN 
mimics the behavior of biological neurons, which 
process information based on spikes occurring over 
time. The DE, FDE, and FE feature that we have 
used in this study are focused on capturing 
irregularities existing in the EEG signal over time. 
So, the information captured by these features (DE, 
FDE, FE) in a time-dependent manner might be 
leveraged by SNN due to its inherent ability to 
process temporal information. Also, the mean and 
skewness features which provide statistical 
information about the distribution and asymmetry of 
the EEG signal, allow SNN to make more refined 
distinctions between hand movement and relaxation 
events from the EEG signal. CNN is primarily 

designed to capture spatial patterns from data, which 
makes it highly effective for image classification 
and spatial data analysis. However, the entropy 
features utilized in this study contain temporal 
information of the EEG signal, which may not be 
well-suited for CNN and could potentially diminish 
its performance. Random Forests is an effective ML 
algorithm for handling non-linear relationships 
among features but is not suited well for temporal 
sequences. This may lead to lower performance of 
RF. SVM is best suited for linearly separable data 
but it struggles with non-linear time-dependent data. 
The lower performance of SVM may be due to its 
inability to effectively handle the non-linear 
temporal information captured by the DE, FDE, and 
FE features from the EEG signal. KNN is a 
distance-based method and is not able to learn 
temporal patterns strongly which may lead KNN to 
perform badly for these entropy features (DE, FDE, 
FE). Logistic Regression (LR) is a linear classifier 
that is less suited for handling non-linear 
relationships in the data. The entropy-based features 
used for this classification study are non-linear. 
Consequently, LR performs lower with these 
entropy features. Therefore, while other classifiers 
(CNN, RF, SVM, KNN, LR) cannot effectively 
handle the non-linear temporal information captured 
by the entropy features extracted from EEG data, 
SNN outperforms them due to its capability to 
capture temporal dynamics and its biological 
plausibility. 

 
4.3 Comparative Analysis with Existing 

Methods 
In section 1.1, a review of some notable works 
related to our research has been discussed where 
researchers applied different methods for their 
models for decoding different hand movement 
attempts from EEG signals of persons with hand 
impairment. In this section, a comparative analysis 
of our proposed method with those existing methods 
related to our research has been presented.  

Table 10 (Appendix) summarizes the results 
obtained from previous studies about different hand 
movement classifications of patients with 
disabilities using EEG signals with different 
methods.  Researchers in [50], investigated the time-
domain of low-frequency EEG signals of 10 persons 
with SCI by Shrinkage Linear Discriminant 
Analysis (sLDA) classifier and obtained 45% 
accuracy for 5 different hand movement classes 
(hand open, palmar grasp, lateral grasp, pronation, 
and supination) and tested online on a person with 
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cervical SCI with 68.4% accuracy for palmar grasp 
vs hand open.   

Authors in [53], used a regularized linear 
discriminant analysis (RLDA) classifier for target vs 
non-target classification with 8 amyotrophic lateral 
sclerosis (ALS) patients and achieved 80.53% 
classification accuracy. In [50] and [53], researchers 
used sLDA and RLDA classifiers respectively and 
both of these classifiers are linear classifier which 
finds a linear combination of features that are 
mostly suitable for differentiating different classes. 
EEG signal is a non-linear signal with high temporal 
dynamics, so the used classifiers in those studies 
might face difficulties in effectively capturing the 
temporal dynamics existing in the EEG signal. 

In [51], the researchers employed movement-
related cortical potentials (MRCPs), and time-
frequency domain representation (scalogram) of the 
dataset of ten participants with subacute and chronic 
cervical spinal cord injuries for classifying the EEG 
signal into five different hand movement classes 
(hand open, palmar grasp, lateral grasp, pronation, 
and supination). They used the ConvNet AlexNet 
classifier for classification and obtained 76% 
average classification accuracy by their proposed 
method. Though the accuracy of this method was 
relatively high, due to the convolutional layer 
ConvNet AlexNet classifier may consume high 
energy for processing. Using a hierarchical 
classifier, the authors in [52], got 58.68% average 
classification accuracy for EEG-controlled bilateral 
grasping of two exoskeletons by four chronic 
tetraplegics. 

In our research, a fusion of Dispersion Entropy 
(DE), Fuzzy Entropy (FE), and Fluctuation based 
Dispersion Entropy (FDE) with mean and skewness 
features are extracted from the motor imagery (MI) 
EEG signals of a patient with high spinal cord injury 
to operate a neuro-prosthetic device attached to his 
paralyzed right upper limb. The extracted features 
are applied to the Spiking Neural Network (SNN) 
classifier to investigate its classification accuracy 
for detecting hand movement–relax events to 
operate the exoskeleton. Using the proposed 
method, indeed a high classification accuracy of 
80%, precision of 80.95%, recall of 77.28%, and 
F1-score of 79.07% are estimated. This performance 
has been found better compared to most of the other 
similar research works that specifically used the 
EEG signals of people with hand impairments. So, 
this proposed method can provide robustness for 
neuro-prosthetic control, which can help improve 
the quality of life of people with hand impairment. 
 

 
 
5  Conclusion 
This study represents a novel approach for 
classifying hand movement-relax EEG signals of an 
SCI patient using the Spiking Neural Network 
(SNN) which is applied to a time domain feature 
matrix containing Dispersion Entropy (DE), Fuzzy 
Entropy (FE), Fluctuation-based Dispersion Entropy 
(FDE), mean, and skewness to operate a neuro-
prosthetic device attached to paralyzed right upper 
limb. To compare the performance of our proposed 
method, the same features have been applied to 
Convolutional Neural Network (CNN), Random 
Forest (RF), Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), and Logistic Regression 
(LR) classifiers. Two types of simulation have been 
conducted for this study: one using the feature 
matrix derived from the EEG data of the five 
channels (F4, T8, C4, Cz, P4) collectively and 
another using the feature matrix derived from the 
EEG data from individual channels. For both cases, 
our proposed approach has shown superior 
performance compared to other classifiers we 
utilized. Our proposed method has also 
demonstrated better performance compared to other 
BCI system-based research works relying on EEG 
signals of hand-impaired individuals using different 
methods and datasets. The performance of our 
proposed method for classifying hand movement vs 
rest ensures better control of neuro-prosthetics 
which will increase the reliability of the BCI 
devices. Along with good performance in 
classification, SNN is an energy-efficient neural 
network. Due to its biological plausibility, SNN 
may consume low power. This may help to extend 
the battery life which will increase the reliability. 
Due to its energy-efficient property, it can be useful 
for portable BCI systems. Moreover, low-latency 
SNN can be useful for BCI systems that require 
real-time response. Therefore, our proposed method 
has great potential for applications in neuro-
rehabilitation engineering and BCI systems, where 
real-time, low power consumption, and accurate 
movement detection are crucial. In this research, we 
have used a small dataset that contains EEG data of 
only one person with SCI. To justify the 
generalizability of our proposed method, this 
method should be tested on a large dataset that 
comprises the EEG signal of several persons with 
SCI and also on a diverse dataset for different types 
of classification tasks such as disease detection, 
emotion detection, etc. Also, in future research, 
exploring the synergistic integration of hybrid EEG-
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EOG, EEG-fNIRs, and EEG-EMG modalities holds 
promise for further enhancing the overall 
performance and robustness of Brain-Computer 
Interface (BCI) systems, paving the way for more 
sophisticated and versatile applications in various 
domains. In the future, researchers may look into 
how combining hybrid EEG-EOG, EEG-fNIRs, and 
EEG-EMG modalities can improve the overall 
performance and reliability of Brain-Computer 
Interface (BCI) systems. This could lead to more 
advanced and flexible uses in many areas. 
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APPENDIX 

 
Table 10. Related works for upper limb movement classification using EEG signal 

Research work Signals Volunteers Method Classes Accuracy 

[50] EEG 10 persons with SCI sLDA 5 hand movement classes 45.00% 
Palmar grasp vs hand open 68.40% 

[51] EEG 10 persons with SCI ConvNet 5 hand movement classes 76.00% 
[52] EEG 4 chronic tetraplegics Hierarchical classifier Hand Movement vs Rest 58.68% 
[53] EEG 8 ALS patients Regularized LDA Target Vs Non-Target 80.53% 

Our method EEG 1 person with SCI SNN Hand Movement vs Relax 80.00% 
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