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Abstract: - In this paper we mainly investigate pricing problems of rainbow option under uncertain financial
market. The price of the underlying asset is assumed to obey an uncertain process. Uncertain differential equa-
tions are used to build a price model. Furthermore, the differential equations under the uncertain mean-reverting
model are solved to deduce the pricing formulas of several rainbow options. Additionally, in order to verify the
reasonableness of our pricing formulas, some numerical experiments are designed to show the prices of these
options.

Key-Words: - Uncertainty theory; Option pricing; Rainbow option; Uncertain differential equation.

Received: August 26, 2021. Revised: March 21, 2022. Accepted: April 25, 2022. Published: July 6, 2022.  

1 Introduction
An option is a contract in which the rights and obli-
gations of both parties are not equal, and the buyer
pays an option fee in exchange for the right to buy or
sell an asset at an agreed price on or before the expi-
ration date. Although options have been around since
the late 18th century, they are not widely used due to
the pricing problem of option fees. Until 1973, the fa-
mous Black-Scholes formula on the basis of stochas-
tic differential equations proposed by Black and Sc-
holes [2] made great progress in option pricing theory,
and option prices were expressed by various differen-
tial equations. After more in-depth research and fur-
ther expansion of the B-S formula, it has been applied
to many other financial derivatives pricing models.

With the development of option pricing theory, op-
tions have become themost dynamic derivative finan-
cial products, which have been rapidly developed and
widely used, and the types of options have also in-
creased very quickly. Among them, options involving
two or more risky assets are often referred to as rain-
bow options. In 2015, the price of two path-dependent
derivatives was determined using the disturbance the-
ory in a two-dimensional asset model with random
correlation and volatility by Marcos et al. [6]. Wang
et al. studied the pricing problem of fragile Euro-
pean options under Markov modulation jump diffu-
sion process in 2017 [21]. In 2020, Edeki et al. use the
separated variable transformation method (HSVTM)
to give a exact (closed form) solution of the classical
Black Scholes option pricingmodel with time fraction
[7]. Later in 2021, Aimi and Guardasoni [1], relying
on the collocated Boundary Element method, extend-
ed a semi-analytical approach to the barrier option
technique to barrier option pricing with earnings de-
pendent on multiple assets. Under the Merton jump-

diffusion model, Ghosh and Mishra [9] studied the
fast, parallel, and numerically accurate pricing of two-
asset American options in 2022.

The traditional option pricing theory have often s-
tarted from the perspective of probability theory, re-
garding the underlying asset price as a Wiener pro-
cess, and construct price models based on this, then
conducts further derivation. However, the traditional
option pricing theory requires the sample size is large
enough to find a distribution function that is close e-
nough to the frequency, but in many cases, for various
reasons, we often cannot obtain enough samples or
even no sample to find the available probability distri-
butions. In these cases, we need to rely on the expert's
belief degree in each uncertain event.

In 2007, for describing the belief degree, Liu [10]
proposed an uncertainty theory, which is based on the
axiomatic system of regularity, duality, subadditivity
and product measure, to solve the mathematical prob-
lem that cannot be solved by probability theory due to
insufficient sample data or the absence of sample, and
further refined the theory in 2010 [12]. At the same
year, Chen and Liu [4] studied the existence and u-
niqueness theorem for uncertain differential equation-
s. In 2013, Liu [14] utilized some paradoxes to prove
that the actual price of a stock does not follow any
of Ito's stochastic differential equations, which over-
threw the view of traditional stochastic financial the-
ory. Therefore, it is reasonable to express asset prices
with uncertain differential equations.

Liu [11] first introduced uncertainty theory into the
stock model in 2009, he used the geometric Liu pro-
cess to construct uncertain stock models and derived
the pricing formula for European call options. Fur-
thermore, based on uncertain differential equations,
Zhu [25] studied the application of uncertain optimal
control problem in portfolio selection models. After
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that, Chen [3] deduced the pricing formula for Amer-
ican options in 2011, Sun and Chen [17] derived the
pricing formula for Asian options in 2015. In addi-
tion, in 2011, Peng and Yao [16] considered an op-
tion pricing model with mean reversion process and
derived the pricing formulas for European and Amer-
ican options under the model. Chen et al. [5] pro-
posed an uncertain stock model with periodic divi-
dends. Additionally, Yao [23] proposed an uncertain
floating-rate stock model, in which both stock prices
and interest rates follow uncertain differential equa-
tions. Sun and Su [18] proposed a mean-reverting
stock model under floating interest rates. Yang et
al. [22] derived a pricing formula for Asian bar-
rier options in 2019. In the same year, Gao et al.
[22]deduced a pricing formula of American barrier
options. Lu et al. [15] proposed an uncertain stock
model based on fractional differential equations, and
discussed the pricing of European-style options un-
der this model. Tian et al. [19] determined a barrier
option pricing problem under the mean-reverting s-
tock model. In 2021, Wang and Ralescu[20] studied
pricing formulas of lookback option for the uncertain
Heston volatility model. Gao [8] studied the pricing
problem of Asian rainbow options based on uncertain
stock models.

In this paper, by leveraging knowledge of uncer-
tainty theory, the price of the underlying asset is treat-
ed as an uncertain process, based on uncertain differ-
ential equations, while taking into account the mean
reversion characteristics of asset prices. After that,
the pricing formulas of several types of rainbow op-
tions are deduced. This paper is organized as follows:
The second part of this paper briefly states some the-
orems and definitions related to this paper. The third
part derives the pricing of put 2 and call 1 type rain-
bow options. The fourth section studies rainbow call
on max option and rainbow call on min option. The
fifth part deduces the pricing formula of rainbow put
options, including rainbow put on max option and
rainbow put on min option. Section sixth of this paper
gives some brief conclusions.

2 Preliminaries
Definition 1 (Liu [11] [13]) Providing that (Γ,L) is
a measurable space. A set function M : L → [0, 1]
is called an uncertain measure if it satisfies the fol-
lowing conditions: (i) (normality axiom) M{Γ} = 1
for the universal set Γ; (ii) (duality axiom) M{Λ}+
M{Λc} = 1 for any event Λ; (iii) (subadditivity ax-

iom)M
{ ∞∪

i=1

Λi

}
≤

∞∑
i=1

M{Λi} for every countable

sequence of events Λ1,Λ2, · · ·.
Definition 2 (Liu [11]) The uncertain measure on the
product σ-algebraL is called product uncertain mea-

sure defined by the following product axiom: (Prod-
uct Axiom) Let (Γk,Lk,Mk) (k = 1, 2, · · ·) repre-
sent uncertainty spaces. The product uncertain mea-
sure M is an uncertain measure satisfying

M
{ ∞∏

k=1

Λk

}
=

∞∧
k=1

Mk {Λk} .

Definition 3 (Liu [10]) An uncertain variable is a
function ξ from an uncertainty space (Γ,L,M) to the
set of real numbers such that {ξ ∈ B} is an event for
any Borel set B of real numbers.

Definition 4 (Liu [10]) The uncertainty distribution
Φ of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x}

for any real number x.

Theorem 1 (Liu [12]) For any eventsΛ1 andΛ2 with
Λ1 ⊂ Λ2, we have

M{Λ1} ≤ M{Λ2} .

Theorem 2 (Liu [14]) A function Φ−1 : (0, 1) → ℜ
is the inverse uncertainty distribution of an uncertain
variable ξ if and only if it is continuous and

M
{
ξ ≤ Φ−1(α)

}
= α

for all α ∈ (0, 1).

Definition 5 (Liu [10]) Let ξ be an uncertain vari-
able. Then the expected value of ξ is defined by

E[ξ] =

∫ +∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx

Theorem 3 (Liu [10]) Assume that there is uncer-
tainty distribution ϕ for an uncertain variable ξ. If
E[ξ] exists,then

E[ξ] =

∫ +∞

−∞
xdϕ(x).

Furthermore if ϕ is regular, then we also have

E[ξ] =

∫ 1

0
ϕ−1(α)dα.

Theorem 4 (Yao and Chen [24]) Suppose that there
are the solution Xt and α-path Xα

t for an uncertain
differential equation

dXt = f(t,Xt)dt+ g(t,Xt)dCt. (1)
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Then, the time integral
∫ s

0
Y (Xt)dt possesses an in-

verse uncertainty distribution

ψ−1
s (α) =

∫ s

0
Y (Xα

t )dt, s > 0

where Y (x) is a function owning strictly increasing
feature.

Theorem 5 (Liu [12]) Let ξ1, ξ2, · · ·, ξn be indepen-
dent uncertain variables with regular uncertainty dis-
tributions ϕ1, ϕ2, · · ·, ϕn, respectively. If f(ξ1, ξ2, · · ·,
ξn) is strictly increasing with respect to ξ1, ξ2, · · ·, ξm
and strictly decreasing with respect to ξm+1, ξm+2,
· · ·, ξn, then f(ξ1, ξ2, · · ·, ξn) has an inverse uncer-
tainty distribution

ψ−1
s (α) = f(ϕ−1

1 (α), · · · , ϕ−1
m (α),

ϕ−1
m+1(1− α), · · · , ϕ−1

n (1− α)).

Definition 6 (Yao and Chen [24]) Let α be a number
between 0 and 1. An uncertain differential equation

dXt = f (t,Xt) dt+ g (t,Xt) dCt

is said to have an α-path Xα
t if it solves the corre-

sponding ordinary differential equation

dXα
t = f (t,Xα

t ) dt+ |g (t,Xα
t )|Φ−1(α)dt

where Φ−1(α) is the inverse standard normal uncer-
tainty distribution, i.e.,

Φ−1(α) =

√
3

π
ln α

1− α
.

Theorem 6 (Yao and Chen [24]) Let Xt and Xα
t be

the solution and α-path of the uncertain differential
equation

dXt = f (t,Xt) dt+ g (t,Xt) dCt,

respectively. Then

M{Xt ≤ Xα
t , ∀t} = α,

M{Xt > Xα
t , ∀t} = 1− α.

where Xt possesses an inverse uncertainty distribu-
tion

Ψ−1
t (α) = Xα

t

3 Put 2 and Call 1 option
A put 2 and call 1 option(PCO) include two assets,
among which the expected price of asset 1 rises and
the expected price of asset 2 falls, the owner of the P-
CO have rights to replace the bearish Asset 2 with the
bullish Asset 1 on the expiration date. It means that,

upon expiration, if the two assets fall and rise as ex-
pected, and their difference is greater than the option
fee, the greater the difference. The higher the return
of the holder. The yield of the option depends on the
the difference between the two assets at maturity. We
will get the pricing formula of PCO through rigorous
derivation in this section. In addition, we will obtain
the option price through a numerical algorithm.

We assume that the underlying asset prices of op-
tion with a maturity time T obey different uncertain
differential equations. At the same time, considering
that theoretically the stock price cannot always rise
or fall, its mean-reversion characteristic is inevitable.
We propose the following model:

dZt = rZtdt

dSt = u1 (m1 − a1St) dt+ σ1StdC1t

dVt = u2 (m2 − a2Vt) dt+ σ2VtdC2t

(2)

where Zt on behalf of the bond price, St and Vt rep-
resent, respectively, the price of Asset 1 and Asset 2,
C1t andC2t are independent Liu processes, σ1 and u1
are respectively, the log-diffusion and log-drift of St,
σ2 and u2 are respectively, the log-diffusion and log-
drift of Vt. Moreover, r is the riskless interest rate and
mi/ai represents the mean reversion speed.

Because C1t and C2t are independent Liu process,
so St and Vt are independent of each other. FromDef-
inition 6we know that theα-pathSα

t andV α
t ofSt and

Vt, respectively, satisfy

dSα
t = u1 (m1 − a1S

α
t ) dt+ |σ1Sα

t |Φ−1(α)dt, (3)

and

dV α
t = u2 (m2 − a2V

α
t ) dt+|σ2V α

t |Φ−1(α)dt. (4)

The solutions of (3) and (4), respectively, are

Sα
t = S0

u1m1 − exp
(
−u1a1 +Φ−1(α)σ1

)
t

u1a1 − Φ−1(α)σ1
, (5)

and

V α
t = V0

u2m2 − exp
(
−u2a2 +Φ−1(α)σ2

)
t

u2a2 − Φ−1(α)σ2
. (6)

From Theorem 6, we know Sα
t and V α

t are also in-
verse uncertain distributions of St and Vt, respective-
ly.

Firstly, from the holder's point of view, the payoff
at expiration date T is

(ST − VT )
+.

Suppose the option fee the holder paid at time 0 is fpc.
Then the net return of the holder at the initial moment
is

−fpc + exp(−rT ) (ST − VT )
+ .
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Secondly, assuming bank is the seller of the option,
then the payoff of bank at time T is

−(ST − VT )
+.

Thus at the initial moment, the bank owns net return

fpc − exp(−rT ) (ST − VT )
+ .

For fairness, the expected returns of buyers and sellers
should be equal, so we have

−fpc + exp(−rT )E
[
(ST − VT )

+
]

= fpc − exp(−rT )E
[
(ST − VT )

+
]
. (7)

Obviously, the PCO price is

fpc = exp(−rT )E
[
(ST − VT )

+
]
.

Theorem 7 Suppose a PCO option for Model (2) has
a maturity time T . Then, the price of option is

fpc = exp(−rT )
∫ 1

0
(S0h1(α)

−V0h2(1− α)) dα, (8)

where for i = 1, 2,

hi(α) =
uimi − exp

(
−uiai +Φ−1(α)σi

)
T

uiai − Φ−1(α)σi
. (9)

Proof. First of all, we can get Sα
T and −V 1−α

T , which
are, respectively, inverse uncertain distribution of ST
and −VT . Because ST and −VT are independent of
each other, so the uncertain variable

(ST − VT )
+

has an inverse uncertain distribution(
Sα
T − V 1−α

T

)+
(10)

by Theorem 5, where

Sα
T = S0

u1m1 − exp
(
−u1a1 +Φ−1(α)σ1

)
T

u1a1 − Φ−1(α)σ1
,

V 1−α
T = V0

u2m2 − exp
(
−u2a2 +Φ−1(1− α)σ2

)
T

u2a2 − Φ−1(1− α)σ2
.

Finally, we can obtain the pricing formula of PCO

fpc = exp(−rT )E
[
(ST − VT )

+
]

= exp(−rT )
∫ 1

0

(
Sα
T − V 1−α

T

)+
dα (11)

by Theorem 3. Instituting the expressions of Sα
T and

V 1−α
T into (11) gets the conclusion (8). The proof is

completed.
To calculate the option price, according to the def-

inition of integral, we divide the integrating interval
into 100 sub intervals to calculate the integral sum for
approximating the integral. On this basis, we design
the following algorithm:

Algorithm 1 (Option price for model (2))
Step 1. Input the values of parameters: S0, V0,m1,

m2, a1, a2, σ1, σ2, u1, u2 and T .
Step 2. Let α start at α0 = 0.01 and grow to 0.99 at

a step of 0.01 to obtain

αj = αj−1 + 0.01, j = 1, 2, · · · , 99.

Step 3. Calculate hi(αj) by (9) for i = 1, 2, j = 1,
2, · · ·, 99.

Step 4. Calculate

fpc = exp(−rT )× 0.01×
99∑
j=1

(S0h1(αj)

−V0h2(1− αj)).

Example 1 Set S0 = 5, V0 = 4, m1 = m2 = 4,
a1 = a2 = 1, σ1 = 0.01, σ2 = 0.01, u1 = 0.06,
u2 = −0.04, and T = 1. Then the Put 2 and Call
1 option price for model (2) is obtained to be fpc =
9.6367 by Algorithm 1.

4 Rainbow call on option
In this section we will study rainbow call on options
(RCO), which include rainbow call on max option-
s (RCMAO) and rainbow call on min options (R-
CMIO). By solving the asset-price model and further
derivation, we obtain the pricing formulas of RCO.
Moreover, some numerical experiments are designed
to calculate the option prices.

We assume that the underlying asset prices of op-
tion with a maturity time T obey different uncertain
differential equations. At the same time, considering
that theoretically the stock price cannot always rise or
fall, the following model is proposed:

dZt = rZtdt

dS1t = u1 (m1 − a1S1t) dt+ σ1S1tdC1t

dS2t = u2 (m2 − a2S2t) dt+ σ2S2tdC2t

· · ·
dSnt = un (mn − anSnt) dt+ σnSntdCnt

(12)
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where Zt is a bond price, r is a riskless interest rate,
Sit represents the price of Asset i, Cit represents in-
dependent Liu processes, ui and σi are, respectively,
the log-drift and log-diffusion of Sit (i = 1, 2, . . . , n),
mi/ai represents the mean reversion speed.

The changes of Sit are independent of each oth-
er because Cit (i = 1, 2, . . . , n) are independent Liu
process. The α-pathes of systems in Model (12) are{

Zα
t = Z0 exp(rt)

Sα
it = Si0hi(α)

(13)

where

hi(α) =
uimi − exp

(
−uiai +Φ−1(α)σi

)
t

µiai − Φ−1(α)σi
(14)

for i = 1, 2, · · · , n.
We assumeΨ−1

1t (α),Ψ
−1
2t (α), · · ·,Ψ

−1
nt (α) are, re-

spectively, inverse uncertain distributions of S1t, S2t,
· · ·, Snt. Then we have

Ψ−1
it (α) = Sα

it = Si0hi(α) (15)

by Theorem 6 for i = 1, 2, · · · , n.

4.1 Rainbow call on max option
The holder of the RCMAO can buy the highest priced
asset contained in the option at the strike price K at
time T . It means at time T , when the price of the
highest priced asset is greater thanK, the higher price
of the highest priced asset in the rainbow option, the
higher the yield for the option holder. The payoff of
the option depends on the price of the highest priced
asset in the rainbow option on the expiration date.

Firstly, assuming we are the holder of the option,
then our payoff at expiration date is(

max
1≤i≤n

SiT −K

)+

.

Suppose the option fee we paid at time 0 is f1c. The
net return we own at time 0 is

−f1c + exp(−rT )
(
max
1≤i≤n

SiT −K

)+

.

Secondly, assuming bank is the seller of the option,
then the payoff of bank at time T is

−
(
max
1≤i≤n

SiT −K

)+

.

At time 0, the bank charged an option fee, hence the
bank's net return is

f1c − exp(−rT )
(
max
1≤i≤n

SiT −K

)+

.

From the consideration of fairness, the expected re-
turns of buyers and sellers should be equal, it means

−f1c + exp(−rT )
(
max
1≤i≤n

SiT −K

)+

= f1c − exp(−rT )
(
max
1≤i≤n

SiT −K

)+

.

Thus we can conclude that the price of RCMAO is

f1c = exp(−rT )E
[(

max
1≤i≤n

SiT −K

)+
]

Theorem 8 Suppose that a RCMAO for Model (12)
has a maturity time T and an exercise priceK. Then,
its option price is

f1c = exp(−rT )
∫ 1

0

(
max
1≤i≤n

Si0hi(α)−K

)+

dα

where hi(α) is shown as (14) for i = 1, 2, · · · , n.

Proof. By Theorems 5 and 6, the uncertain variable(
max
1≤i≤n

SiT −K

)+

has an inverse uncertainty distribution(
max
1≤i≤n

Sα
iT −K

)+

.

Finally, we can obtain the pricing formula of RCMAO
is

f1c = exp(−rT )E
[(

max
1≤i≤n

SiT −K

)+
]

= exp(−rT )
∫ 1

0

(
max
1≤i≤n

Sα
iT −K

)+

dα

= exp(−rT )
∫ 1

0

(
max
1≤i≤n

Si0hi(α)−K

)+

dα.

The proof is completed.

4.2 Rainbow call on min option
The buyer of RCMIO pays an option premium in ex-
change for the right to buy the lowest priced asset in
the rainbow option at the strike priceK on the expiry
date T . Therefore the buyer's benefit depends on the
lowest price of each asset in the rainbow option on the
expiration date.

Firstly, assuming we are the holder of the option,
then our payoff at expiration date T is(

min
1≤i≤n

SiT −K

)+

.
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Suppose the option fee we paid at time 0 is f2c. Then
our net return at time 0 is

−f2c + exp(−rT )
(

min
1≤i≤n

SiT −K

)+

.

Secondly, assuming bank is the seller of the option,
then the bank's payoff at time T is

−
(

min
1≤i≤n

SiT −K

)+

.

At time 0, the bank charged an option fee, hence the
bank's net return is

f2c − exp(−rT )
(

min
1≤i≤n

SiT −K

)+

.

From the consideration of fairness, the expected re-
turns of buyers and sellers should be equal, it means

−f2c + exp(−rT )
(

min
1≤i≤n

SiT −K

)+

= f1c − exp(−rT )
(

min
1≤i≤n

SiT −K

)+

.

Thus we can conclude that the price of RCMIO is

f2c = exp(−rT )E
[(

min
1≤i≤n

SiT −K

)+
]
.

Theorem 9 Suppose that a RCMIO for Model (12)
has a maturity time T and an exercise price K. Then,
its price is

f1c = exp(−rT )
∫ 1

0

(
min

1≤i≤n
Si0hi(α)−K

)+

dα

where hi(α) is shown as (14) for i = 1, 2, · · · , n.

Proof. The proof is similar to that of Theorem 8.
To calculate the option price, we design the fol-

lowing algorithm according to the definition of defi-
nite integral:

Algorithm 2 (Option price for model (12))
Step 1. Input the values of parameters: S10, S20,

. . ., Sn0, m1, m2, . . ., mn, a1, a2, . . ., an,
T , σ1, σ2, . . ., σn, u1, u2, . . ., un andK.

Step 2. Let α start at α0 = 0.01 and grow to 0.99 at
a step of 0.01 to obtain

αj = αj−1 + 0.01, j = 1, 2, · · · , 99.

Step 3. Calculate hi(αj) by (14) for i = 1, 2, · · ·, n,
j = 1, 2, · · ·, 99.

Step 4. Calculate

f1c = exp(−rT )× 0.01

×
99∑
j=1

(
max
1≤i≤n

Si0hi(αj)−K

)+

and

f2c = exp(−rT )× 0.01

×
99∑
j=1

(
min

1≤i≤n
Si0hi(αj)−K

)+

Example 2 Set n = 5, S10 = 5, S20 = 4, S30 = 3,
S40 = 2, S50 = 1,m1 = m2 = m3 = 1,m4 = m5 =
2, a1 = a2 = a3 = 0.1, a4 = a5 = 0.5, σ1 = σ2 =
... = σ5 = 0.5, u1 = 0.05, u2 = 0.04, u3 = 0.03,
u4 = 0.02, u5 = 0.01, and T = 1,K = 10. Then the
RCMAO price is obtained to be f1c = 32.2840 and
the RCMIO price is f2c = 2.5957 by Algorithm 2.

5 Rainbow put on option
In this section, we will reveal the pricing formula of
rainbow put on option (RPC), which include rainbow
put on max option (RPMAO) and rainbow put on min
option (RPMIO). After further derivation, the pricing
formula of options is obtained. As in the previous sec-
tion, we will also use some numerical experiments to
verify the rationality of the formula.

5.1 Rainbow put on max option
The holder of RPMAO has the right to sell the
highest-priced asset contained in the option at the
strike price K on time T . It means on the expiration
date, when the strike price K is higher than the price
of the highest priced asset in RPMAO, the lower price
of the highest priced asset in the option, the higher the
yield for the option holder. So the return of the op-
tion depends on the highest price among all asset in
the RPMAO on the expiration date.

Assume that RPMAO possesses a maturity time T
and an exercise priceK for Model (12).
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Firstly, assuming we are the holder of the option,
then our payoff at expiration date T is(

K − max
1≤i≤n

SiT

)+

.

Suppose the option fee we paid at time 0 is f3c, then
at time 0, the net return we have is

−f3c + exp(−rT )
(
K − max

1≤i≤n
SiT

)+

.

Secondly, form the perspective of seller, the payoff of
the option seller on expiration date T is

−
(
K − max

1≤i≤n
SiT

)+

.

At the initial moment, the seller of option charged an
option fee, hence the seller's net return is

f3c − exp(−rT )
(
K − max

1≤i≤n
SiT

)+

.

From the consideration of fairness, the expected re-
turns of buyers and sellers should be equal. It means

−f3c + exp(−rT )
(
K − max

1≤i<n
SiT

)+

= f3c − exp(−rT )
(
K − max

1≤i≤n
SiT

)+

.

Thus we can conclude that the price of RPMAO is

f3c = exp(−rT )E
[(
K − max

1≤i≤n
SiT

)+
]
.

Theorem 10 Suppose that a RPMAO option for
Model (12) has a maturity time T and an exercise
price K. Then, its price is

f3c = exp(−rT )
∫ 1

0
(K

− max
1≤i≤n

Si0hi(1− α)

)+

dα,

where hi(α) is shown as (14) for i = 1, 2, · · · , n.

Proof. By Theorems 5 and 6, the uncertain variable(
K − max

1≤i≤n
SiT

)+

has an inverse uncertainty distribution(
K − max

1≤i≤n
S1−α
iT

)+

.

Finally, we can obtain the pricing formula of RPMAO
is

f3c = exp(−rT )E
[(
K − max

1≤i<n
SiT

)+
]

= exp(−rT )
∫ 1

0

(
K − max

1≤i≤n
S1−α
iT

)+

dα

= exp(−rT )
∫ 1

0
(K

− max
1≤i≤n

Si0hi(1− α)

)+

dα.

The proof is completed.

5.2 Rainbow put on min option
The holder of RPMIO has the right to sell the lowest-
priced asset contained in the option at the strike price
K on the expiration date T , it means on the expira-
tion date, when the strike price K is higher than the
price of the lowest priced asset contain in RPMIO, the
higher price of the lowest priced asset in the option,
the lower the yield for the option holder. So the return
of the option depends on the lowest price among all
asset in the RPMIO on the expiration date.

Similarly, assume that RPMIO price obey Model
(12).

Firstly, the payoff of the option holder on expira-
tion date T is(

K − min
1≤i≤n

SiT

)+

.

Suppose the option fees we paid at time 0 is f4c. Then
at time 0 we have the net return

−f4c + exp(−rT )
(
K − min

1≤i≤n
SiT

)+

.

Secondly, from the perspective of seller, the payoff of
the option seller on expiration date T is

−
(
K − min

1≤i≤n
SiT

)+

.

At the initial moment, the seller of option charged an
option fee, hence the seller's net return is

f4c − exp(−rT )
(
K − min

1≤i≤n
SiT

)+

.

From the consideration of fairness, the expected re-
turns of buyers and sellers should be equal, it means

−f4c + exp(−rT )
(
K − min

1≤i≤n
SiT

)+

= f4c − exp(−rT )
(
K − min

1≤i≤n
SiT

)+

. (16)
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In summary, we can conclude that the price of RPMIO
is

f4c = exp(−rT )E
[(
K − min

1≤i≤n
SiT

)+
]
.

Theorem 11 Suppose that a RPMIO for Model (12)
has a maturity time T and an exercise priceK. Then,
its price is

f4c = exp(−rT )
∫ 1

0
(K

− min
1≤i≤n

Si0hi(1− α)

)+

dα,

where hi(α) is shown as (14) for i = 1, 2, · · · , n.

Proof. The proof is similar to that of Theorem 10.
To calculate the option price, we design an algo-

rithm as follows:

Algorithm 3 (Option price for model (12))
Step 1. Input the values of parameters: S10, S20,

. . ., Sn0, m1, m2, . . ., mn, a1, a2, . . ., an,
T , σ1, σ2, . . ., σn, u1, u2, . . ., un andK.

Step 2. Let α start at α0 = 0.01 and grow to 0.99 at
a step of 0.01 to obtain

αj = αj−1 + 0.01, j = 1, 2, · · · , 99.

Step 3. Calculate hi(αj) by (14) for i = 1, 2, · · ·, n,
j = 1, 2, · · ·, 99.

Step 4. Calculate

f3c = exp(−rT )× 0.01

×
99∑
j=1

(
K − max

1≤i≤n
Si0hi(1− αj)

)+

and

f4c = exp(−rT )× 0.01

×
99∑
j=1

(
K − min

1≤i≤n
Si0hi(1− αj)

)+

.

Example 3 Set n = 5, S10 = 5, S20 = 4, S30 = 3,
S40 = 2, S50 = 1, m1 = m2 = m3 = 1, m4 =
m5 = 2, a1 = a2 = a3 = 0.1, a4 = a5 = 0.5,
σ1 = σ2 = ... = σ5 = 0.5, u1 = 0.05, u2 = 0.04,
u3 = 0.03, u4 = 0.02, u5 = 0.01, and T = 1, K =
10. Then the RPMAO price is f3c = 9.5073 and the
RPMIO price is f4c = 29.6979 by Algorithm 3.

6 Conclusion
In this paper, uncertain differential equations are used
to describe the price of underlying assets. From the
perspective of uncertainty theory, combined with the
stock price mean regression model, five types of rain-
bow options are studied. After that, through stric-
t derivation, we obtain the pricing formulas of five
types of rainbow options. Finally, we verified the ra-
tionality of the option pricing formula through some
numerical experiments.

The research results of this paper are to build the
asset price model through uncertain differential equa-
tions. Considering the fact that fractional order differ-
ential equations have achieved many successful prac-
tices in economics and other fields in recent years, we
will further consider introducing uncertain fraction-
al order differential equations to build the asset price
model, and study the pricing of options on this basis.
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