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Abstract:We consider the model of a four-dimensional gene regulatory network (GRN in short). This 
model consists of ordinary differential equations of a special kind, where the nonlinearity is 
represented by a sigmoidal function and the linear part is present also. The evolution of GRN is 
described by the solution vector 𝑋(𝑡), depending on time. We describe the changes that the system 
undergoes if the entries of the regulatory matrix are perturbed in some way. The sensitive 
dependence of solutions on the initial data is revealed by the analysis using the Lyapunov exponents. 
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1. Introduction  

Nonlinear dynamics plays an important 
role in modern natural science and studies 
such objects and phenomena as dynamic chaos 
and various types of self-organization of 
matter. Problems of nonlinear dynamics have 
exact analytical solutions only in very rare 
cases, which is why they have to be studied 
using a computer experiment. In the study of 
various natural phenomena, the construction 
of useful mathematical models with their 
subsequent study using the exact and graphical 
methods of modern mathematics is of decisive 
importance. As mathematical models widely 
systems of differential equations are used.  

The variety of dynamics observed in 

nonlinear systems can be reduced to simple 

regimes associated with some repetition for a 

wide variety of systems by characteristic types 

of solutions. These characteristic solutions 

have the important property of invariance. 

Moreover, many other solutions to the system 

are attractive to them. Knowledge of such 

solutions - attractors allows getting an idea of 

the overall picture of the nonlinear system 

dynamics [6]. Changing system parameters can 

significantly change attractor type. In this case, 

the system has a bifurcation [1]. The 

bifurcation is a change in the dynamics system, 

accompanied by the disappearance of some and 

the appearance of other regimes. Firstly, the 

stable point goes into the periodic regime (limit 

cycle) [1], [7], then to the chaotic regime 

(strange attractor) [2], [8]. 

Consider the general form of writing the 

𝑛 -dimensional dynamical system, that is 

expected to model a genetic regulatory 

network,  
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൞

𝑥ᇱ
ଵ =

ଵ

ଵ ା షഋభ൫ೢభభೣభ శ ೢభమೣమ శ⋯శ ೢభೣషഇభ൯
− 𝑣ଵ𝑥ଵ,

…

𝑥ᇱ
 =

ଵ

ଵ ା షഋ൫ೢభೣభ శ ೢమೣమ శ⋯శ ೢೣషഇ൯.
− 𝑣୬𝑥୬,

 

(1) (1) 

where 𝜇 > 0,𝜃  and 𝑣 > 0  are parameters, 

and 𝑤 are elements of the 𝑛 × 𝑛 regulatory 

matrix 𝑊 [8]. System (1) appears also in the 

theory of telecommunication networks. [3] 

The sigmoidal function 𝑓(𝑧) =
ଵ

ଵାషഋ
 is 

used in (1). The sigmoidal function is a 

mathematical function having a characteristic 

’S-shaped’ curve or sigmoid curve. They are 

many: logistic function [1], [2], [7], [8], [11], 

Gompertz function [9], Hill function, inverse 

trigonometric functions. A set of coefficients 

𝑤 form the so called regulatory matrix 

𝑊 =  ൭

𝑤ଵଵ … 𝑤ଵ

… … …
𝑤ଵ … 𝑤

൱ (2) (2) 

The set 𝑄 = ቄ𝑥𝑅 ∶  0 < 𝑥 <
ଵ

௩
, 𝑖 =

1, … , 𝑛ቅis invariant [5, Definition 2, Section 

2.5, Ch.2] with respect to system (1). This 
follows from the properties of the sigmoidal 
function (the value range is the interval (0,1)) 
and can be established by inspection of the 
vector field, defined by (1). 

Systems of the form (1), but with different 
sigmoidal functions, appear when studying 
neuronal networks. An example is considered 
in the next section. This example and 
comparison with systems from the theory of 
genetic networks, was one of motivations for 
this work.  

2. Materials and methods 
Our consideration is numerical and 

geometrical. All processes take place in a 

bounded parallelepiped and our main intent is 
to use the 3D projections of the attractor on 
different subspaces, to construct the graphs of 
solutions for understanding and managing the 
system. Computations, plotting the solution, 
and the image of the projections of attractors 
are performed using Wolfram Mathematica. 
Also, we use Lyapunov exponents (LE) and a 
high Kaplan–Yorke dimension, guaranteeing 
chaotic behavior for longtimes. First, we 
illustrate the usage of Lyapunov exponents 
considering the modification of the model of 
Artificial Neuronal Network as given in [17]. 
The chaotic behavior is confirmed for the 
specific values of parameters. Next, we 
consider the four-dimensional genetic model 
(8) composed of two independent 2D systems. 
This new 4D system is shown to have an 
attractor, which is stable under small 
perturbations. The zero blocks in the 
regulatory matrix (9) were then filled with 
non-zero elements and new coupled 4D 
system was considered with the regulatory 
matrix (10). Chaos was not confirmed by the 
analysis using the Lyapunov spectrum. Finally, 
the system (8) was considered with the 
regulatory matrix (11), where the entries were 
randomly selected. Chaotic behavior was 
observed.  

3. Lyapunov exponents 

The Lyapunov exponents are an 
important tool for the characterization of an 
attractor of a finite-dimensional nonlinear 
dynamic system and their excessive sensitivity 
to initial conditions.[12] The Lyapunov 
exponent is an approach to detect chaos, and it 
is ameasure of the speeds at which initially 
nearby trajectories of the system diverge.[13] 
Relationships between the Lyapunov 
exponents and the propertiesand types of 
attractors: 

1. (𝐿𝐸ଵ, 𝐿𝐸ଶ, 𝐿𝐸ଷ, 𝐿𝐸ସ) = (−, −, −, −)  - 
stable fixed point; 
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2. (𝐿𝐸ଵ, 𝐿𝐸ଶ, 𝐿𝐸ଷ, 𝐿𝐸ସ) = (0, −, −, −) - 
periodic solutions (limit cycles); 

3. (𝐿𝐸ଵ, 𝐿𝐸ଶ, 𝐿𝐸ଷ, 𝐿𝐸ସ) = (0,0, −, −) - 
quasiperiodic solution (2 torus); 

4. (𝐿𝐸ଵ, 𝐿𝐸ଶ, 𝐿𝐸ଷ, 𝐿𝐸ସ) = (+,0, −, −)  - 
strange attractor; 

5. (𝐿𝐸ଵ, 𝐿𝐸ଶ, 𝐿𝐸ଷ, 𝐿𝐸ସ) = (+, +,0, −)  - 
hyperchaotic attractor. 

Properties of Lyapunov exponents: 

1. The number of Lyapunov exponents 
is equal to the number of phase space 
dimensions, or the order of the system of 
differential equations. They are arranged in a 
descending order.[14] 

2. The largest Lyapunov exponent of a 
stable system does not exceed zero.[13] 

3. A chaotic system has at least one 
positive Lyapunov exponent, and the more 
positive the largest Lyapunov exponent, the 
more unpredictable the system is.[13] 

4. To have a dissipative dynamical 
system, the values of all Lyapunov exponents 
should sum to a negative number.[14] 

5. A hyperchaotic system is defined as a 
chaotic system with at least two positive 
Lyapunov exponents. Combined with one null 
exponent and one negative exponent, the 
minimal dimension for a hyperchaotic system 
is four.[15] 

The formula for the Kaplan–Yorke 
dimension is 

𝐷 = 𝑗 +
∑ ா

ೕ
సభ

หாೕାଵห
 (3) (3) 

4. Artificial Neural Networks 

In 1943 American neurophysiologist and 
cybernetician Warren SturgisMcCulloch and 
American logician Walter Harry Pitts modeled 
a neuronas a switch that receives input from 
other neurons and, depending on the total 
weighted input, is either activated or remains 
inactive.[16] 

Definition 1. A dynamical model 
inspired by the connectivity and behavior of 
neurons in the brain is an Artificial Neural 
Network. 

One example of which is 

𝑥′ = tanh ∑ 𝑎𝑥 − 𝑏𝑥
ே
ୀଵ , (4) 

where N is the number of neurons, each of 
which represents a dimension of the 
system.[17] The hyperbolic tangent is a 
sigmoidal function. 

Consider the regulatory matrix 

𝑊 =  ൮

0 −1 0 1
1 0 0 1
1 1 0 −1
0 −1 1 0

൲(5) 

and the system 

⎩
⎪
⎨

⎪
⎧ 𝑥 ′

ଵ = tanh(𝑥ସ − 𝑥ଶ) − b𝑥ଵ,

𝑥 ′
ଶ = tanh(𝑥ଵ + 𝑥ସ) − b𝑥ଶ,

𝑥 ′
ଷ = tanh(𝑥ଵ + 𝑥ଶ − 𝑥ସ) − b𝑥ଷ,

𝑥 ′
ସ = tanh(𝑥ଷ − 𝑥ଶ) − b𝑥ସ,

 (6) 

at b = 0.03. The initial conditions are 

𝑥ଵ(0) = 1.2; 𝑥ଶ(0) = 0.4; 𝑥ଷ(0) =

1.2; 𝑥ସ(0) = −1. (7) 

This system is studied numerically 

(Wolfram Mathematica), providing description 

of the phase space and images of 2D and 3D 

projections. The method of Lyapunov 

exponents was used to analyze the system and 

to obtain evidences of sensitive dependence of 

solutions on the initial data.  

The attractor as shown in Figure 1and 

Figure 2 and oscillatory solutions in Figure 

3and Figure 4. 
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Figure 1.The projection of the attractor on 2D 

subspace on(𝑥ଵ, 𝑥ଶ).  

 
Figure 2.The projection of the attractor on 3D 

subspace (𝑥ଵ, 𝑥ଶ, 𝑥ଷ). 

 

Figure 3. Solutions (𝑥ଵ, 𝑥ଶ). 

 

Figure 4. Solutions (𝑥ଷ, 𝑥ସ). 

It was pointed out in [17] that the 

minimal dissipative artificial neural network 

that exhibits chaos has 𝑁 =  4 and is given 

by (6) at 𝑏 =  0.043  and an attractor as 

shown in Figure 5 and Figure 6.For specific 

parameters this system solution has a chaotic 

trajectory as shown in Figure 7 and Figure 8. 

[17] Dynamics of Lyapunov exponents are 

shown in Figure 9. 

 

Figure 5.The projection of the attractor on 2D 

subspace on (𝑥ଵ, 𝑥ଶ).  
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Figure 6.The projection of the attractor on 3D 

subspace (𝑥ଵ, 𝑥ଶ, 𝑥ଷ). 

 Figure 7.Solutions (𝑥ଵ, 𝑥ଶ). 

 Figure 8. Solutions (𝑥ଷ, 𝑥ସ). 

 

Figure 9. 

(𝐿𝐸ଵ, 𝐿𝐸ଶ, 𝐿𝐸ଷ, 𝐿𝐸ସ) =

(0.03,0.01, −0.09, −0.13)- strange (chaotic) 

attractor, Kaplan–Yorke dimension is 

𝐷 = 2.62. 

In the next section, following this example, we 

investigate our problem.    

5. Results 

Consider the four-dimensional system 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥 ′

ଵ =
ଵ

ଵ ା షഋభ൫ೢభభೣభ శ ೢభమೣమ శ ೢభయೣయశೢభరೣరషഇభ൯
− 𝑣ଵ𝑥ଵ,

𝑥 ′
ଶ =

ଵ

ଵ ା షഋమ൫ೢమభೣభ శ ೢమమೣమ శ ೢమయೣయశೢమరೣరషഇమ൯
− 𝑣ଶ𝑥ଶ,

𝑥 ′
ଷ =

ଵ

ଵ ା షഋయ൫ೢయభೣభ శ ೢయమೣమ శ ೢయయೣయశೢయరೣరషഇయ൯
− 𝑣ଷ𝑥ଷ,

𝑥 ′
ସ =

ଵ

ଵ ା షഋర൫ೢరభೣభ శ ೢరమೣమ శ ೢరయೣయశೢరరೣరషഇర൯
− 𝑣ସ𝑥ସ.

 

(8) 

Periodic solutions can exist in systems of 
the form (8). Consider the system (3) with the 
matrix 

𝑊 =  ൮

0.5 2 0 0
−2 0.5 0 0
0 0 0.5 2
0 0 −2 0.5

൲ (9) 

and 𝜇ଵ = 𝜇ଶ = 𝜇ଷ = 𝜇ସ = 10 ; 𝑣ଵ = 𝑣ଶ =

𝑣ଷ = 𝑣ସ = 1 ; 𝜃ଵ = 1.25, 𝜃ଶ = −0.75, 𝜃ଷ =

1.25, 𝜃ସ = −0.75 .The initial values𝑥ଵ(0) =
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0.42, 𝑥ଶ(0) = 0.39, 𝑥ଷ(0) = 0.4, 𝑥ସ(0) =

0.395. 

This system consists of two identical but 
independent two-dimensional systems. The 4D 
system has, by the appropriate choice of 𝜃-s, 
the critical point of the type an unstable 4D 
focus at the center of a unit cube. Both two 2D 
systems have a stable limit cycle. The (𝑥ଵ, 𝑥ଶ) 
and (𝑥ଷ, 𝑥ସ) projections coincide with the 2D 
limit cycles. The (𝑥ଶ, 𝑥ସ)projectionis depicted 
in Figure 10. Any of these two 
two-dimensional systems has a single critical 
point of the type unstable focus. This is the 
result of Andronov-Hopf bifurcation in 2D 
systems. The unique critical point of the type 
stable focus loses its stability, and instead, an 
attractor in the form of a limit cycle emerges. 
The limit cycles (Figure 10) with the same 
periods exist. There are single critical points 
inside both limit cycles, and both critical points 
are of the type unstable focus. 

 

Figure 10.  The attractor of (8), projection on 
(𝑥ଶ, 𝑥ସ ). 

 
Figure 11. The attractor of (8), projection 

on (𝑥ଵ, 𝑥ଷ, 𝑥ସ). 

Now fill in all zero elements of the regulatory 

matrix (9) with values 0.1, so the regulatory 

matrix becomes 

𝑊 =  ൮

0.5 2 0.1 0.1
−2 0.5 0.1 0.1
0.1 0.1 0.5 2
0.1 0.1 −2 0.5

൲    (10) 

There is exactly one critical point at 

(0.5472, 0.448, 0.5472, 0.448). The standard 

linearization analysis provides the 

characteristic numbers 𝜆ଵ,ଶ = −0.0099 ±

4.944𝑖;  𝜆ଷ,ସ = 0.4852 ± 4.944𝑖.Consider the 

system (8), which is no longer uncoupled, with 

the same parameters and initial conditions for a 

solution. The dynamics of Lyapunov 

exponents are shown in Figure 14. 
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Figure 12. The projection of the attractor (10) 

on 2D subspace(𝑥ଵ, 𝑥ଶ). 

 

Figure 13. The projection of the attractor (10) 

on 3D subspace (𝑥ଵ, 𝑥ଶ, 𝑥ସ). 

 

 

Figure14. 

(𝐿𝐸ଵ, 𝐿𝐸ଶ, 𝐿𝐸ଷ, 𝐿𝐸ସ) =
(0, −0.33, −0.55, −0.72) - periodic solutions. 

 

 
Consider the system (8) with the 

regulatory matrix 

𝑊 =  ൮

0.8 2 −0.8 0.5
−2 0.3 0.4 −0.7

−0.5 0.2 1.8 2
0.8 −0.7 −2 1.8

൲ (11)

 

andthe parameters 𝜇ଵ = 𝜇ଶ = 𝜇ଷ = 𝜇ସ = 10 ; 
𝑣ଵ = 𝑣ଶ = 𝑣ଷ = 𝑣ସ = 1  and 𝜃 , where 
𝑖 = 1,2,3,4 are calculated as 

⎩
⎪
⎨

⎪
⎧𝜃ଵ =

௪భభା௪భమା௪భయା௪భర

ଶ
,

𝜃ଶ =
௪మభା௪మమା௪మయା௪మర

ଶ
,

𝜃ଷ =
௪యభା௪యమା௪యయା௪యర

ଶ
,

𝜃ସ =
௪రభା௪రమା௪రయା௪రర

ଶ
.

  (12) 

𝜃ଵ = 1.25, 𝜃ଶ = −1, 𝜃ଷ = 1.75, 𝜃ସ =
−0.05.The initial values𝑥ଵ(0) = 0.4, 𝑥ଶ(0) =

0.6, 𝑥ଷ(0) = 0.39, 𝑥ସ(0) = 0.38. 
The critical point is at (0.5,0.5,0.5,0.5). 

The standard linearization analysis provides 
the characteristic numbers 𝜆ଵ,ଶ = −0.44 ±

4.603𝑖;  λଷ,ସ =   4.33 ± 5.135 𝑖. The graphs of 
chaotic solutions are shown in Figure 15. The 
projection on three-dimensional subspaces is 
depicted in Figure 16.The dynamics of 
Lyapunov exponents are shown in Figure 17. 

Figure 15.The graphs of 𝑥(𝑡), 𝑖 = 1,2,3,4. 
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Figure 16.The projection on 3D 

subspace(𝑥ଵ, 𝑥ଶ, 𝑥ଷ). 

 

Figure 
17.(𝐿𝐸ଵ, 𝐿𝐸ଶ, 𝐿𝐸ଷ, 𝐿𝐸ସ) =

(0.2,0, −0.75, −0.92) – a chaotic solution. 

6. Discussion 
We have constructed the attractor for a 4D 

dynamical system, arising in the theory of 
genetic networks. This attractor is generated by 
two limit cycles in the different 2D systems of 
the same GRN kind (both limit cycles are 
identical and have equal periods). A single 
critical point is not attractive (the complex 
characteristic values have positive real parts). 
The 4D regulatory matrix at the beginning has 
a block form and the 4D system is therefore 
uncoupled. By filling the zero spaces in the 
regulatory matrix with non-zero elements, the 
system was made coupled. The attractor still 

exists for sufficiently small perturbations. This 
confirms the structural stability of a 4D system. 
The GRN system with the regulatory matrix (6) 
is shown to exhibit chaotic behavior. This is 
confirmed by the analysis using the Lyapunov 
spectrum. By using a similar procedure, 
regulatory matrices of any dimension can be 
constructed from lesser blocks. Combinations 
of any attractors of lower dimensions are 
possible. Filling zero spaces in the regulatory 
matrix of block form often produces attractors 
of a new structure. 

 
7. Conclusions 

In this note, we considered the creation of a 

new 4D attractor from the two 2D periodic 

attractors. Even for the 2D case, there are 

several types of attractors in GRN systems, 

namely, a single stable critical point, several 

stable critical points, a limit cycle. All of them 

in various combinations can be used to 

construct attractors in GRN systems of higher 

dimensions. They, in turn, can be used to 

construct more complicated ones in higher 

dimensions. Also, attractors generated by 3D 

systems can be used to produce higher 

dimensional ones. After mechanically 

combining several low-dimensional matrices 

into a single block matrix, this matrix can be 

perturbed by filling zero zones with non-zero 

entries. The resulting systems can reveal 

different behaviors, including the generation of 

a unique attractor. The chaotic behavior of 

solutions seems to be generic in higher 

dimensional GRN type systems. Their 

investigation is possible by a combination of 

qualitative and numerical methods. A 

similarity of systems of differential equations 

arising in models of GRN and neuronal 

networks, is acknowledged.  
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