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1 Introduction   

About thirty-seven years ago, [1], introduced a new 

concept into mathematical programming, a special 

approach to optimization, and called it De Novo 

programming. In standard mathematical 

programming problems resources are set in advance 

and the work to be done is to "optimize a given 

system". However, the De Novo programming 

approach suggests a way of "designing an optimal 

system". In De Novo, resource quantities are not 

given, since they are available if we have enough 

money. The maximum quantities of resources are 

limited by the available budget, which is an 

important new element of De Novo.   

De Novo is generally more effective in solving 

problems than the standard programming model. 

For example, multi-objective problems, [2], and 

price changing, i.e. increasing costs of raw 

materials, or quantity discounts, [3], [4], are the 

production situations that can be processed very 

successfully with the De Novo methodology 

providing satisfactory solutions.  

Since this new approach was initiated, [1], De 

Novo programming has been developing rather 

slowly. Many articles and promising ideas related to 

De Novo come from authors from the Far East: [5], 

[6], [7], [8], [9], [10], [11]. However, the author of 

this approach has not abandoned the De Novo idea 

and has continued to engage with it in many of his 

later works, [12], [13], [14]. He also included it (as a 

single or multi-objective approach) among the eight 

concepts of optimization, [15], where classic 

optimization is only a special case. [16], introduced 

a meta-goal programming approach for solving the 

multi-objective De Novo programming problem. In 

[17], [18], authors tried to introduce some new 

constraints in De Novo multi-objective problems 

and presented a new way of solving the problem 

using an extension of the STEM method. In two 

recent papers, the author considers multi-objective 

De Novo linear programming problems, [19], [20], 

while in a third paper, [21], a project portfolio using 

the hybrid approach of data envelopment analysis 

and De Novo optimization was considered. Multi-

objective De Novo programming problems were 

considered in recent times by [22], [23], while, [24], 
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in 2021 presented the exhaustive literature review of 

De Novo programming. 

This paper aims to present a multi-objective De 

Novo programming model that takes into account 

variable prices, which were not considered in 

previous approaches presented in scientific 

literature. While the transformation to the 

continuous knapsack problem is not possible in such 

cases, this paper proposes a solution with 

appropriate simplifications. Previous research, such 

as that by  [3], [4], has focused on the single-

objective De Novo programming model with 

variable prices, but the current study expands on this 

by considering a multi-objective approach. 

After the introduction part of the paper, Section 

2 gives a brief overview of the multi-objective De 

Novo programming problem, and in Section 3 

situations with variable prices are presented. In 

Section 4 a multi-objective model in a bakery will 

be formulated while in Section 5 this model is 

solved using the founder Milan Zeleny’s, original 

approach. Then, some different approaches 

involving goal programming and the global criterion 

method for solving multi-objective problems are 

presented. Section 6 presents the discussion of the 

results, and finally, in Section 7, there is the 

conclusion. 

 

 

2 Multiple objective De Novo 

programming 
The multiple-objective De Novo programming 

model, [14], has the following form: 

                          Max Z=CX 
s.t.     AX – b = 0                  (1) 

Tp b B  

, 0X b      

C is a ( , )q n  matrix comprising the coefficients of q 

objective functions, and A is a ( , )m n  matrix of 

technological coefficients, defining the usages of 

resource i upon producing the product type j. Vector 

b is the m-dimensional vector of unknown resource 

variables, X is the n-dimensional vector of decision 

variables, p is the m-dimensional vector of the unit 

prices of m resources, and B is the given total 

available budget. The solution to the problem (1) is 

to find the optimal allocation of budget B and the 

distribution of raw materials (resources) with which 

we can maximize the values Z = CX of the product 

mix.  

The main difference between the usual linear 

programming model and the De Novo formulation 

lies in the treatment of the resources. In the De 

Novo programming model resources are not given 

in advance but they become decision variables bi.   
 

2.1  Zeleny’s Approach 
From (1) follows 

T Tp AX p b B   

and, defining the n row vector of unit costs 

,TV p A the problem (1) can be transformed into:  

 Max Z = CX 

 s.t.    VX ≤  B,   X ≥ 0                (2) 

where 

1, ,
T q

qZ z z R   
 and

 1, , T n
nV V V p A R   . 

Most authors solve multi-objective De Novo 

models according to suggestions from [1]. Namely, 

they construct an auxiliary model (the meta-

optimum problem) involving the minimum budget 

quantity to achieve the ideal values of all of the 

objective functions. After that, the optimum-path 

ratio, which is the ratio of the given budget B and 

the minimum budget obtained by this auxiliary 

model (3), is calculated. This ratio is then used to 

obtain the final solution for the model with the 

previously given budget B. 

Let * max , 1, ,k kz z k q  , be the optimal 

value for the k-th objective of the problem (1) 

subject to VX ≤ B, X ≥ 0, and let 

1* *, , *
T

qZ z z   
 be the q-objective value for 

the ideal system with respect to B. Then, the meta-

optimum problem can be constructed as follows: 

 Min VX ,  

s.t.  *, 0CX Z X                 (3) 

After solving this problem optimal solution X* is 

obtained and consequently * *B VX  , * *.b AX  

The value B* represents the minimum budget to 

achieve Z* through x* and b*. Since * ,B B the 

optimum-path ratio for achieving ideal performance 

Z* for a given budget level B can be defined as 

 
*

B
r

B
                    

(4) 

According to this ratio, the actual final solution 

(or optimal design) can be obtained by the following 

calculation: 

*, *X r X b r b     and *Z r Z  .                (5) 
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3 The Varying Cost of Raw Materials 
In a situation of varying the prices of the same 

resource, model (1) can be transformed in such a 

way that it includes resources with variable prices.   

Matrix A of technological coefficients is the  

(m, n) matrix. Let the matrix AC of type  

(m1, n) be the block matrix from matrix A which 

contains the technological coefficients of resources 

that have constant prices, and let block matrix AV, 

type (m2, n), be the matrix with coefficients of 

resources with variable prices. Of course, 

1 2m m m  . Without loss of generality, it can be 

supposed that matrix AC is located in the first m1 

rows from matrix A, or the matrix form: 

C

V

A
A

A

 
  
 

. 

Besides vector b of resource variables, a new 

vector d can be included. It presents the quantity of 

resources if they cross the border values when the 

prices of resources become higher or lesser than the 

original prices. Both of these vectors are divided 

into two parts, one for resources with constant 

prices and the other for variable prices, i.e. in matrix 

form: 

C

V

b
b

b

 
  
 

,      
0

V

d
d

 
  
 

.    

Resource quantity for the resources with 

variable prices is also divided into two parts: first is 

the quantity that is purchased with the original price 

( )Vb  and second is the additional quantity ( )Vd that 

is purchased with higher or lesser price. Therefore, 

the total quantity of resources with variable prices 

will be ( )V Vb d .  

The price vector will be divided similarly.   Let 

pC  be the first part of the price vector for resources 

that have constant prices, and pV is the second part 

for resources that have variable prices. Besides that, 

the additional vector pV’ whose coefficients are the 

prices for an additional quantity of resources exists, 

or in matrix form: 

C

V

p
p

p

 
  
 

 , 
0

'
'V

p
p

 
  
 

. 

In these vectors, bC and pC are type 1( ,1)m  and 

, ,V V Vb d p , 'Vp are type 2( ,1)m  where, of course, 

1 2m m m  . 

The model (1) with an additional quantity of 

resources for the resources with variable prices can 

now be transformed in: 

 Max Z CX   

s.t.    0AX b d                      (6) 

 'T Tp b p d B   

 , , 0X b d     

or 

 Max Z CX   

 
0 0

0

C C

V V V

A b
X

A b d

       
          

      
  

 
0 0

'

T T
C C

V V V V

p b
B

p b p d

       
          

       
 

 , , , 0C V VX b b d   

or 

 Max Z CX  

0C CA X b                     (7) 

0V V VA X b d    

'T T T
C C V V V Vp b p b p d B    

, , , 0C V VX b b d  .    

For the resources with constant prices from (7), 

there follows:  
T T

C C C Cp b p A X . 

In that way, the budget equation in (7) can be 

written as:  

'T T T
C C V V V Vp A X p b p d B   , or 

'T T
C V V V VV X p b p d B                  (8) 

where 
T

C C CV p A   is the row vector of the unit 

costs of resources with constant prices. 

In the end, the multi-objective model with 

variable prices in the simplified form can be 

presented as: 

Max Z CX    

0V V VA X b d                    (9) 

'T T
C V V V VV X p b p d B    

, , 0V VX b d       

In this paper two cases of variable prices will 

be considered: the increasing costs of raw materials 

and the quantity discounts offered for volume 

purchases.  

 The increasing costs of raw materials 

Let us assume that k raw material can be 

purchased at the price pk but only for a quantity 

lower (or equal) than Q. The price of k raw material 

above that quantity, Q is pk' > pk. The relation for the 

k raw material can now be transformed in: 

1 1 2 2k k kn n k ka x a x a x b d                     (10) 

with the additional constraint bk  Qk , where dk is 

the additional quantity of the k raw material with the 

unit price pk'. 
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There is no need to specify that bk should reach 

the maximum value of Qk first, before allowing dk 

greater than zero. The optimization model ensures bk 

reaches the maximum value of Qk because of the 

lower penalty, i.e. lower price pk. 

 Quantity discounts offered for volume 

purchases 

Quantity discounts offered for volume purchases 

may be formulated in a somewhat different way. Let 

us assume that for the k resource (bk) the valid price 

is pk as long as the purchased quantity is below Qk, 

and the discounted price pk' is valid for the entire 

quantity if the purchased quantity is higher than (or 

equal to) Qk.   

Let 

bk, pk – the amount and price of k raw material 

if it is purchased at less than the quantity discount 

volume;    

dk, pk' –  the amount and price of k raw material 

if it is purchased at the quantity discount. 

The new model for k raw material, instead of one 

equation (10), has relations: 

*
1 0k k kb Q y                 (11) 

2 0k k kd Q y                             (12)

2 0k kd M y                             (13) 

where M is a very large positive number, or the 

upper limit for the procurement of the resource k, 

and Qk* is a number that is slightly lower than Qk. 

The variables yk1 and yk2 are binary variables (0 or 

1), for which the following applies: 

1 2 1k ky y                             (14) 

The problem of the mutual exclusivity of 

variables bk and dk can be introduced as follows:  

If dk = 0 (there is no quantity discount) then the 

relation bk < Qk has to be true (i.e. the necessary 

amount of resources is below the one needed for the 

discount). Similarly, if bk = 0 then the relation dk ≥ 

Qk has to be true (we arrived at the quantity of 

resources needed for a discount).  

Then, if  yk1 = 1 from relation (14), it follows 

that yk2 = 0. The equations (11), (12), and (13) then 

become  

 
*

k kb Q  ,   0, 0.k kd d    

The last two relations then assure that dk = 0. 

Moreover, since Qk* is slightly lower than Qk, bk is 

strictly lower than the limit Qk. 

In line with the same equation, if yk2 = 1 then  

yk1 = 0. Equations (11), (12), and (13) become  

 bk   ≤   0 ,   dk   ≥  Qk , dk   ≤  M.   

Constraint bk ≤ 0 and the non-negativity constraint 

on variable bk ensure that bk = 0, and dk is greater 

than (or equal to) the discount limit Qk and smaller 

than the big positive number M (or another upper 

limit defined in advance). 

This way of introducing quantity discounts is 

useful especially if quantity discounts appear in 

several stages, i.e. if there are several classes in 

which a supplier approves different quantity 

discounts,  [25]. 

Taking into consideration costs for additional 

quantities of raw material a new budget equation 

can be defined: 

 'T Tp b p d B 

 
1

'
m

i i k k

i k K

p b p d B
 

                (15) 

Set K contains the indices of raw materials with 

increasing or discounted prices, i.e. 

 1 1, ,K m m  .                                     (16)                                                                    

In accordance with the relation from the model (7) it 

follows: 

     'T T T
C C V V V Vp b p b p d B     or      

1

1

'
m

i i k k k k

i k K k K

p b p b p d B
  

                         (17)  

For resources with constant prices follows: 
T T

C C C C Cp b p A X V X  , and so the budget 

constraint becomes as in relation (8):  

       'T T
C V V V VV X p b p d B    or 

1

'
n

Cj j k k k k

j k K k K

v x p b p d B
  

                 (18) 

where 
Cjv  are the unit costs of the resources with 

constant prices used for producing product j. 

Since the same raw material has a different price 

variable, the income from a product unit is no longer 

constant. Therefore, if among the objective 

functions, there exists a net income equation, 

maximizing the sum of cj xj, (where cj is the unit 

profit for articles) would not be an accurate measure 

of net income. For that reason, the net income 

equation should be recalculated as the difference 

between sales and the total cost of materials, where 

the objective function will include materials at both 

prices. If S is the vector of the selling prices and sj is 

the selling price of j product, the net income 

objective function is defined as follows: 

( ' )T T TMax z S X p b p d   ,  or 

1 1

'
n m

j j i i k k
j i k K

Max z s x p b p d
  

 
   

 
            (19)  

In that equation, dk (k  K) remains for those 

materials which in additional quantities can be 

bought only at a higher price, or the quantities of 
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raw materials if we bought them with quantity 

discounts.  

Similarly, as in the budget equation, the second 

part of these equations follows: 

' 'T T T T T
C C V V V Vp b p d p b p b p d    , 

and, because 
T T

C C C C Cp b p A X V X  , from 

relation (8)  follows: 

     ' 'T T T T
C V V V Vp b p d V X p b p d    . 

In that way, the net income objective function 

becomes: 

'T T T
C V V V VMax z S X V X p b p d     

or  

 
1

' (20)
n

j Cj j k k k k

j k K k K

Max z s v x p b p d
  

       

 

4 Case Study 
A new multi-objective De Novo programming 

problem with the variable prices of raw materials 

will be explained using the example of production 

planning in a bakery, which produces twenty 

different products, [3]. Table 1 and Table 2 present 

the list of articles (Table 1) and the list of raw 

materials (Table 2) with some new data for 

formulating a new objective function. The tables are 

provided in the Appendix of the paper. 

 Table 1 presents the selling prices for each 

product, the weights of the articles, the amount of 

flour in each item, and the lower and upper bounds 

for monthly production. In Table 2, 27 different raw 

materials are used in the production of these articles. 

Table 2 also presents the purchasing prices for every 

one of them and for the last four raw materials for 

which we have variable prices. The technological 

coefficients, i.e. the amounts of raw materials in one 

unit of articles (𝑎𝑖𝑗) are presented in Table 3.  

The raw materials R26 and R27 (Wheat flour T-

850 and Wheat flour T-550) can be purchased at a 

discounted price if the purchased quantity is greater 

than 14200 kg (Q26 = 14200 kg or 14.2 t) for the 

first and greater than 60000 kg (Q27 = 60000 kg or 

60.0 t) for the second raw material. This reduced 

price is valid for the entire quantity supplied, i.e. 

26
' 2.3004p   and 27

' 2.244p  . 

In addition to this, let us consider the increasing 

costs for yeast (R24) and corn concentrate Aurelia 

(R25) as follows: The limit of yeast purchased at a 

lower price is Q24 = 2000 kg (2.0 t), while this limit 

for corn concentrate is Q25 = 1600 kg (1.6 t). The 

purchase price of the additional quantity of yeast is 

p24' = 7.7616, and of corn concentrate p25' = 14.6364 

(12% higher) monetary units.  

Suppose that the budget which is available for 

purchasing these raw materials is 300 000 m.u. 

In accordance with Table 1, Table 2, and Table 

3 a multiple objective linear programming problem 

with two objective functions (net income and total 

production measured by flour consumption) can be 

formulated. This problem has twenty-seven raw 

material constraints and one budget constraint. In 

addition to this, with the intention to introduce 

variable prices into the model, it appears some 

additional constraints for the raw materials that have 

quantity discounts - relations (11), (12), and (13). 

This model has 20 integer decision variables for the 

quantities of types of bread products xj and 27 

continuous resources variables bi (among them b13 is 

also an integer – the number of eggs). Besides that, 

introducing variable prices requires some additional 

variables for resources that have variable prices, i.e. 

di is the additional quantity of the i-th raw material. 

In the end, there are some binary variables yki, which 

provide the mutual exclusivity of the amount of 

resources that would be purchased at lower or upper 

prices. In addition to that, there exist 40 lower and 

upper bounds constraints for the 20 types of bread 

products and two constraints for resources with 

increasing costs (b24 and b25).  

If xj is the production quantity of j bakery 

product, then the first objective function, which 

takes increasing costs and quantity discounts into 

consideration, has the following form, as in equation 

(19):    

20 27

1
1 1

'j j i i k k
j i k K

Max z s x p b p d
  

 
   

 
   , 

 24,25,26,27K       

The second objective function is the total bakery 

production measured by flour consumption. The 

coefficients for this objective function are given in 

Table 1 ( 2 jc ), and this function is: 

 
20

2 2
1

j j
j

Max z c x


      

The budget and raw material constraints are as 

follows: 

 
27

1

' , 24, ,27i i k k

i k K

p b p d B K
 

      
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20

1

0, 1, ,27ij j i i
j

a x b d i


       

The constraints for the discounted prices for the 

last two raw materials (k = 26, 27) in accordance 

with the relations (11) – (14) (bk and dk in kg) are: 

 
26 26,114199 0b y  ,    

26 26,214200 0d y  ,   

26 26,2 0d M y  , and  

 
27 27,159999 0b y  ,    

27 27,260000 0d y  ,   

 
27 27,2 0d M y  . 

 

For binary variables yk1, yk2 holds 

  26,1 26,2 1y y   and 27,1 27,2 1y y  .  

In addition, there are two constraints (in kg) for 

resources that have increasing costs: 

b24   2000 and,  b25   1600. 

Of course, due to the nature of the data from Table 

1, all articles have lower and upper bounds (40 

additional constraints). If the lower and upper 

bounds are Lj and Uj,  the complete De Novo 

programming multi-objective model for bakery 

production has the following form: 

 

Model M1 
20 27

1
1 1

'j j i i k k
j i k K

Max z s x p b p d
  

     , 

 24,25,26,27K                  (21) 

20

2 2
1

j j
j

Max z c x


                 (22) 

subject to 
27

1

'i i k k

i k K

p b p d B
 

                  (23) 

20

1

0, 1, ,27ij j i i
j

a x b d i


                  (24) 

*
1 0, 26,27k k kb Q y k                             (25) 

2 0, 26,27k k kd Q y k                 (26) 

2 0, 26,27k kd M y k                             (27) 

1 2 1, 26,27k ky y k                                        (28) 

, 24,25k kb Q k                                              (29) 

, 1, ,20j j jL x U j                                     (30) 

where variables  xj, j = 1,…, 20, and b13, are 

integers, while variables 1 2, ; 26,27k ky y k  are 

binary variables, and all decision variables are 

nonnegative. 

Now some simplifications can be introduced. 

Namely, 27 constraints for raw materials can be 

reduced by the inclusion of the majority of these 

constraints in the budget constraint. Model (7) is as 

follows:  

 0C CA X b  , or C Cb A X  

for resources with constant prices. This relation can 

be included in the budget constraint and thus the 

budget constraint from model (7) becomes  

 'T T
C V V V VV X p b p d B   , 

as in model (9), where 
T

C C CV p A . 

Vector VC can be calculated from initial data. 

Namely vector  1 23, ,
T

Cp p p , i.e. the vector for 

the resources with constant prices, is presented in 

the first 23 rows the of price column in Table 2.  

Matrix AC is formed from the first 23 rows from 

Table 3 and components of vector VC are calculated 

and presented in Table 4. All input data are 

presented in Appendix 1. Finally, budget constraint 

is: 

1

'
n

Cj j k k k k

j k K k K

v x p b p d B
  

      

as in relation (18). 

Only four raw material constraints that have 

increasing costs (b24 and b25) or discounted prices 

(b26 and b27) will remain. In such a way the model 

will have 23 constraints and 23 decision variables 

less than the initial model, but the solution obtained 

will remain the same. Of course, the values of the bi 

variable that are substituted have to be obtained by 

the inclusion of xj variables (j = 1,…,20) in the 

initial relations (24) from the previous complete 

model M1.  

Because the first objective function, in addition 

to twenty xj variables, also contains raw material 

variables, the same relation from model (7) in the 

first objective function can be included. Then the 

new form of the first objective function as presented 

in relation (20) will be obtained: 

 
1

'
n

j Cj j k k k k

j k K k K

Max z s v x p b p d
  

       

In the first objective function of the reduced model 

there now remains only eight raw material variables 

bk and dk, where  24,25,26,27k K  , as well as 

twenty xj variables. 
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Following the substitution of these 23 raw 

material constraints in the budget constraint and in 

the first objective function a reduced and much 

simpler model is obtained.  

The reduced model is as follows (the binary 

variables yki are now marked as y1, y2, y3, and y4): 

 

Model M2  
Max z1 = Max (9.452482x1 + 10.629x2 + 

+ 9.524034x3 + 7.412533x4 + 7.807031x5 + 

+ 9.989509x6 + 9.476482x7 + 10.33086x8 + 

+ 8.817266x9 +  8.819602x10  + 4.528776x11 + 

+ 5.541641x12 + 5.501423x13 + 4.451883x14 + 

+ 4.004302x15 + 4.800361x16 + 5.484859x17 + 

+ 4.62133x18 +4.824314x19 + 5.540952x20  – 

– 6.93b24 –7.7616d24 – 13.068b25 –14.6364d25 –  

–  2.706b26 – 2.3004d26 – 2.64b27 – 2.244 d27)   

Max z2 = Max (0.41248x1 + 0.29988x2 + 

+ 0.31001x3 + 0.4857x4 + 0.486x5 + 0.48592x6+ 

 + 0.41248x7 + 0.35115x8 + 0.2145x9 + 0.2413+ 

+ x10 + 0.086x11 + 0.0625x12 + 0.09354x13 +  

+ 0.06561x14 + 0.04335x15 + 0.06573x16 + 

+ 0.06327x17 + 0.03667x18 + 0.04592x19 + 

+ 0.053 x20) 

s.t.  

Budget constraint: 

(B) 0.723518x1 + 0.231x2 + 1.791966x3 + 

+ 0.471467x4 + 0.076969x5 + 0.066491x6 + 

+ 0.723518x7 + 0.52914x8 + 2.498734x9 + 

+ 1.356398x10  + 0.103224x11 + 0.110359x12 + 

+ 0.978577x13 + 0.060117x14 + 0.051698x15 + 

+ 0.059639x16 + 0.419141x17 + 0.0.41867x18 + 

+ 0.371686x19 + 0.939048x20  + 6.93b24 + 

+ 7.7616d24 + 13.068b25 + 14.6364d25 + 

+ 2.706b26 + 2.3004d26 + 2.64b27 + 2.244d27  ≤ 
 ≤ 300000 

Constraints for resources with variable prices: 

(R24) 0.008x1 + 0.008x2 + 0.0076x3 + 0.0119x4+ 

+ 0.01047x5 + 0.01191x6 + 0.008x7 + 

+ 0.00896x8 + 0.009x9 + 0.0086x10 +  

+ 0.00252x11 + 0.00187x12 + 0.002 x14 + 

+ 0.00133x15 + 0.00199x16 + 0.00186x17 + 

+0.0022x18 +0.0027x19 + 0.003x20 b24 d24 = 0 

(R25) 0.12852x2 + 0.013x20 - b25 - d25 = 0 

(R26) 0.184x1 +  0.1551x3 +  0.3399x4 + 0.316x5 +   

+ 0.184x7 +  0.30165x8 + 0.125x9 b26  d26 = 0 

(R27) 0.102x1 + 0.29988x2 + 0.155x3 + 0.170x5+ 

+ 0.48592x6 + 0.102x7 + 0.241.3x10 + 0.086x11 +  

+ 0.0625x12 + 0.093.54x13 + 0.06561x14 + 

+ 0.04335x15 + 0.06573x16 + 0.06327x17 + 

+ 0.036.67x18 +0.04592 x19 + 0.053x20  b27 – d27 = 0 

Constraints for the resources with quantity 

discounts: 

b26  14199 y1 ≤ 0 

d26  14200 y2 ≥ 0 

d26  M y2 ≤ 0 

y1 + y2 = 1 

b27  59999 y3 ≤ 0 

d27  60000 y4 ≥ 0 

d27  M y4 ≤ 0 

y3 + y4 = 1 

Lower and upper bounds: 

, 1, ,20j j jL x U j    

b24   2000,  b25   1600 

where variables , 1, ,20,jx j   and b13, are 

integers, while variables y1, y2,  y3,  y4 are binary, 

and M is a great positive number, and all decision 

variables are nonnegative. 

 

 

5 Solving the Model 
 

5.1  Zeleny’s Approach 
The first step in solving this model is to obtain the 

optimal solutions for each objective function 

separately. These optimal solutions are obtained 

with MATLAB and are presented in Table 5 and 

Table 6 (Appendix 2). Of course, the available 

budget is 300000 m.u. for both solutions.  

The optimal values of the objective functions are:  

z1* = 2143888.1 m.u.; z2* = 98457.5 (kg),   

and in both solutions the available budget is 

completely spent.  

In these tables, the required quantities of 

resources (in kg) are presented. In both solutions, 

we have quantity discounts for raw materials 26 and 

27 since we purchase these two types of flour over 

limited quantities (Q26 = 14200 kg and Q27 = 60000 

kg). The twenty-fourth raw material has to be 

purchased over the limited quantity and so the 

quantity over the limit (d24) is purchased at a higher 

price. For R25 in both solutions, the limit is not 

exceeded (Q25 = 1600 kg) and the whole quantity 

(b25) will be purchased at a lower price.   

Of course the final values of the resource 

variables that are not presented in Model 2  

(b1  to b23) have to be obtained by the inclusion of xj 

variables (j = 1,…,20) in the initial relations (24) 

from the previous complete model M1. 

After that, the meta-optimal problem (3) is 

formulated. It is shown in the relations below: 
  Min B VX   

s.t.  *CX Z  

  0X       
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where budget B is now the function of twenty xj 

variables and eight raw material variables, as can be 

seen from relation (18) or the budget constraint in 

the simplified model M2. 

 

Metaoptimal model – M3 
Min B = 0.723518x1 + 0.231x2 + 1.791966x3 + 

+ 0.471467x4 + 0.076969x5 + 0.066491x6 + 

+ 0.723518x7 + 0.52914x8 + 2.498734x9 + 

+  1.356398x10  + 0.103224x11 + 0.110359x12 + 

+ 0.978577x13 + 0.060117x14 + 0.051698x15 + 

+ 0.059639x16 + 0.419141x17 + 0.0.41867x18 + 

+ 0.371686x19 + 0.939048x20  + 6.93b24 + 

+ 7.7616d24   + 13.068b25 + 14.6364d25 +  

+ 2.706b26 + 2.3004d26 + 2.64b27 + 2.244d27 

s. t. 1 1* 2143888.1z z     

2 2* 98457.5z z  , 

and in addition to all the remaining constraints that 

are presented in Model M2 (constraints for raw 

materials with increasing costs and quantity 

discounts, and all lower and upper bounds 

constraints). 

The optimal solution to this meta-optimal 

problem is presented in Table 7. The final values of 

the resource variables that are not presented in this 

model (resource variables with constant prices b1 – 

b23) have to be obtained by the inclusion of xj 

variables (j = 1,…,20)  in the relations (24) from 

model M1. 

The optimum-path ratio is 

* 300000 308 0.97378257 307r B B     

and the optimal design has to be obtained with the 

calculation *X r X  . Since the solutions for 
product quantity (xj) must be integers, the obtained 

values for these variables are first rounded to 

integers. The quantities of raw materials (bi) are 

obtained so that integers xj are included in the initial 

raw material relations (24) from model M1.  

According to that, the optimum-path ratio 

transformation ( *)b r b   was not used for 

obtaining the raw materials quantities. The problem 

is that the solution obtained in that way is not a 

feasible solution for the original problem. Namely, 

some product quantities have values lower than the 

lower bounds from Table 1 (x1, x2, x3, x9, x10, x13, x18, 

and x20). This final design is presented in Table 8. 

  Therefore, that way of solving this problem is 

not appropriate for problems that have integer 

variables and lower or upper bounds for the decision 

variables. For that reason, this multi-objective 

problem will be solved with some other approaches 

below. 

Multi-objective De Novo programming with the 

meta-optimal solution is not the only available 

approach. Several multi-objective decision-making 

techniques can be used for obtaining the best 

compromise solution. Below some goal 

programming approaches will be presented and, in 

the end, an approach that uses the global criterion 

method has been shown. 

 

5.2  Goal Programming Approaches 
Goal programming is an extension of linear 

programming models and includes the achievement 

of target values (goals) for each objective, instead of 

the maximization or minimization of the objective 

functions. 

The structure of the i-th goal is as follows, [26]: 

( )i i i if X n p t                 (31) 

where: 

( )if X  - mathematical expression for the i-th 

attribute (X is the vector of decision variables). 

it  - target value for the i-th attribute, i.e. the 

achievement value that the DM considers as 

satisfying for the i-th attribute. 

in - negative deviation variable, i.e. quantification 

of the under-achievement of the i-th goal. 

ip - positive deviation variable, i.e. quantification of 

the over-achievement of the i-th goal. 

The first goal programming variant is known as 

weighted goal programming (WGP). In the WGP 

model deviations from the target values are assigned 

weights (ui and vi) according to their relative 

importance to the decision maker and minimized as 

an Archimedean sum. The formulation of this 

variant is as follows: 

 
1

1
min ( )

q

i i i i
i i

z u n v p
k

               (32) 

s.t. ( )i i i if X n p t   , 1, ,i q ,  X S  

where S is the set of model constraints. 

The function z of weighted deviational 

variables is known as the achievement function. 

Each deviational variable in the achievement 

function is divided by a normalization constant ki. 

This allows us to overcome the problem of 

incommensurability. Namely, deviations from 

objectives measured in different units must not be 

summarized together. In this paper, a normalization 

technique based on the difference between the 

positive and negative ideal solution is presented 

[27]. For this task a payoff table is presented and 

from which it is easy to identify ideal and anti-ideal 

solutions or optimistic and pessimistic objective 

values. In the bakery problem, the payoff table is 
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presented in Table 9. From that table, the ideal and 

anti-ideal solutions are as follows: 

2143888.10,98457* ( .49)Z   - Ideal 

.(1895180.6 10,92119.51)Z   - Anti-ideal 

The normalized constant is now calculated as 

follows: *i i ik z z   , and in the bakery problem it 

is: 

1 2143888.1 1895180.6 248707.5k     

2 92119.9845 51 6337.99 87.4k     

Finally, the weighted goal-programming model 

for solving multiple objective De Novo 

programming problems can be formulated. In our 

problem, there are two maximization objectives and 

for their target levels the ideal levels zi* has been 

taken. If positive ideal values are used for 

maximization-type objectives, then the positive 

deviation (pi) should be zero. This is because the 

objective values cannot be greater than the ideal 

values. In addition to that, let the weights ui be equal 

for both objectives and  

UI = 10000. Consequently, the achievement 

function in the WGP model has the following form: 

1 2
10000 10000

min
248707.5 6337.98

z n n       

1 2min 0.040208 1.57779z n n   

s. t. 

 1 1 1( ) * 2143888.1z X n z      

 2 2 2( ) * 98457.49z X n z    

and with all other constraints from model M2 

(budget constraints, constraints for raw materials 

with increasing costs and quantity discounts, and all 

lower and upper bounds constraints). 

The optimal solution of that model is presented 

in Table 10 and the values of the objective function 

are presented in the last row of the table. They are 

obtained with the following relations:  

  1 1 1( ) * 2066814.* 9z WGP z n    m.u. 

2 2 2( ) * 97426.54*z WGP z n   kg. 

  Another goal programming variant, which was 

applied in the De Novo multi-objective model, is the 

so-called Min-max goal programming, [28], [29]. In 

Min-max goal programming, the maximum 

deviation from amongst the weighted set of 

deviations is minimised rather than the sum of the 

deviations themselves. The mathematical expression 

of that variant is as follows: 

 min z D      

s.t. 
1

( ) , 1, ,i i i i
i

u n v p D i q
k

                (33) 

  ( )i i i if X n p t   , 1, ,i q , X S . 

For the normalization constant ki the same relation 

as in WGP has been taken.  For the same reason, as 

in WGP (if we take *i it z )   pi = 0. In addition to 

that, let the weights ui be equal for both objectives 

and  

ui = 10000 like before in the WGP model. 

Consequently, our Min-max GP model is: 

   

min z D  

s.t. 1
10000

248707.5
n D    10.040208 n D   

2
10000

5337.98
n D   21.57779 n D   

1 1 1( ) * 2143888.1z X n z    

2 2 2( ) * 98457.49z X n z    

with all other constraints from model M2.   

The optimal result of that model is presented in 

Table 11. The objective functions values are 

presented in the last row of the table obtained with 

the following relations: 

1 1 1( max) * 2081877.21*z Min z n    m.u. 

2 2 2( max) * 96877.21*z Min z n    kg. 

 

5.3 The Global Criterion Method 
Lastly, a multi-objective De Novo model can be 

solved using the Global Criterion method, [30], 

[31]. 

This method develops a global objective 

function made up of the sum of the deviations of the 

values of the individual objective functions from 

their respective ideal values as a ratio to that of the 

ideal value, [32]. It can be said that the Global 

criterion model minimizes the distance to the ideal 

solution by using Minkowski’s Lp metric. The 

mathematical formulation is as follows (the 

assumption is that all the objective functions have to 

be maximized). 

Min
1

( *) ( )

( *)

p
q

i i

i i

z X z X
F

z X

 
   

 
                   (34) 

where ( *)iz X  is the value of the objective function 

i at its individual optimum *X , ( )iz X is the 

function itself, and (1 )p p   is the integer 

value exponent that serves to reflect the importance 

of objectives. Of course, all constraints must be 

included in the model. Below the case p = 1 is 

presented, which implies that equal importance is 

given to all deviations. 

The objective function in the bakery model is: 

Min 
2

1

( )
2

( *)

i

i i

z X
F

z X

 
   
 

=  
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= 2  Max
2

1

( )

( *)

i

i i

z X

z X
     

where  

1 1( *) * 2143888.1z X z   and 

2 2( *) * 98457.49z X z  . 

Because the objective function coefficients in 

that function are too small, they are multiplied by 

106 and solved only the maximum problem. The 

optimal solution remains the same but, in the end, 

the optimal value of the objective function has to be 

divided by 106 and subtracted from 2. In the end 

objective function for the global criterion method 

(maximisation) is as follows: 

Max (8.598459x1 + 8.003596x2 + 7.59108x3 + 

+ 8.390612x4 + 8.577669x5 + 9.594857x6 + 

+ 8.609654x7 + 8.385363x8 + 6.291351x9 + 

+  6.564639x10  + 2.985886x11 + 3.219647x12 + 

+ 3.516151x13 + 2.742925x14 + 2.308067x15 + 

+ 2.906689x16 + 3.200982x17 + 2.528028x18 + 

+ 2.716658x19 + 3.122838x20  – 3.23244b24 – 

 – 3.62034d24  – 6.09547b25 – 6.82704d25 – 

+1.26219b26 – 1.073d26 – 1.23141b27 –1.0467d27)  

Of course, all other constraints from model M2 must 

be taken into consideration. The optimal solution of 

that model is presented in Table 12. Table 13 

presents the optimal values of objective functions 

obtained by the three presented approaches.  

 

 

6 Discussion of Results 
From the results obtained, we can see that the multi-

objective De Novo programming model has shown 

high application efficiency in solving production 

plan optimization problems. The efficiency and 

flexibility provided by the proposed model cannot 

be achieved by modeling the problem using 

standard mathematical programming models. In 

standard mathematical programming problems, 

resources are predetermined and the work to be 

done is to "optimize a given system." In contrast, the 

De Novo approach suggests a way of "designing an 

optimal system." In De Novo, resource quantities 

are not predetermined, as they are available if we 

have enough money. The maximum quantity of 

resources is limited by the budget, which is an 

important new element of De Novo. The presented 

model and obtained results show that variable 

resource prices can be successfully incorporated into 

the multi-criteria De Novo model.  

 From the results presented in Table 13, it can 

be seen that for all three approaches, the values of 

both objective functions are very close to the ideal 

value, especially for the second objective function. 

The Weighted Goal Programming approach 

provides a solution in which the first objective 

function achieves 96.4% of the ideal value, and the 

second objective function achieves 98.95% of the 

ideal value. The Min-max approach provides a 

solution in which the first objective function 

achieves 97.11% of the ideal value, and the second 

objective function achieves 98.39% of the ideal 

value. Finally, the third approach, Global Criterion 

Method, provides a solution in which the first 

objective function achieves 97.06% of the ideal 

value, and the second objective function achieves 

98.45% of the ideal value. 

This indicates that, according to the criterion of 

deviation of the obtained solution from the ideal 

values of the objective functions, it cannot be said 

that any one of these methods is more or less 

efficient than the others. 

 

 

7  Conclusion 
Compared to the standard programming model, De 

Novo is generally more effective in solving 

problems. For example, multi-objective problems, 

and price changing, i.e. the increasing costs of raw 

materials, or quantity discounts, are production 

situations that can be processed very successfully 

with De Novo methodology and provide satisfactory 

solutions.  

The model presented in this paper (M1) 

indicates a high application efficiency when using 

De Novo multi-objective programming in solving 

production plan optimization problems in various 

production companies. Here is presented how this 

model can be applied to one such company, i.e. a 

bakery that produces twenty different articles and 

uses twenty-seven different raw materials. Since the 

prices of raw materials in the production program 

vary, the multi-objective model could not be easily 

transformed into a simple knapsack problem, as is 

usual with multi-objective De Novo problems. 

Namely, some of the raw materials have different 

price variables and their equations cannot be 

substituted in the budget equation. For that reason, a 

new simplification which reduces our set of 

constraints is introduced, so solving the model 

becomes much easier (in the case of the bakery the 

set of constraints and the set of decision variables by 

23 constraints and variables altogether has been 

reduced). 

The inclusion of variable prices in the multi-

objective De Novo programming model is a further 

innovation. None of the papers that deal with multi-

objective De Novo programming present a De Novo 

model which involves variable resource prices.  
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Future work on this topic will investigate other 

production situations in which the De Novo multi-

objective programming model with increasing 

resource prices and quantity discounts can be 

applied. 
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Appendix 1. Tables with input data 

 

Table 1. List of articles   

Mark 
Article name 

 

Selling 

prices sj 

Flour per 

unit (in kg) c2j 

Weight 

(in kg)  

Monthly Amount 

lower upper 

A1 Rye mixed round 10.176 0.41248 0.60 1580 4890 

A2 Corn mixed 10.86 0.29988 0.60 10520 17100 

A3 Bread with sunflower seeds 11.316 0.31001 0.50 1580 4210 

A4 Wheat mixed semi-white 7.884 0.4857 0.65 13150 40390 

A5 Wheat half-white bread  - folk 7.884 0.486 0.65 9210 23670 

A6 Wheat white sandwich 10.056 0.48592 0.65 65750 123080 

A7 Rye mixed long 10.2 0.41248 0.60 2630 9460 

A8 Wheat mixed  Sun 10.86 0.35115 0.60 1710 6000 

A9 Swedish bread 11.316 0.2145 0.50 1320 2760 

A10 Wheat mixed bread - Zagora 10.176 0.2413 0.50 1710 4260 

A11 White rolls of mini salty 4.632 0.086 0.10 9210 23670 

A12 White rolls - milk roll 5.652 0.0625 0.08 1970 5670 

A13 Stuffed pastry layered cheese 6.48 0.09354 0.10 2370 5260 

A14 White rolls with salt 4.512 0.06561 0.07 2240 6310 

A15 White rolls round kaiser 4.056 0.04335 0.06 7890 22090 

A16 White mini rolls 4.86 0.06573 0.09 7890 24450 

A17 White pastry croissant 5.904 0.06327 0.07 1970 4730 

A18 Donut 5.04 0.03667 0.07 15780 42080 

A19 White pastry - trace    5.196 0.04592 0.05 1580 4340 

A20 Stuffed  rolls  6.48 0.053 0.08 1970 7890 

 

 

Table 2. List of raw materials 

Mark Raw material 
Prices 

 (per kg) 
Mark Raw material 

Prices  

(per kg) 

Variable 

prices 

R1 Rye flour 3.96 R15 Rum aroma   49.8828  

R2 Wheat flour T-110 2.706 R16 Goldperle TBM 39.6  

R3 Kitchen salt 1.848 R17 Vanilla sugar 16.8828  

R4 Additive panifarin 36.3 R18 Butter aroma   151.3776  

R5 Wheat germs 19.6152 R19 Rye  sourdough 15.6684  

R6 Grandma mix 26.3868 R20 Cheese for bakery 19.14  

R7 Suvita 20.7108 R21 Enhancer 24.948  

R8 Sugar 6.996 R22 Wiener note 30.228  

R9 Pure corn grits 9.24 R23 Grainpan  Max 14.9952  

R10 Edible oil 9.24 R24 Yeast 6.93 7.7616 

R11 Margarine BV 11.88 R25 Corn concentrate 13.068 14.6364 

R12 Margarine Tropic 12.54 R26 Wheat flour T-850 2.706 2.3004 

R13 Eggs (pieces) 0.924 R27 Wheat flour T-550 2.64 2.244 

R14 Marmalade 10.824     
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Table 3. Norms - The amount of raw material in grams in one unit of articles 
Mark P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

R1 126.48      126.48 49.5 89.5  

R2    145.8       

R3 8 8 6.84 9.5 9.52 9.52  8 7.85  6.8 

R4 4      4 7.14   

R5          34.4 

R6   19        

R7   57        

R8           

R9          68.9 

R10        3.57   

R11           

R12           

R13           

R14           

R15           

R16  4.2         

R17           

R18           

R19 4  3.8    4    

R20           

R21  2 1.52 2.38 2.38 1.96  1.06  1.3 

R22           

R23         143  

R24 8 8 7.6 11.9 10.47 11.91 8 8.96 9 8.6 

R25  128.52         

R26 184  155.1 339.9 316  184 301.65 125  

R27 102 299.88 155  170 485.92 102   241.3 

 

 

Table 3. Norms - continuation 
Mark   P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

R1           

R2           

R3 2 0.94 1.73 1.29 0.89 1.33 1.24 0.55 1 1 

R4           

R5           

R6           

R7           

R8 2 0.94 1.73 1.29 1.33 1.33 3.1 1.47 5  

R9           

R10        3.67   

R11 3   2 1.33 1.93 5  5 3 

R12   46.29    12.5   19 

R13       0.15 0.2 0.1  

R14        10   

R15       0.31 0.73   

R16        0.8 0.8 0.8 

R17        0.73   

R18         1  

R19           

R20   20       33 

R21 2 0.31  1 1 1 1    

R22  3.12         

R23           

R24 2.52 1.87  2 1.33 1.99 1.86 2.2 2.7 3 

R25          13 

R26           

R27 86 62.5 93.54 65.61 43.35 65.73 63.27 36.67 45.92 53 
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Table 4. Selling prices and unit costs for the articles 

 

 

 

 

 

 

 

 

 

  

Mark 

 

Article name 

 

Selling 

prices sj 

Unit costs for the first  

23 raw materials – VC 

T
C C CV p A   

 

j Cjs v  

A1 Rye mixed round 10.176 0.723518 9.452482 

A2 Corn mixed 10.86 0.231 10.629 

A3 Bread with sunflower seeds 11.316 1.791966 9.524034 

A4 Wheat mixed semi-white 7.884 0.471467 7.412533 

A5 Wheat half-white bread  - folk 7.884 0.076969 7.807031 

A6 Wheat white sandwich 10.056 0.066491 9.989509 

A7 Rye mixed long 10.2 0.723518 9.476482 

A8 Wheat mixed  Sun 10.86 0.52914 10.33086 

A9 Swedish bread 11.316 2.498734 8.817266 

A10 Wheat mixed bread - Zagora 10.176 1.356398 8.819602 

A11 White rolls mini salty 4.632 0.103224 4.528776 

A12 White rolls - milk roll 5.652 0.110359 5.541641 

A13 Stuffed pastry layered cheese 6.48 0.978577 5.501423 

A14 White rolls with salt 4.512 0.060117 4.451883 

A15 White rolls round kaiser 4.056 0.051698 4.004302 

A16 White mini rolls 4.86 0.059639 4.800361 

A17 White pastry croissant 5.904 0.419141 5.484859 

A18 Donut 5.04 0.41867 4.62133 

A19 White pastry - trace    5.196 0.371686 4.824314 

A20 Stuffed  rolls  6.48 0.939048 5.540952 
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 Appendix 2.  Tables with optimal solutions 
 

Table 5. Optimal solution for z1 (max profit) 

Variables 
Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 

x1 1580 x15 22090 b9 117.82 b23 188.76 

x2 10520 x16 24450 b10 175.85 b24 2000 

x3 1580 x17 4730 b11 211.46 d24 328.31 

x4 13150 x18 42080 b12 205.26 b25 1377.64 

x5 21316 x19 4340 b13 9559 d25 0 

x6 122351 x20 1970 b14 420.80 b26 0 

x7 2630 b1 947.62 b15 32.18 d26 14200.14 

x8 6000 b2 1917.27 b16 82.90 b27 0 

x9 1320 b3 1832.42 b17 30.72 d27 75054.63 

x10 1710 b4  59.68 b18 4.34 y1 0 

x11 23670 b5 58.82 b19 22.84 y2 1 

x12 5670 b6 30.02 b20 112.41 y3 0 

x13 2370 b7 90.06 b21 450.54 y4 1 

x14 6310 b8 225.03 b22 17.69 z1* =  2143888.1 

 

 

Table 6. Optimal solution for z2 (max flour consumption) 

Variables 
Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 

x1 1580 x15 7891 b9 117.82 b23 188.76 

x2 10520 x16 7892 b10 64.02 b24 2000 

x3 1580 x17 1970 b11 81.50 d24 420.35 

x4 35916 x18 15780 b12 171.76 b25 1377.64 

x5 23670 x19 1580 b13 3609 d25 0 

x6 123080 x20 1970 b14 157.80 b26 0 

x7 2630 b1 735.27 b15 12.13 d26 21388.09 

x8 1710 b2 5236.55 b16 59.65 b27 0 

x9 1320 b3 1951.42 b17 11.52 d27 71097.73 

x10 1710 b4 29.05  b18 1.58 y1 0 

x11 9210 b5 58.82 b19 22.84 y2 1 

x12 1970 b6 30.02 b20 112.41 y3 0 

x13 2370 b7 90.06 b21 449.56 y4 1 

x14 2243 b8 85.46 b22 6.15 z2* =  98457.5 
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Table 7. Metaoptimal solution (Min B, Z ≥ Z*) 

Variables 
Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 

x1 1592 x15 22090 b9 117.82 b23 188.76 

x2 10520 x16 24450 b10 79.33 b24 2000 

x3 1580 x17 4730 b11 211.46 d24 433.66 

x4 20126 x18 15780 b12 206.26 b25 1377.64 

x5 23670 x19 4340 b13 4300 d25 0 

x6 123080 x20 1970 b14 157.80 b26 0 

x7 8475 b1 1688.41 b15 12.99 d26 18392.83 

x8 6000 b2 2934.37 b16 61.86 b27 0 

x9 1320 b3 1960.43 b17 11.52 d27 75442.03 

x10 1710 b4 83.11 b18 4.34 y1 0 

x11 23670 b5 58.82 b19 46.27 y2 1 

x12 5670 b6 30.02 b20 112.41 y3 0 

x13 2370 b7 90.06 b21 484.17 y4 1 

x14 6310 b8 186.37 b22 17.69 B* =  308077 

  

Table 8. Optimal solution with optimal path ratio r = B/B* = 0.97378253 

(Xj rounded to integer, bi obtained from the original constraints) 

Variables 
Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 

x1 1550 x15 21511 b9 114.72 b23 183.76 

x2 10244 x16 23809 b10 77.25 b24 2000 

x3 1539 x17 4606 b11 205.91 d24 369.84 

x4 19598 x18 15366 b12 200.85 b25 1341.49 

x5 23049 x19 4226 b13 4187 d25 0 

x6 119853 x20 1918 b14 153.66 b26 0 

x7 8253 b1 1644.12 b15 12.65 d26 17910.46 

x8 5843 b2 2857.39 b16 60.23 b27 0 

x9 1285 b3 1909.02 b17 11.22 d27 73463.90 

x10 1665 b4 80.93 b18 4.23   

x11 23049 b5 57.28 b19 45.06   

x12 5521 b6 29.24 b20 109.45   

x13 2308 b7 87.72 b21 471.48   

x14 6145 b8 181.48 b22 17.23  B* =  300000 

  

Table 9.  Pay-of-table for bakery problem 

z1(x1*) z1(x2*) 2143888.10 92119.51 

z2(x1*) z2(x2*) 1895180.6 98457.49 
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Table 10. Optimal solution with weighted goal programming 

Variables 
Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 

x1 4080 x16 20380 b11 183.85 b25 1377.64 

x2 10520 x17 4730 b12 171.76 d25 0 

x3 1580 x18 27566 b13 3610 b26 0 

x4 33660 x19 4337 b14 157.80 d26 18255.57 

x5 19730 x20 1970 b15 12.13 b27 0 

x6 102570 b1 735.27 b16 59.65 d27 74543.00 

x7 7890 b2 3892.86 b17 11.52 y1 0 

x8 5000 b3 1936.16 b18 1.58 y2 1 

x9 1320 b4 29.05 b19 22.84 y3 0 

x10 1710 b5 58.82 b20 112.41 y4 1 

x11 19730 b6 30.02 b21 492.51 n1 77073.20 

x12 4730 b7 90.06 b22 17.69 n2 1030.95 

x13 2370 b8 164.01 b23 188.76    

x14 5260 b9 117.82 b24 2000   

x15 18410 b10 64.02 d24 414.01   

 z1 (WGP) = 2066814.9 z2 (WGP) = 97426.54  

  

 

Table 11. Optimal solution with goal programming – the Min-max approach (Min D)  

Variables 
Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 

x1 1580 x16 24450 b11 185.74 b25 1377.64 

x2 10520 x17 2344 b12 176.44 d25 0 

x3 1580 x18 15780 b13 3666 b26 0 

x4 22418 x19 1582 b14 167.80 d26 18094.20 

x5 23670 x20 1970 b15 12.25 b27 0 

x6 123080 b1 947.62 b16 59.65 d27 74567.01 

x7 2630 b2 3268.54 b17 11.52 y1 0 

x8 6000 b3 1929.63 b18 1.58 y2 1 

x9 1320 b4 59.68 b19 22.84 y3 0 

x10 1710 b5 58.82 b20 112.41 y4 1 

x11 23670 b6 30.02 b21 457.24 n1 62010.89 

x12 5670 b7 80.06 b22 17.69 n2 1580.27 

x13 2370 b8 165.18 b23 188.76     

x14 6310 b9 117.82 b24 2000   

x15 22090 b10 79.33 d24 402.19 D* 368.69 

 z1 (WGP) = 2081877.21 z2 (WGP) = 96877.21  
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Table 12. Optimal solution with the Global criterion method 

Variables 
Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 
Variables 

Optimal 

values 

x1 1580 x15 22090 b9 117.82 b23 188.76 

x2 10520 x16 24450 b10 79.33 b24 2000 

x3 1580 x17 1871 b11 183.86 d24 403.39 

x4 22575 x18 15780 b12 171.77 b25 1377.64 

x5 23670 x19 1580 b13 3610 d25 0 

x6 123080 x20 1970 b14 157.80 b26 0 

x7 2633 b1 948.00 b15 12.13 d26 18148.11 

x8 6000 b2 3291.44 b16 59.65 b27 0 

x9 1320 b3 1930.68 b17 11.52 d27 74543.63 

x10 1710 b4 59.69 b18 1.58 y1 0 

x11 23670 b5 58.82 b19 22.86 y2 1 

x12 5670 b6 30.02 b20 112.41 y3 0 

x13 2370 b7 90.06 b21 487.24 y4 1 

x14 6310 b8 164.01 b22 17.69 z* = 0.045929 

z1 (Global) = 2080933.08 z2 (Global) = 96931.03 

  

Table 13. Comparisons of the results 

 z1 z2 

Ideal values 2143888.1 98457.49 

WGP   2066814.9 97426.54 

% from ideal 

values 
0.964049803 0.989529 

Minimax 

(Chebishev) 
2081877.21 96877.21 

% from ideal 

values 
0.971075501 0.9839496 

Global criterion 

method 
2080933.08 96931.03 

% from ideal 

values 
0.97063512 0.984496 
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