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Abstract: - To guarantee the fulfillment of all claims, an insurance company must allocate enough funds to 
cover both current and future claims for active policies. The application of stochastic models has found 
extensive use in various domains of insurance and finance. However, their application in the context of private 
health insurance has been somewhat limited. To address this gap in existing knowledge, this paper aims to 
explore the application of stochastic methods to disease portfolios. The study involves dividing the 
developmental periods into semi-annual intervals and determining the most appropriate model for forecasting 
claim reserves. The research objectives include evaluating the effectiveness of the Mack, Clark LDF, and Clark 
Cape Cod methods in predicting claim reserves within a disease portfolio. Moreover, the study intends to 
compare these models to identify the most appropriate method for claim reserve calculations. The data source 
employed for this study comprises private health insurance claims data covering the period from 2018 to 2022. 
When compared to alternative methods, The Clark LDF method with Weibull distribution is far more accurate 
in calculating the reserve of claims compared with other similar methods. From the pool of models analyzed, 
the Mack model and Clark LDF model with Weibull distribution show the lowest reserve claims and standard 
errors. Based on these result analyses, the insurance company is recommended to explore other strategies for its 
fund distribution as opposed to maintaining only one substantial claim reserve.  
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1   Introduction 
The physical and mental health consequences of air 
pollution must not be overlooked as they potentially 
have long-term harmful effects on human health 
which translate into healthcare costs and 
consequently lower life expectancy for the 
population. The rise in public concern about health 
among the population is a direct consequence of the 
increasing awareness of eco-environmental 
protection, [1]. Private health insurance (PHI) 
contributes significantly to healthcare costs 
worldwide. Due to the failure of markets and public 
policy deficiencies, the significant impact of the 
health system's performance is crucial. In countries 
with low incomes, private health insurance can 
serve as a transitional mechanism, aiding in the 
increase of prepaid income, [2]. The utilization of 
PHI is positively associated with financial 
development as well as social, cultural, and 
economic factors including education, income, and 
individualism. This implies that higher levels of 
income, education, and individualistic values, are 
associated with increased PHI consumption, [3].  

Private health insurance is medical coverage 
that an individual purchases directly. This type of 
coverage can be obtained solely for the individual or 
can also include their family members and 
dependents. Depending on your policy, private 
health insurance can provide financial coverage for 
treatment in public or private hospitals as a private 
patient. In addition, PHI can provide faster access to 
certain hospital services by avoiding long waiting 
times in public hospitals. Individuals, who are both 
taxpayers and consumers of health services, play an 
important role in financing health services. 
Consequently, any escalation in their expenses will 
result in increased payments, subsequently reducing 
their quality of life. Since 2020, the COVID-19 
pandemic has increased the number of healthcare 
protection and sickness preventive measures, [4], 
[5].  

Within the framework of the Solvency II 
directive, the one-year reserve risk is defined as the 
risk of having insufficient loss reserves at the end of 
a one-year period, which is significant and different 
from the way insurance companies typically analyze 
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the ultimate view. A claim event is the term used to 
describe an occurrence that prompts the insured to 
file a claim. To guarantee the fulfillment of all 
claims, an insurance company must allocate enough 
funds to cover both current and future claims for 
active policies. The insurance company is obligated 
to create a claim reserve to account for forthcoming 
policy claims, [6]. The investigation of claim 
reserves in general insurance is a highly researched 
topic in actuarial studies. Stochastic models have 
been widely adopted in numerous areas of insurance 
and finance, but their utilization in the realm of 
private health insurance has been relatively 
constrained.  

The gap that exists in comprehensive research 
on stochastic methods in private health insurance 
can be attributed to various factors. Firstly, private 
health insurance is classified as a short-tail portfolio, 
implying that claims are typically resolved within a 
brief period. Secondly, the regulations and ethical 
guidelines that govern private health insurance 
companies can present difficulties in accessing and 
utilizing the data necessary for stochastic modeling. 
To bridge this gap in the literature, I employed 
stochastic methods in my research on disease 
portfolios, dividing the developmental periods into 
semi-annual intervals. This approach differs from 
previous studies that have applied these methods to 
annual development periods in other portfolios. 
This study aims to explore the utilization of 
stochastic methods on claim reserves in PHI and to 
identify the most suitable model that can be 
employed for forecasting claim reserves.    

 
The objectives of this research are as follows:  

1. To evaluate the effectiveness of the Mack, 
Clark LDF, and Clark Cape Cod methods in 
calculating claim reserves within the disease 
portfolio.    
2. To compare the different methods and 
determine which one is more suitable for 
calculating claim reserves.                                                                                                    

 
The paper follows the subsequent structure:               

Section 2 provides a comprehensive analysis, with a 
particular emphasis on a recent study that explores 
the use of stochastic methods. The methodology 
utilized in this research, which encompasses Mack 
Chain Ladder and Clark's methods, is presented in 
Section 3. The results obtained from applying these 
methods to real data are discussed in Section 4. 
Lastly, Sections 5 and 6 conclude the paper by 
offering some final remarks. 
 

2   Literature Review 
Considering the implementation of the IFRS 17 
(International Financial Reporting Standard) 
regulatory regime in Europe on January 1, 2023, 
insurers have been actively promoting the adoption 
of stochastic approaches to ensure precise 
forecasting of insurance reserves. Under the 
provisions of IFRS 17, companies are authorized to 
provide information regarding the effects of 
fluctuations in discount rates and other financial 
variables, which impact their profit. This flexible 
approach ensures the continuous evaluation of both 
the insurance contract portfolio and the assets that 
provide support to it, [7]. In the research, [8], is 
presented a comprehensive overview of diverse 
stochastic methods for loss reserving, which have 
already been developed. In comparison to 
deterministic methods, stochastic methods possess 
the advantage of being grounded in explicit 
statistical assumptions. Mack was the first to 
provide a thorough stochastic model for the chain-
ladder technique. In the year 1993, his publication 
on claims reserving gained significant recognition 
for its in-depth analysis of the chain ladder model, 
specifically focusing on the precise calculation of 
the standard error. 

The Mack model, first proposed by [9] and 
known as the Distribution-Free Chain-Ladder 
stochastic model, has been extensively study by 
various researchers. The research conducted in [10], 
compared different stochastic methods for claims 
reserving in the MTPL portfolio. It was found that 
the over-dispersed Poisson (ODP) method with 
bootstrapping was a more prudent choice compared 
to the Mack method. This decision was primarily 
influenced by the ODP method's ability to offer a 
broader confidence interval. In [11] authors 
emphasize the utilization of different stochastic 
models, such as distribution-free models, probability 
distribution-based models (including Normal, 
Poisson, Gamma, and Inverse Gaussian 
distributions), and the combination of these models 
with bootstrapping techniques to calculate reserves 
for life and non-life insurance datasets. The study 
concluded that Mack's model and the Gamma 
probability distribution-based model were 
determined to be the optimal choices for estimating 
reserves among the distribution-based 
methodologies. The research paper [12], evaluated 
different stochastic models, such as the Poisson, 
gamma, and log-normal models, through the 
analysis of real-life insurance data. The study 
emphasized the impact of model and residual 
choices on reserve estimates and prediction errors. 
The study [13], shows how the Mack Chain Ladder 
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and its bootstrap projections may be used to 
estimate or anticipate reserves using actual non-life 
insurance data. The findings from this study indicate 
that Ultimate reserves obtained through the 
bootstrap technique closely align with those derived 
from the Mack model, but the prediction errors 
associated with the bootstrap technique are higher 
compared to those of the Mack model. The study 
[14], emphasizes the flexibility of Mack's 
distribution-free chain ladder model and its 
estimator in accurately predicting the ultimate claim 
amount. Through their research, the study [15], 
enhances Mack's model and introduces a 
fundamental framework. This framework enables 
the analysis of the efficiency of chain ladder 
forecasts for overall claims at the conclusion of the 
initial non-observable calendar year. The Cape Cod 
method, initially proposed by [16] and later 
extended by [17], presents an alternative stochastic 
model for estimating total loss reserves through 
growth curve modelling. The research conducted by 
[18], involved examination of the distribution of 
claims within the DMTPL portfolio through the 
utilization of both the Cape Cod and LDF 
techniques. The findings of the study indicated that 
the Cape Cod model exhibited lower variance and 
estimation error in comparison to the LDF method. 
The study [19], employed the Cape Cod method for 
estimating IBNR (Incurred But Not Reported) 
reserves of loss in non-life insurance. Estimation is 
done by fitting Weibull and log-logistic growth 
curve models. The research [20], also extends the 
analysis by adding various stochastic models to the 
Cape Cod model. These models are constructed to 
generate parameter estimates that approximate those 
obtained from the classical Cape Cod algorithm 
using maximum likelihood estimation. In the study 
[21], workers' compensation claims over 11 years 
were collected employing the Clark Cape Cod and 
Clark LDF models, which incorporate Weibull and 
log-logistic distribution functions. As demonstrated 
by its results, the Clark LDF model with log-logistic 
distribution performs better compared to other 
analyzed models within the data set since it is 
accurate and has less variability. The focus of the 
research [22], lies in examining different types of 
stochastic models, such as distribution-free models, 
probability distribution-based models, and their 
combinations with bootstrapping techniques when 
estimating reserves for both life and non-life 
insurance portfolios. The study concludes that 
methods incorporating bootstrapping demonstrate 
superior goodness-of-fit when compared to other 
models. 

 

3   Materials and Methods  
The data employed for this study comprises private 
health claims data obtained from an insurance 
company operating in Albania. A comprehensive 
analysis of 17,575 paid claims from the sickness 
portfolio covering the years 2018 to 2022 was done. 
The values are expressed in Albanian lek (ALL), 
and the cumulative losses are shown as a 
development triangle (run-off triangle). Each row in 
Table 1 corresponds to a specific accident year and 
each column represents a particular development 
year. The upper left triangle displays the observed 
data, while the lower right triangle encompasses the 
data for the future triangle that is yet to be 
estimated. Let 𝐶𝑖,𝑗 be a random variable that 
represents the amount of the cumulative claim that 
has been incurred in period i and has been resolved 
after a specific delay period j. Development factors 
λ̂j play an important role in predicting future claims. 
These factors are defined by the formula (1). 

λ̂j =
∑ Ci,j

n−j
i=1

∑ Ci,j−1
n−i
i=1

                             (1) 

 
Table 1. Run-off triangle 

Accident 
year i 

Development year j 
1 2 3 …  J 

1       
2       
3 (observations)     
⁞     (to be 

predicted) I     
Source: Author 

 
The outstanding claims liabilities for accident 

year 𝑖, denoted as 𝑅𝑖, where 𝑖 e {1, …, 𝐼}, is given 
by formula (2). 

Ri = Ci,I − Ci,I−i+1                   (2) 
 

Let 𝑅 represent the total outstanding claims 
liabilities for accident years as defined by formula 
(3) 

R = ∑ Ri
I
i=1                              (3) 

 
The prediction of outstanding loss liabilities is 

referred to as claims reserves. Hence, we denote the 
claims reserves for accident year i as 𝑅𝑖, where R̂i =

Ĉi,I − Ci,I−i+1, i ∈ {1, . . ., I} is used to denote the 
prediction of these reserves, and the total claims 
reserves is represented as R̂ = ∑ R̂i

I
i=1 . It is 

important to note that Ĉi,I serves as a predictor for 
Ci,I. Utilizing Mack and Clark's methodology, an 
assessment and analysis of the fluctuations in these 
reserves will be conducted.   
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3.1  Mack Chain Ladder Method 
The Mack model, also known as the Distribution-
Free Chain-Ladder stochastic model, was introduced 
by, [9], to forecast claims reserves in the insurance 
industry. The method can predict the standard errors 
of the chain-ladder estimation without assuming any 
distribution if it meets three conditions: 
1. The expectation assumption,  

E[
Ci,j+1

Ci,k
|Ci,1, Ci,2…, Ci,j] = fj 

The coefficients 𝑓𝑗 are commonly referred to as 
loss development factors (LDF) or age-to-age 
factors. 

2. Variance assumption,  

Var[Ci,j+1

Ci,k
|Ci,1, Ci,2…, Ci,j] =

σj
2

wi,jCi,j
α                  (4) 

There exist certain constants σj
2 > 0 from the 

formula 4, identified as the variance parameters 
for all values of 1 ≤ i ≤ I and 1 ≤ j ≤ I-1, the 
weights wi,j ∈ [0,1], α ∈ {0,1,2}. 

3.  Independence assumption, {Ci,1, Ci,2…, Ci,n}, 
{Cj,1, Cj,2…, Cj,n} are independent for i ≠ j,  

 

3.1.1 Conditional MSEP Estimators in the Mack 

Model 

Mack method demonstrates that unbiased estimates 
for claims reserves can be obtained if these 
assumptions are upheld. The metric used to express 
the uncertainty and variability related to the 
projected future reserves is the mean squared error 
of prediction (MSEP), [11]. It is expressed by the 
formula (5), (6), (7) and (8) as:                                                        
Prediction variance ≈Process variance +Estimation 
variance. 
E[(Ci,j − Ĉi,j)

2
≈ E[(Ci,j − E(Ci,j))

2
+

E [(Ĉi,j − E(Ĉi,j)
2

]                                                   (5) 
 

MSEP(Ĉi,j) ≈ Var(Ci,j) + Var(Ĉi,j)                     (6) 
 

MSEP(R̂i) ≈ MSEP(∑ Ĉi,jj∈δi
                              (7) 

 
MSEP(R̂) ≈ MSEP(∑ R̂i

n
i=2                                  (8) 

 
This model estimates the mean squared 

prediction error (MSEP) of reserves (Ri) by using 
the mean and standard deviation of incremental 
claims Ci,j. The formula for calculating the expected 
cumulative reserves is  Di,ĵ = ∑ Ĉi,l

n−i+j
l=n−i+2 , 

where 2 ≤ k ≤ n and δi = n − i + 2, n − i + 3, … , n 
represents the remaining development periods. The 
formula (9) is used to estimate the MSEP of 
reserves.              MSEP(R̂) = MSEP(∑ Ri,ĵ

n
i=2 ) =

∑ [MSEP(R̂i)] +n
i=2 D̂i,n

2 (∑ Dq,n
n
q=i+1 ) ∙

∑
2σ̂j+1

2

λj+1
2 ∑ Dq,j

n−1
q=1

n−1
j=n−i+1                                             (9) 

 
3.1.2  Estimating the Mack Model's Parameters 

The development factors are estimated by the 
formula (10) for 1 ≤ j ≤ I-1 

                f̂j =
∑ wi,jCi,j

αI−j
i=1

∑ Ci,j
I−j
i=1

 ∙  λ̂j                             (10) 

 
The formula (11) presented below outlines the 

calculation method for determining the standard 
deviation of the development period. 

                  σ̂j
2 =

1

n−j
∑ (fi,j − f̂j)

2n−j+1
i=1              (11) 

 
3.1.3  Properties of the MCL Model Estimators 

The properties of Mack model estimators are 
presented in the study, [13], as follows:  

1. The f̂j estimates provided in (10) are 
uncorrelated and unbiased. 

2. The estimator f̂j has the lowest variance 
wt6ygcompared to all other unbiased 
estimators of fj that are weighted averages 
of the observed development factors. 

3. The unbiased estimator of the parameter σj
2 

is the estimator σ̂j
2 

4. Under the model assumptions 1 and 3, the 
estimator Ĉi,I is an unbiased estimator of  
E(Ci,IϵDI) 

5. For both the ultimate claims amount Ĉi,j and 
the true ultimate claims amount Ci,j, the 
expected values of the estimators are equal, 
E(Ĉi,I) = E(Ci,I), where 2 ≤ i ≤ I  
 

3.2  Clark’s Methods 
The study conducted by [16], proposed two models, 
namely the Loss Developed Factor (LDF) model 
and the Cape Cod model. The LDF method operates 
under the assumption that the ultimate loss amount 
in each accident year `is not influenced by the losses 
incurred in other years. The Cape Cod method, on 
the other hand, assumes that there is a known 
correlation between the ultimate loss amount and 
the expected loss for each year during the historical 
period. This correlation is determined by an 
exposure base, which is typically measured using a 
level premium.  

G(x) =
1

LDFx
                           (12) 

 
The formula (12) represents the cumulative 

percentage reported (or paid) up to time x. It is 
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significant to note that the time interval between the 
"average" accident date and the evaluation date is 
indicated by the time index "x". Our model 
estimation process begins with the evaluation of the 
emerging loss pattern. To analyze this pattern, we 
will utilize two different curves, namely the Weibull 
curve and the Log-logistic curve. The scale 
parameter θ and the shape parameter ω can be used 
to parameterize each of these curves. The form of 
the log-logistic curve is given by formula (13) as 
follow: 

G(x|ω, θ) =
xω

xω+θω                    (13) 
 

The form of the Weibull curve is given by 
formula (14) as follow: 

G(x|ω, θ) = 1 − exp (− (
x

θ
)

ω
)           (14) 

 
It is shown below how the expected rise in loss 

value, �̂�i,j is calculated for each of the two models.  
 

3.2.1  "LDF" Method 

The formula (15) provides an estimation of the 
expected loss by considering both the growth curve 
and the estimated ultimate loss for each accident 
year. To perform this calculation, 𝑛 + 2 parameters 
need to be estimated, including 𝑛 accident years, 𝜔, 
and 𝜃. 

μ̂i,j = Ulti ∙ [G(j|ω, θ) − G(j − 1|ω, θ)]        (15) 
 

3.2.2  Cape Cod Method 

To estimate the expected loss shown in the formula 
(16), three parameters need to be determined: 
ELR, ω, θ, considering the expected loss ratio 
(ELR) and the growth curve. 
μ̂i,j = Premiumi ∙ ELR ∙ [G(j|ω, θ) − G(j − 1|ω, θ)]                                                                   

(16) 
 

Since we are dealing with data that is condensed 
into annual blocks as a development triangle, the 
model will have a limited number of data points 
(one for each "cell" in the triangle). However, the 
LDF method poses a significant challenge due to 
over-parameterization. Once the model for the 
expected loss emergence has been determined, it 
becomes essential to calculate the variance in the 
formula (17).  
Variance

Mean
= σ2 ≈

1

n−p
∙ ∑

(ci,j−μ̂i,j)
2

μ̂i,j

n
i,j                      (17)         

 
where, 𝑝 denotes the number of parameters, 𝑐𝑖,𝑗 
represents the actual incremental loss, and �̂�𝑖,𝑗  
represents the expected incremental loss. 
 

3.2.3  Process Variance 

The variance can be estimated into two components: 
process variance, which represents the random 
fluctuations, and parameter variance, which 
accounts for the uncertainty in our estimation. The 
predicted pattern of loss emergence is represented 
by the curve G(x|ω, θ). The distribution of the 
actual loss emergence will revolve around this 
expectation. While the Cape Cod method may 
demonstrate a slightly higher estimated process 
variance, it tends to generate a significantly smaller 
estimation error. It is important to note that in order 
to handle claims, it is desirable to have more 
accuracy and less variability in the reserve estimate. 
The first step towards evaluating the variance of the 
parameters entails establishing the maximum 
likelihood function to estimate the best parameters. 

Likelihood=∏ Pr(ci) = ∏
λ

i

ci
σ2

∙e−λi

(
ci
σ2)!

ii = ∏
(

μi
σ2)

ci
σ2

∙e
−

μi
σ2

(
ci
σ2)!

i                           

(18)  
 

LogLikelihood=∑
ci

σ2 ∙ ln (
μi

σ2) −
μi

σ2 − ln((
ci

σ2) !i )  
(19) 

 
l = ∑ ci ∙ ln (i μi) − μi, assuming,  σ2 is known  (20) 

 
The loglikelihood function for the "LDF" model 

is given by formulas (21), (22), (23) as follows:  
l = ∑ (ci,j ∙ ln(Ulti ∙ [G(j) − G(j − i)]) −i,j

Ulti[G(j) − G(j − i)])                                               
(21) 

 
δl

δUlti
= ∑ (

ci,j

Ulti
i − [ G(j) − G(j − i)])               (22) 

 
For  𝛿𝑙

𝛿𝑈𝑙𝑡𝑖
= 0, 𝑈𝑙𝑡𝑖

̂ =
∑ 𝑐𝑖,𝑗𝑗

∑  [𝐺(𝑗)−𝐺(𝑗−𝑖)]𝑗
                          

(23) 
 

The loglikelihood function for cape Cod model is 
given by formulas (24), (25), (26) as follows:  
l = ∑ (ci,j ∙ ln (ELR ∙ Pi[G(j) − G(j − i)]) − ELR ∙i,j

Pi[G(j) − G(j − i)])                                                     
(24) 

 
δl

δELR
= ∑ (

ci,j

ELRi,j − Pi[ G(j) − G(j − i)])        (25) 
 

For  δl

δELR
= 0, ELR̂ =

∑ ci,ji,j

∑  Pi∙[G(j)−G(j−i)]i,j
                

(26) 
 

The actual loss during the development period j 
and accident year 𝑖 is denoted by ci,j and the 
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premium for accident year i is denoted by Pi.  
Several authors have studied the methodology of the 
Clark LDF and Clark Cape Cod models, including, 
[19], and [21]. The calculations were performed 
using the R-Studio software ChainLadder package 
(R Development Core Team, 2023), [23]. 
 
 
4   Results 
 
4.1  Fitting Distributions 
The cumulative number of claims within the disease 
portfolio during the period i, which have 
subsequently been resolved by period j is illustrated 
in Table 2 (Appendix). The standard form of the 
development triangle is obtained by converting the 
occurrence period {2018, 2019, ...2022} into semi-
annual accidents {2018S1, 2018S2, ...2022S1, 
2022S2}.  

To estimate the Clark LDF and Clark Cape Cod 
models, we employed the Akaike Information 
Criteria (AIC) and Bayesian Information Criteria 
(BIC) to analyze our data and determine the most 
suitable curve between the Weibull and Loglogistic 
distribution functions. The outcomes obtained 
through the utilization of the (fitdistrplus) package 
in R programming are displayed in Table 3 
(Appendix). Through a comprehensive evaluation of 
the criteria (AIC and BIC), it is evident that the 
Weibull distribution is the optimal choice for 
modeling our data.   

                                                                     
4.2  Results of Mack method 
Verification of the Mack assumptions is illustrated 
in Figure 1 through the chain ladder diagnostic plot. 
Upon analysis, it is evident that none of the four 
residual plots display any significant trends. As a 
result, it can be concluded that Mack's supposition 
holds. Moreover, the chain ladder’s development 
during the origin period demonstrates a similar trend 
from development period 1 to 10. 

In Table 4 (Appendix), the second column 
presents the current values, with the third column 
indicating the percentage that these current values 
represent in comparison to the ultimate values. The 
ultimate value and future value are presented in the 
fourth and fifth columns, respectively. The overall 
ultimate value reaches a total of 306,589,764 ALL, 
whereas the projected reserve for the future stands at 
10,073,000 ALL. The standard errors of the estimate 
and the coefficient of variation are shown in the 
sixth and seventh columns of the table. The findings 
are generated by employing the Mack function from 
the ChainLadder package in R.       

Fig. 1: Diagnostic Analysis of the Mack Chain 
Ladder Method 
                                                                     
4.3  Results of Clark’s LDF Method        
In Clark’s LDF method, it is assumed that the 
ultimate losses experienced in each successive 
period are distinct and independent from one 
another. The Clark's Cape Cod approach, on the 
other hand, operates under the assumption that the 
projected ultimate losses for each origin year can be 
calculated by multiplying the earned premium for 
that specific year with a theoretical loss ratio. The 
residual plots for both the LDF methods with 
Weibull distribution and with Log-logistic 
distribution are shown in Figure 2 and Figure 3. 
 

 
Fig. 2: Clark’s LDF chart (Weibull) 
 

When comparing the residuals of both models 
based on origin and projected age, it is evident that 
they do not show a similar pattern. Nevertheless, the 
LDF chart with Weibull distribution displays a more 
favorable distribution of fitted values and a slightly 
improved q-q plot. The outcomes are acquired 
through the utilization of the ClarkLDF function 
within the ChainLadder package in R. 
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Fig. 3: Clark’s LDF chart (Log-logistic)   
 

The results obtained by utilizing the LDF 
method with Weibull distribution and with 
parameters θ=0.5 and ω=0.2772783 are presented in 
Table 5 (Appendix). The LDF method would 
provide an estimation of 306,594,932 ALL as the 
total ultimate losses, along with a reserve (future 
value) of 10,079,250 ALL for the paid claims.  

The outcomes obtained for paid claims from the 
LDF method with Log-logistic distribution with 
parameters θ=0.5 and ω=0.2772783 are shown in 
Table 6 (Appendix). By employing the LDF 
technique, an approximation of 475,702,049 ALL 
can be determined as the total ultimate losses, 
together with a reserve (future value) of 
179,186,367 ALL for the paid claims.  
 
4.4  Results of Clark’s Cape Cod Method 
Figure 4 and Figure 5 present the residual plots for 
both the Cape Cod methods utilizing the Weibull 
distribution and the Cape Cod methods employing 
the log-logistic distribution. The graphs presented 
below indicate a slight upward trend in the 
development period and standardized waste.  

In contrast to the LDF model, the Cape Cod 
method used to project future reserve values 
involves both the premium and the expected loss 
ratio. The results shown in Table 7 and Table 8 in 
Appendix were obtained by utilizing the 
ClarkCapeCod function included in the 
ChainLadder package of R. The outcomes obtained 
by employing the Cape Code method with Weibull 
distribution are illustrated in Table 7 (Appendix). 
The results obtained from this model anticipate a 
projected reserve amount 176,823,264 ALL.  

 This projection indicates an approximate total    
claim amount of 473,338,946 ALL. This model is 
projected to have an expected loss ratio of 0.945, a 
standard error of 17,630,357, and a variation 
coefficient of 10%. The data from Table 8 

(Appendix) shows that the reserve (future value) is 
180,026,706 ALL, implying a total claim amount of 
approximately 476,542,388 ALL. The standard error 
is 17,051,894 ALL, leading to a coefficient of 
variation of 9.5%. 
 

 
Fig. 4: Clark’s Cape Cod chart (Weibull) 
 

 
Fig. 5:  Clark’s Cape Cod chart (Log-logistic) 
 
4.5  Comparison of the Methods                          
The models proposed initially are all included in 
summary Table 9, Table 10 and Table 11 in 
Appendix for the purpose of comparing them and 
selecting a model that fits our values. The ultimate 
claims, which have been determined using the 
methods described in the theory, are presented in the 
Table 9 (Appendix). Claims are considered fully 
paid when they reach 100% of the claimed amount. 
The reserve values, estimated through the methods 
outlined in section 3, are displayed in Table 10 
(Appendix). Clark Cape Cod method demonstrates 
higher ultimate values and reserve amounts when 
compared to the Mack model and Clark LDF using 
the Weibull distribution. The valuation technique 
utilized by Clark Cape Cod deviates slightly from 
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other methods by incorporating a fluctuating 
premium   amount and a constant loss level ratio 
(ELR) during the analysis periods. Consequently, 
the reserves will be directly influenced by the 
projected premium amount in future periods. 
Furthermore, the model utilizing a log-logistic 
distribution predicts larger reserves in contrast to the 
model employing a Weibull distribution; these 
findings align with the results derived from the 
information criteria. Hence, it can be deduced that 
the model utilizing the Weibull distribution is the 
most appropriate for our dataset. The summary of 
the models, along with their respective standard 
errors and coefficients of variation, is presented in 
Table 11 (Appendix). Among the models analyzed, 
the Mack model and Clark LDF model with log-
logistic distribution stand out for having the lowest 
coefficient of variation.                                        

Specifically, the Mack model has a coefficient 
of variation of 0.42, while the Clark LDF model 
with Log-logistic distribution has a coefficient of 
variation of 8.6%. Additionally, their standard errors 
are 4,494,040 ALL and 15,447,440 ALL, 
respectively. The model with the lowest standard 
errors is the Clark LDF model with Weibull 
distribution, followed by the Mack model. The 
projected reserve amount differs by 6,250 ALL 
between these two models, with the Mack model 
showing the lowest reserves. 
 
 
5   Discussion  
To ensure the financial strength of an insurance 
company and meet solvency capital requirements, it 
is crucial to carefully assess the reliability of reserve 
valuation. Therefore, it is highly recommended to 
evaluate the data and decide regarding the most 
accurate reserve. The literature review encompasses 
various studies that indicate the superiority of 
stochastic methods, such as Mack's model and the 
Cape Cod method, in comparison to deterministic 
approaches in terms of precision and flexibility. 
Several studies emphasize the accuracy of specific 
models such as the Mack Chain Ladder, [13], [14], 
or the Clark LDF model, [21], while others 
concentrate on comparing multiple models and their 
suitability for diverse insurance datasets, [10], [11], 
[18], [21]. 

Various studies, including, [15], [20] and [22], 
contribute to the advancement of existing stochastic 
models through the introduction of improvements or 
the investigation of their suitability in novel 
contexts. For example, [20], improves parameter 
estimation by extending the Cape Cod technique 
with additional stochastic models, while, [22], 

explores the combination of different stochastic 
models into a unified model for reserve estimation. 

In this study, the overall portfolio of the 
sickness insurer is subjected to analysis using three 
stochastic methods to predict a realistic reserve. The 
results derived from the Mack model demonstrate 
that the reserve estimation for paid claims is 
10,073,000 ALL, with standard errors, 4,494,040 
ALL. The application of the Mack model can yield 
results that apply to a wide range of companies 
operating in the private health insurance market in 
Albania. The findings of this paper align with the 
outcomes of previous studies, [11], [13], which 
determined that the Mack model is the most suitable 
approach for estimating reserves among 
distribution-based methodologies. This preference is 
based on the lower prediction errors observed in the 
Mack model compared to alternative models. 

In contrast, the results of this study differ from 
the conclusions drawn by [10], [12] as they 
suggested that the ODP method with bootstrapping 
was a more prudent choice when compared to the 
Mack method. The results obtained by utilizing the 
LDF method with Weibull distribution estimate a 
reserve of 10,079,250 ALL for the paid claims with 
standard errors of 2,039,631 ALL. The application 
of the LDF method with the Log-logistic 
distribution has suggested a reserve of 179,186,367 
ALL for the paid claims, with standard errors of 
15,447,440 ALL. By implementing the Cape Code 
method, the estimated reserve (future value) for the 
paid claims amounts to 176,823,264 ALL with 
standard errors 17,630,357 ALL for the Weibull 
distribution, while the reserve (future value) for the 
Log-logistic distribution stands at 180,026,706 ALL 
with standard errors 17,051,894 ALL. Models 
utilizing the log-logistic distribution demonstrate a 
lower coefficient of variation, while those 
employing the Weibull distribution show a lower 
standard error. Consequently, it can be inferred that 
the Weibull distribution model is more suitable for 
fitting our data, despite displaying higher variability 
in the estimates. The results are in line with the 
research performed by [18] indicating that the 
optimal distribution for incurred and paid claims is 
the Weibull distribution. Furthermore, the Clark 
LDF method presents a lower standard error, 
compared to the Cape Cod method. It is crucial to 
emphasize that Mack's method provides a lower 
estimate for paid claims, resulting in a small 
difference of 6,250 ALL with the Clark LDF 
(Weibull) method. In comparison to alternative 
methods, the Clark LDF method accurately predicts 
the reserve of claims with the lowest value. The 
findings are in line with the study conducted by [21] 
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recommending the Clark LDF model as a more 
reliable option for accurate claims reserving in 
insurance companies. This is because of its lower 
variability in reserve predictions compared to 
traditional models such as the Chain Ladder. The 
results of this study are inconsistent with the 
conclusions drawn by [18] and [19] who assert that 
the Cape Cod method offers a unique approach 
based on growth curve modeling and shows a 
smaller variance when contrasted with the LDF 
method. 

The disparities in findings between previous 
studies and our study, which employed similar 
models but different datasets, highlight the existence 
of significant risk factors influencing the number of 
insurance claims across various datasets. 
Additionally, various models must be used in 
different datasets to capture the dataset 
characteristics and provide a more precise 
prediction. 
 
 
6   Conclusion  
This paper contributes to the growing body of 
literature on claim-reserving techniques in private 
health insurance by utilizing stochastic methods and 
conducting a comprehensive analysis. Researchers, 
insurers, and regulators will gain valuable insights 
from this study.      

The study aims at analyzing the claims 
distribution and find the best forecasting approach 
for the loss reserve. The results of this research 
emphasize the importance of selecting an 
appropriate statistical distribution, where the 
Weibull distribution is the best choice to model 
claims data. Clark's method, which includes both 
LDF and Cape Cod techniques, can be effectively 
used to forecast disease portfolio claim reserves. 
Among other methods, the Clark LDF method with 
Weibull distribution stands out as it shows superior 
accuracy in claim reserves projection. Mack and 
Clark LDF models with Weibull distribution were 
shown to be a more accurate method than all other 
models demonstrating the lowest reserve claims and 
standard errors.   

Additionally, the study examines different 
models to emphasize the need for insurers to make 
careful trade-offs between simplicity and 
complexity, while also taking into account 
supplementary aspects such as premium fluctuation. 
Furthermore, insurance companies must have 
accurate claim reserves to meet their financial 
obligations, and more importantly to maintain the 
confidence of policyholders and stakeholders. 
Consequently, alternative strategies for distribution 

of funds should be considered by the firm rather 
than only maintaining a large claims reserve. 

Nonetheless, this research has its limitations. 
This study uses a given set of data from Albanian 
insurance companies that do not necessarily 
represent the whole population of private health 
insurance portfolios worldwide. Moreover, 
stochastic approaches are good at capturing risk but 
they require proper selection and validation of 
parameters in order to enhance reliability. 

To address these limitations, future research 
should explore alternative methodologies and 
incorporate extensive datasets from diverse 
insurance markets. A potential area for future 
investigation is the use of random forest or artificial 
neural networks to estimate claim reserves within 
the private health insurance portfolio. 
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APPENDIX 
 

Table 2. Run-off triangle data for the settlement of cumulative claims losses. 

Source: Author 

 

 

Table 3. Information Criteria 

Source: Author 

 

 
Table 4. Mack ‘s model results 

Source: Author 

 
 

Table 5. LDF results (Weibull) 

Source: Author 

Accident 
Semiannually   
i 

Development period j 

6 12 18 24 30 36 42 48 54 60 
2018S1 25,708,146 27,384,733 28,215,173 28,215,173 28,215,173 28,215,173 28,215,173 28,215,173 28,215,173 28,215,173 
2018S2 27,982,595 34,791,276 34,877,058 34,877,058 34,877,058 34,877,058 34,877,058 34,877,058 34,877,058 

 2019S1 12,210,107 16,717,660 17,022,202 17,022,202 17,022,202 17,022,202 17,022,202 17,022,202 
  2019S2 17,552,062 24,535,120 24,859,991 24,859,991 24,875,511 24,875,511 24,875,511 

   2020S1 10,876,183 17,319,770 17,505,677 17,505,677 17,505,677 17,505,677 
    2020S2 26,105,381 31,222,767 31,469,533 31,469,533 31,469,533 

     2021S1 37,449,430 44,562,562 44,891,943 44,899,543 
      2021S2 25,624,861 32,177,447 32,180,247 

       2022S1 21,596,157 29,670,863 
        2022S2 35,799,875 

         

Information Criteria 
Distribution AIC BIC 
Log-logistic 1914 1918 

Weibull 1908 1912 

Times 
 Current Value Dev. Date Ultimate Future Value Mack.S.E CV 

2018S1 28,215,173 1 28,215,173 0 0 0 
2018S2 34,877,058 1 34,877,058 0 0 0 
2019S1 17,022,202 1 17,022,202 0 0 0 
2019S2 24,875,511 1 24,875,511 0 0 0 
2020S1 17,505,677 1 17,505,677 0 0 -0.637 
2020S2 31,469,533 1 31,469,533 0 0 -0.592 
2021S1 44,899,543 1 44,904,069 4,530 9,710 2.145 
2021S2 32,180,247 1 32,184,721 4,470 8,330 1.862 
2022S1 29,670,863 0.990 29,974,771 304,000 296,000 0.974 
2022S2 35,799,875 0.786 45,561,049 9.760,000 4,180,000 0.429 
Total 296,515,682 

 
306,589,764 10,073,000 4,494,040 0.42 

Origin Current Value LDF Ultimate Future Value Std. Error CV% 
2018S1 28,215,173 1 28,215,173 0 1 22426594 
2018S2 34,877,058 1 34,877,058            0 6 4323089 
2019S1 17,022,202 1 17,022,202            8 21 1324932 
2019S2 24,875,511 1 24,875,511            0 117 234911 
2020S1 17,505,677 1 17,505,678            1 459 59992 
2020S2 31,469,533 1 31,469,563           30 2,875         9589 
2021S1 44,899,543 1 44,900,475          932 16,074         1725 
2021S2 32,180,247 1 32,194,801       14,554 64,435         442 
2022S1 29,670,863 1.01 29,965,898      295,035 303,882         103 
2022S2 35,799,875 1.273 45,568,573    9,768,698 2,006,738         20.5 
Total 296,515,682          

 
306,594,932   10,079,250 2,039,631         20.2 
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 Table 6. LDF results (Log-logistic) 

Source: Author 

 

 

Table 7. Clark Cape Cod results (Weibull) 

Source: Author 

 
 

 

 

 

 

 

 

Origin Current Value LDF Ultimate Future Value Std. Error CV% 
2018S1 28,215,173 1.442     40,686,485   12,471,312   4,074,917 32.7 
2018S2 34,877,058 1.456     50,775,813   15,898,755   4,601,471 28.9 
2019S1 17,022,202 1.472 25,055,821    8,033,619   3,270,991 40.7 
2019S2 24,875,511 1.491 37,090,688   12,215,177   4,033,357 33.0 
2020S1 17,505,677 1.514 26,509,426    9,003,749   3,495,336 38.8 
2020S2 31,469,533 1.544 48,581,487   17,111,954   4,773,379 27.9 
2021S1 44,899,543 1.583 71,076,226   26,176,683   5,903,972 22.6 
2021S2 32,180,247 1.640 52,776,119   20,595,872   5,237,175 25.4 
2022S1 29,670,863 1.737 51,550,234   21,879,371   5,398,318 24.7 
2022S2 35,799,875 2.000 71,599,750   35,799,875   7,558,486 21.1 
Total 296,515,682 

 
475,702,049 179,186,367 15,447,440 8.6 

Origin Current Value 

 
 
Premium ELR Ultimate Future Value Std. Error CV% 

2018S1 28,215,173 
 
50,020,000 0.945 43,386,060   15,170,887     5,164,127 34.0 

2018S2 34,877,058 
 
50,040,000 0.945 50,355,147   15,478,089     5,216,150 33.7 

2019S1 17,022,202 
 
50,060,000 0.945 32,846,212   15,824,010     5,274,116 33.3 

2019S2 24,875,511 
 
50,080,000 0.945 41,095,190   16,219,679     5,339,647 32.9 

2020S1 17,505,677 
 
50,100,000 0.945 34,187,300   16,681,623     5,415,151 32.5 

2020S2 31,469,533 
 
50,120,000 0.945 48,705,803   17,236,270     5,504,439 31.9 

2021S1 44,899,543 
 
50,140,000 0.945 62,829,444   17,929,901     5,614,103 31.3 

2021S2 32,180,247 
 
50,160,000 0.945 51,035,742   18,855,495     5,757,188 30.5 

2022S1 29,670,863 
 
50,180,000 0.945 49,920,806   20,249,943     5,966,276 29.5 

2022S2 35,799,875 
 
50,100,000 0.945 58,977,242   23,177,367     6,382,980 27.5 

Total 296,515,682 
 
501,100,000                           

 
473,338,946 176,823,264    17,630,357 10 
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Table 8. Clark Cape Cod results (Log-logistic) 

Source: Author 

 

 
Table 9. Ultimate claims of Mack, LDF (Weibull), LDF(Log-logistic), Cape Cod (Weibull) and                              

Cape Cod (Log-logistic) methods             

Source:Author 

 

 

 

 

 

 

 

 

 

 

 

 

 

Origin 
Current 
Value 

 
Premium ELR Ultimate Future Value Std. Error CV% 

2018S1 28,215,173 
 

50,020,000 0.951 43,672,122   15,456,949     4,996,502 32.3 

2018S2 34,877,058 
 

50,040,000 0.951 50,629,874   15,752,816     5,044,095 32 

2019S1 17,022,202 
 

50,060,000 0.951 33,110,677   16,088,475     5,097,551 31.7 

2019S2 24,875,511 
 

50,080,000 0.951 41,351,210   16,475,699     5,158,532 31.3 

2020S1 17,505,677 
 

50,100,000 0.951 34,437,963   16,932,286     5,229,522 30.9 

2020S2 31,469,533 
 

50,120,000 0.951 48,956,513   17,486,980     5,314,490 30.4 

2021S1 44,899,543 
 

50,140,000 0.951 63,090,252   18,190,709     5,420,371 29.8 

2021S2 32,180,247 
 

50,160,000 0.951 51,327,479   19,147,232     5,561,055 29.0 

2022S1 29,670,863 
 

50,180,000 0.951 50,296,605   20,625,742     5,771,769 28.0 

2022S2 35,799,875 
 

50,100,000 0.951 59,669,693   23,869,818     6,209,101 26.0 

Total 296,515,682 
 

501,100,000                           
 

476,542,388 180,026,706    17,051,894   9.5 

Semiannually 
Accident 

Mack Chain 
Ladder 

Clark’s 
LDF(Weibull) 

Clark’s 
LDF(Loglogistic) 

Clark’s Cape 
Cod(Weibull) 

Clark’s Cape 
Cod(Loglogistic) 

2018S1 28,215,173 28,215,173 40,686,485 43,386,060 43,672,122 
2018S2 34,877,058 34,877,058 50,775,813 50,355,147 50,629,874 
2019S1 17,022,202 17,022,202 25,055,821 32,846,212 33,110,677 
2019S2 24,875,511 24,875,511 37,090,688 41,095,190 41,351,210 
2020S1 17,505,677 17,505,678 26,509,426 34,187,300 34,437,963 
2020S2 31,469,533 31,469,563 48,581,487 48,705,803 48,956,513 
2021S1 44,904,069 44,900,475 71,076,226 62,829,444 63,090,252 
2021S2 32,184,721 32,194,801 52,776,119 51,035,742 51,327,479 
2022S1 29,974,771 29,965,898 51,550,234 49,920,806 50,296,605 
2022S2 45,561,049 45,568,573 71,599,750 58,977,242 59,669,693 
Total 306,589,764 306,594,932 475,702,049 473,338,946 476,542,388 
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Table 10. Reserves estimation of Mack, LDF (Weibull), LDF (Loglogistic), Cape Cod (Weibull) and Cape Cod 
(Loglogistic) methods. 

Source:Author 

 

 

 

Table 11. Model summary 

Source: Author 
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Semiannually 
Accident 

Mack Chain 
Ladder 

Clark’s 
LDF(Weibull) 

Clark’s 
LDF(Loglogistic) 

Clark’s Cape 
Cod(Weibull) 

Clark’s Cape 
Cod(Loglogistic) 

2018S1 0 0 12,471,312   15,170,887     15,456,949     
2018S2 0 0 15,898,755   15,478,089     15,752,816     
2019S1 0 0 8,033,619   15,824,010     16,088,475     
2019S2 0 0 12,215,177   16,219,679     16,475,699     
2020S1 0 1 9,003,749   16,681,623     16,932,286     
2020S2 0 30 17,111,954   17,236,270     17,486,980     
2021S1 4,530 932 26,176,683   17,929,901     18,190,709     
2021S2 4,470 14,554 20,595,872   18,855,495     19,147,232     
2022S1 304,000 295,035 21,879,371   20,249,943     20,625,742     
2022S2 9.760,000 9,768,698 35,799,875   23,177,367     23,869,818     
Total 10,073,000 10,079,250 179,186,367 176,823,264    180,026,706    

 Mack Chain 
Ladder 

Clark’s 
LDF(Weibull) 

Clark’s 
LDF(Loglogistic) 

Clark’s Cape 
Cod (Weibull) 

Clark’s Cape Cod 
(Loglogistic) 

Standard 
Error 4,494,040 2,039,631 15,447,440 17,630,357 17,051,894 

 
CV% 0.42 20.2 8.6 10 9.5 
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