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1   Introduction 
A number of domestic structural factors determine a 
country’s current account balance, deficit or surplus. 
If a deficit reflects higher investment than savings, 
this can be beneficial for the respective economy’s 
long-run growth. On the other hand, a deficit 
resulting from higher imports than exports may 
indicate competitiveness shortcomings. For current 
account surplus countries, while a surplus helps 
strengthen the exchange rate and reduce dependency 
on external finance, if demographic factors and/or 
falling levels of investment underpin this surplus, 
these features can be negative for their long-run 
economic growth, [1]. 

The relation between current account deficits and 
financial crises has extensively been analyzed by 
applied-economic researchers, as it constitutes a 
major challenge for policymakers in view of the 

enormous costs associated with financial crises. 
There are several types of financial crises, including 
currency crises [2], [3], [4], capital market access 
sudden stops [6], [7], banking crises [8], and balance-
of-payments/foreign xchange/sovereign debt crises 
[9], [10], [11]. Sometimes crises are correlated with 
each other and emerge as a twin crisis, e.g., banking 
and balance-of-payments crises, [6] or triple crisis, 
e.g., currency-banking-balance of payments crises, 
[12], which usually becomes difficult to disentangle. 
Several theoretical models suggest three generations 
of financial crisis models for the fundamental 
explanation of crises, [13], [14], [15]. Other 
theoretical models are based on stochastic control, 
[16], [17]. 

The large costs of financial crises arise from the 
vast disruptions that they generate, including 
economic slowdown, output losses, unemployment, 
financial instability, political instability, and social 
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problems, [8], 18], [19], [20], [21], [22], [23]. These 
economic consequences lead to loss of confidence 
among investors, often causing decreased investment 
levels and capital outflows. Further, such 
consequences can become even more pronounced 
with the simultaneous or sequential occurrence of 
other crises. The latest example of a cascading crisis 
is the sovereign debt crisis in 2010–2019 that was 
succeeded by the COVID-19-induced supply-lines 
disruption crisis in 2020-2023 and was compounded 
by the Russia-Ukraine war-induced global inflation 
crisis in 2022-2024.  Due to these multidimensional 
consequences, developing a mathematical model that 
encompasses the leading factors of a multifaceted 
financial crisis is a major challenge for modelers and 
policymakers, with the difficulties being amplified by 
the dynamic nature of the factors affecting a financial 
crisis. As consequences are intertwined and increase 
in frequency and intensity, they can multiply each 
other’s impact in a chaotic manner.  

The construction of a mathematical model of a 
financial crisis typically involves four steps: (1) the 
primary step in formulating such a model is to define 
a financial crisis; (2) the explanatory variables need 
then to be selected, i.e., those variables that are likely 
to lead to a financial crisis if they cross a threshold or 
interact adversely; (3) a theoretical model should 
subsequently be developed that relates the different 
variables. The setup could be statistically-based, 
econometrically-based, or economics-based.; and (4) 
various econometric/statistical methodologies are 
considered to find the desired estimates. In our case, 
we start with a model based on conventional 
economic fundamentals [16] and then expand it by 
incorporating sovereign asset and liability 
management principles and balance-of-
payments/foreign exchange/sovereign debt crisis 
considerations, [24]. The starting point is the current-
account-deficit accounting equations. Stochastic 
calculus is used to formulate a relation between 
foreign debt and other economic variables such as 
exchange rate, reserves, savings, current account, 
investments, and debt/loans. We subsequently use the 
martingale optimality principle to find the optimal 
level of debt, reserves, savings, exchange rate, and 
domestic interest rate that are consistent with non-
crisis outcomes. 

In particular, we expand the model in [16] and 
study the interaction between the current account, 
real exchange rate, foreign reserves, domestic 
savings, domestic interest rate, inflation, and external 

debt in an environment where the return on capital, 
the domestic interest rate, the foreign interest rate, 
and the return on reserves are stochastic variables. 
Our model of such dynamic interaction reveals that 
an "overvalued" exchange rate, implying that the cost 
of an identical basket of goods is more expensive 
domestically than abroad at the prevailing nominal 
exchange rate, leads to a steady rise in the external 
debt (Statically, however, an overvalued exchange 
rate leads to a lower level of external debt in 
domestic currency terms). In turn, the accumulation 
of debt due to ensuing trade account deficits and the 
interest rate payments on the debt exert downward 
pressure on the exchange rate, which may lead to a 
currency (balance of payments) crisis. Specifically, a 
significant depreciation of the currency increases the 
debt burden in terms of local currency and increases 
the probability of a debt crisis, [16]. 

In this study, we examine the determination of 
the optimal real exchange rate that stems from the 
maximization of a utility function as opposed to the 
equilibrium real exchange rate. We find that the 
optimal real exchange rate is proportional to the 
return on domestic investments and inversely related 
to the U.S. interest rate. This result was obtained 
using the Martingale Optimality Principle, [25], [26], 
[27], [28], [29], [30], [31].  

The novel analysis of this paper is a major 
contribution in the relevant literature. Although the 
link between the real (and nominal) exchange rate, 
productivity, and external debt is crucial for the 
economic and financial stability of a country, we are 
not aware of any studies that have analyzed these 
interlinks, ([10] estimate optimal levels of foreign 
debt for Egypt during 1985-2008, without taking 
explicitly into account the dynamic interactions 
between foreign debt and the exchange rate).. Since 
both exchange rates and external debt are dynamic 
concepts, representation of their interlinks warrants a 
suitable dynamic approach. Typically, the analysis of 
the dynamic interaction between variables is carried 
out in optimal value terms. This paper develops such 
a framework of dynamic behavior. Such framework, 
appropriately calibrated for specific country 
conditions, can serve as a policy tool for informing 
government authorities in their assessments of the 
state of their external debt and drawing conclusions 
on followed exchange rate policies.  

The paper is organized as follows: Section 2 
presents the problem formulation of the dynamic 
interaction between the exchange rate, reserves, 
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savings, and external (foreign currency) debt. Section 
3 highlights the optimization problem and gives the 
optimal values of the exchange rate, reserves, 
savings, and external (foreign currency) debt. Section 
4 discusses the results and provides some concluding 
remarks on the applicability and shortcomings of the 
proposed framework, as well as it points out some 
areas for future research. An Appendix presents all 
necessary derivations. 

 
 

2   Problem Formulation 
Our prototype model is a simplification of a complex 
economy that focuses on shocks (economic and 
financial disturbances) that have led to crises. The 
model is analytically tractable, with all derived 
equations having an economic interpretation. 
However, introduction of more realistic assumptions 
would generate a less transparent solution and 
economic interpretation. The prototype model is 
proposed as a “benchmark” model. We assume four 
sources of uncertainty: (1) the value of GDP and the 
return on capital, (2) the interest rate on foreign loans 
and bonds, (3) the interest rate paid for domestic 
savings, and (4) the interest paid for the foreign 
reserves. It is important to recognize that there might 
be a correlation between some or all of sources of 
uncertainty. 

Adopting a stochastic calculus formulation [16], 
the net worth or wealth, X(t), in nominal terms is 
defined as: 

 )()()()( tLtRtKtX 

 
(1) 

and )()()()( tdLtdRtdKtdX 

  
where  
K(t) is the capital owned by the residents of the 
country 
L(t) is the country’s external debt, denominated in 
the $US 
R(t) is the reserves, denominated in the $US 
X(t) is the networth 
 
The change in capital, dK(t), is the rate of investment 
I(t): 

 dttItdK )()( 

  
(2) 

 
The Harrod-Domar growth equation [32] 

provides the link between the GDP Y(t) and the 
capital K(t) as:  

  dttbtRtLtXdttbtKdttY )()()()()()()( 

 
where b(t) is the return on investments. 
 
Also, real consumption C(t), real investments I(t), 
and real GDP Y(t) are related through the current 
account equation, [33]: 

  dttStItdRtdL )()()()(        (3) 
 
In [34], the savings was added to yield: 

 dttLtitCtRtitStitYdttS rs )()()()()()()()()( 
 

    (4) 
where  
S(t) domestic savings 
C(t) consumption 
Y(t) GDP 

si  interest paid on domestic savings 

ri  interest paid on foreign reserves 
 
By substituting equation (4) into equation (3), we get:

dt
tLtitYtC

tRtitStitI
tdRtdL

rs















)()()()(
)()()()()(

)()(
 

     (5) 
 
By rearranging, we get:

 
)()(

)()()()()()()()()(
tdRtdL

dttLtitRtitStitItYdttC rs





 
     (6) 

 
In terms of the nominal values, we get: 

 
)()()()(

)()()()()()()()()()()()()()()(
tdRtetdLte

dttRtitetStitptLtitetItptYtpdttCtp rs





     
(7) 

 
where p(t) is the domestic price index, e(t) is the 
nominal exchange rate (domestic price of foreign 
exchange or units of domestic currency per unit of 
$US). Note that the formulation of this equation 
excludes government expenditures and assumes that 
the external sector is represented by the change in the 
external debt, dL(t),  the interest rate payments on the 
debt, i(t)L(t), the change in reserves dR(t), and 
interest payment on the reserves. 
 

In particular, as we assume that the external debt 
L(t) is denominated in $US, the term i(t)L(t) stands 
for the interest payments in $US, at the rate of 
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interest i(t), on US dollar denominated loans and 
bonds. Further, we assume that the accumulation of 
debt refers to annual intervals. 

By dividing equation (7) by p(t), we obtain the 
real consumption C(t) (measured in domestic-goods 
units) as: 

)(
)(
)()(

)(
)(

)()(
)(
)()()()()(

)(
)()()()(

tdR
tp

te
tdL

tp

te

dttRti
tp

te
tStitLti

tp

te
tItYdttC rs













     
(8) 

 
Unlike other models, we do not assume 

"Purchasing Power Parity" (PPP) or the "Law of One 
Price", i.e., 1)(/)( tpte . As a matter of fact we 
estimate the exchange rate.  

Further, by rearranging terms in equation (7), we 
get: 

 dttStitYtItC
te

tp

dttRtidttLtitdRtdL

s

r

)()()()()(
)(
)(

)()()()()()(


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      (9) 
 

Now, we develop the SDE for the net worth, X(t) 
, X(t), K(t) in LE, and L(t) and R(t)  in $US: 

  )()()(
)(
)()( tdKtdLtdR
tp

te
tdX   

  )()(
)(
)()( tdLtdR
tp

te
dttI   

 

  




















dttStitYtItC

te

tp

dttRtidttLti

tp

te
dttI

s

r

)()()()()(
)(
)(

)()()()(

)(
)()(  

 

 

 dttStitYtItC

dttRtidttLti
tp

te
dttI

s

r

)()()()()(

)()()()(
)(
)()(




 

 
 

 dttStitYtC

dttRtidttLti
tp

te

s

r

)()()()(

)()()()(
)(
)(





      
(10)  

By substituting: 
  dttbtRtLtXdttbtKdttY )()()()()()()(   

in equation (10), 
 

we get: 
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By dividing by X(t), we get: 
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Define 
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then, 
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(13) 

 
Assuming that the rate of interest i(t) on US 

dollar-denominated loans and bonds can be 
represented by the following process: 

 
dt

tdW
iti i

i

)()(      
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i.e., )()( tdWidtdtti ii          (14) 
 
Similarly, for the interest on the reserves and the 
savings, we get:  

 
dt
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i.e., )()( tdWdtidtti
rr iirr   (15) 
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The other source of uncertainty is the return on 

investments, b(t), which can be represented by the 
following process: 
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get: 
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By collecting terms, we get: 
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The new equation for the system dynamics becomes: 

 

















)()(

)()()()()()(

)()()()()(
)(
)(

4

321

4321

tdWt

tdWttdWttdWt

dttbtititidttc
tX

tdX

bb

iiiiii

sr

ssrr







     (20) 
 

Define

























b

i

i

i

s

r











000
000
000
000

,

 





















)(
)(
)(
)(

)(

tdW

tdW

tdW

tdW

tWd

b

i

i

i

s

r , 

 











































 

b

is

ir

i

s

r

b

i

i

i

b

i

i

i

t

s

r











/
/
/
/

)( 1  

  dtttWdtWd
Q

)()()(  ,  

 









 

tt
T

dsssWdstZ
0

2

0

)(
2
1)()(exp)( 

     (21a) 
 

 ts

T

tt
T

ss

sstZ

dsssWdsDtZtZD

,0

0

2

0

)(1)()(

)(
2
1)()()()(











 





     (21b) 
 

where )(tZDs is the Malliavin derivative of Z(t), 
and
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Note that )(t is a deterministic quantity. Thus, 

the sigma field generated by W(t) is the same as that 
generated by )(tW Q

. 
Then, the unknowns are: (1) c(t)=C(t)/X(t), (2) 

l(t)=L(t)/X(t), (3) 
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and (5) e(t)/p(t).  
 
 
3   Problem Solution 
The objective of this study is to find the optimal 
values of the normalized consumption, the 
normalized foreign debt, the normalized reserves, the 
normalized savings, the domestic saving rate and the 
real exchange rate. The optimization criterion is  
rethe expected value of the utility of the networth and 
consumption at time T (the end of the optimization 
period). Specifically, we need to find:  
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subject to the dynamic constraints:  
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tdX
Q

T
  (22) and

xX )0(  
where   is the discount rate in the two utility 
functions, ))(( scUc , the utility function of 

households, and  )(TxU x , the utility function of the 
final value of the economy’s net worth. The utility 
functions, ))(( scUc reflects the importance of 
increasing the public welfare. The utility function 

 )(TxU x , emphasizes the importance of the net 
worth of the society at some future time T. 
 

The optimization methodology is based on the 
martingale optimality principle. The result of the 
optimization will be the optimal values of c(t), l(t), 
r(t), s(t), and e(t)/p(t). To find the optimal values, the 

basic idea is to find two equations for the networth 
X(t). The first is obtained from the system dynamics; 
equation (22). The second equation is obtained 
through the optimization process. Equating both 
formulae will yield the unknown controllers )(t .  

In this approach [35], we decouple the problem 
of determining the optimal terminal wealth profile 
from the problem of determining the optimal 
portfolio. Instead of solving the dynamic control 
problem, we solve the static problem i.e. we find the 
optimal values for X(T) and C(t) that maximize eqn. 
(23) subject to the constraint X(0)=x. Given the 
optimal wealth profile X*(T) and optimal 
consumption C*(t) , we compute the corresponding 
generating portfolio )(t . The last step is achieved 
using the Clark-Ocone formula. The details of the 
derivations are given in Appendix A. 

After some manipulations (Appendix A), we 
obtain the optimal exchange rate as: 
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 (A.29)
 

As the productivity, b, increases, the exchange 

rate goes down (appreciates).
  

By rearranging, we get the optimal normalized 
value for the foreign loans )(/)()( tXtLtl  as: 
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(A.30) 

 
On the limit when the interest rate on foreign 

loans “i” goes very high, l(t) becomes negative, i.e., 
we are better off lending the money than borrowing 
it. This is a desired result.  
 
Impact of Savings: 
To study the impact of the savings on the foreign 
loans and reserves, we look at the ratio 
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when the interest rate on local savings

 
si  increases, 

we have the following scenarios: (1) Savings s(t) 
increases, (2) reserves r(t) increases, (3) foreign loans 
decrease, and (4) a combination of the previous 
scenarios. 
 

To study the impact of the savings on the 
exchange rate, we look at the ratio: 
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when the interest rate on local savings

 
si  increases, 

we have the following scenarios: (1) savings s(t) 
increases, (2) exchange rate e(t) decreases, (3) 
inflation increases, (4) foreign loans decrease, and (5) 
a combination of the previous scenarios. 
 

In this section, we apply the above derived 
optimal values to the Egyptian economy. The 
available data was between 1985 and 2016. 
 
Equation (A. 29) could be written as:  
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where )(* tp , the US consumer price index, set at 1 
in the previous analysis. 
By taking the logarithm (ln) of both sides, we get: 
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Equation (24) is a familiar form, with some 

empirical models being cast in this format, [36], [37], 
[38]. 

Below, using available data for Egypt, we 
present our model’s findings about actual, optimal, 
and PPP exchange rates.  

Figure 1 (Appendix) shows the actual and 
approximate optimal external debt ratios, 
l(t)=L(t)/X(t), for Egypt. We display both 
conservative (ℽ=higher) and risky (ℽ=lower) 
estimates for the approximate optimal external debt. 
As shown in Figure 1 (Appendix), the actual external 
debt-to-net worth ratio is lower than the risky 
approximate optimal external debt-to-net worth ratio 
for almost the entire period analyzed, 1985-2017 
(with the exception of 1991 and 2011). This marked 
a stable period during the tenure of president 
Mubarak. The actual external debt-to-net worth ratio 
is higher than the conservative approximate optimal 
external debt-to-net worth ratio for the period 1985-
1995; is about equal between 1996-2010; and is 
higher again during 2011-2017 after the revolution of 
2011 where Mubarak was toppled. These results 
indicate that Egypt’s actual external debt-to-net 
worth ratio was higher than the conservative 
approximate optimal external debt-to-net worth ratio 
for 18 out of the 33 years in the sample, implying 
that the country had contracted more debt than it 
should during these years. Egyptian balance-of-
payments and sovereign debt developments in 
subsequent years, after 2017, justify these empirical 
findings. 

In Figure 2 (Appendix) we present the estimated 
approximate optimal exchange rate for Egypt, the 
nominal (official) exchange rate and the purchasing 
power parity (PPP) exchange rate (using WDI data 
for annual inflation P(t), the PPP and the nominal 
(official) exchange rates). 

As shown in Figure 2 (Appendix), Egypt’s 
nominal (official) exchange rate (LE/$US) was much 
less than its optimal values during 1985-1994. This is 
a reflection of government intervention to keep low 
prices. The exchange rate then stayed consistently 
above its optimal values during 1998-2008. Two 
devaluations occurred in 1991 and 2002. Starting in 
2012, the nominal exchange rate is above its optimal 
values, and converging in 2015-2016. 
 
 
4   Conclusions 
This paper studies the interaction between the current 
account, real exchange rate, foreign reserves, 
domestic savings, domestic interest rate, inflation, 
and external debt in an environment where the return 
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on capital, the domestic interest rate, the foreign 
interest rate, and the return on reserves are stochastic 
variables. The calibrated model of such dynamic 
interaction reveals that an "overvalued" exchange 
rate leads to a steady rise in the external debt. In turn, 
the accumulation of debt due to ensuing trade 
account deficits and the interest rate payments on the 
debt exert downward pressure on the exchange rate, 
which may lead to a currency (balance of payments) 
crisis. Specifically, a significant depreciation of the 
currency increases the debt burden in terms of local 
currency and increases the probability of a debt 
crisis. 

It should be noted that the determination of the 
optimal real exchange rate stems from the 
maximization of a utility function as opposed to the 
equilibrium real exchange rate. We find that the 
optimal real exchange rate is proportional to the 
return on domestic investments and inversely related 
to the U.S. interest rate. Further, we analyze the link 
between the real (and nominal) exchange rate, 
productivity, and external debt. These interlinks are 
crucial for the economic and financial stability of a 
country and, as far we know, it is the first time that 
are studied. Since both exchange rates and external 
debt are dynamic concepts, representation of their 
interlinks (i.e., the dynamic interaction between these 
variables analyzed by utilizing a dynamic approach) 
is presented in optimal value terms. The developed 
framework can be appropriately adapted for specific 
country conditions and serve as a policy tool for 
informing government authorities in assessing the 
state of their external debt and drawing conclusions 
on followed exchange rate policies.  

The results of our model, as of any model, to be 
used for policy analysis, need refining and expansion 
of model parameters. The production function for 
example could be changed. The relationship between 
investments and GDP could also have other 
elements. Future research could add more variables 
such as government expenditure, money supply and 
others. 
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APPENDIX 

 
In this appendix, we present the martingale 
optimality principle, [7], [29], [31], [39], [40] and 
how to used to find the optimal value of the 

controllers 
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basic idea is to find two equations for the networth 
X(t). The first is obtained from the system dynamics, 
while the second equation is obtained through the 
optimization process. Equating both formulae will 
yield the unknown controllers )(t . 
 
First, we state the SDE of the net worth, X(t), as 
given by equation (22): 
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which could be written as: 
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By integrating, we get: 
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and satisfies the equation: 
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Equation (A.5) is also valid for the optimal values 
X*(T) and C*(t). 
This is the first equation in the unknowns )(t . We 
need another equation for   
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We use the generalized Clark-Ocone formula, [39]: 
 
For a random variable F(T) and under general 
conditions: 
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Note that )(uDs , the Malliavin derivative of )(u , 
is a matrix. 

By setting 
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equating (A.5) and (A.6), we get:
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By taking the transpose of both sides, we get: 
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   (A.7) 
For deterministic )(t , as in our case, 0)( uDs , 
we get: 
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i.e., 
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(A.8) 

 
We need to find an expression for the optimal 

networth X*(T) and the optimal consumption C*(t) 
that satisfy equation (A.8). This is obtained through 
the maximization of the utility function. We then find 
their Malliavin derivatives and substitute into 
equation (A.8) to get the second expression.By taking 
the

 
expectation of both sides of (A.3), we get:
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(A.9) 
 
The optimization: 
For the purposes of this analysis, we define the utility 
function of the consumption as: 
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And the utility function of the final wealth: 
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Also, we define the objective function as:  
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Thus, we have two utility functions,  )(tCU  

and  )(TXU x . The first reflects the desire to 
increase the public welfare or consumption, while the 

second one reflects the desire to increase the net 
worth of the society at some future time T.  
 
The optimization problem could now be stated as 
follows: 
Find C(t) and X(T) that maximize  )0(XV ,  
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subject to the constraint: 
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Using the method of the Lagrange multiplier, we 
need to find: 
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which has the form: 
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where  is the Lagrange multiplier. Assuming that 
the conditions for the exchange of derivative and 
expectation are satisfied, taking the derivative for 
C(t) we get: 
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which yields: 
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By taking the natural log of both sides, we get:
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Thus,
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with  being a constant deterministic value. We can 
now find an expression for the optimal X(T): 
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i.e.,
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By interchanging derivative and expectations, we get: 
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which yields: 
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By taking the natural log of both sides, we get:
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Obtaining the Second Equation in )(t : 
We need to find  the elements of equation (A.8). First 
we find  ssQ TXDE F/)(  as: 
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For deterministic )(t ,  
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Recall that 
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We now need to find the second component of 

equation (A.8), namely
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By substituting for the optimal C, we get: 
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By substituting into equation (A.8), where we use the 
optimal values, we get: 
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This is the second equation in the unknown vector 

)(t . 
 
If we set  x , then: 
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By dividing both sides by )(* tX  and moving the 

 T  to the right-hand side, we get:  
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This is the second equation into the unknowns 
)(t as function of the optimal wealth and optimal 

consumption. Remember that: 
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Notice that the sign of the elements of the 

variance   is of no value in the analysis since 
multiplying the Wiener process by   +1 or -1 yields 
the same process. 
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In terms of the language of control theory, )(t

is the unknown controllers, equation (22) is the 
system dynamics and equation (A.25) is the estimate 
of the control in a feedback form. 

 
A Feedback Solution: 
By rearranging equation (A.25), we get:  
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To get rid of the scalar quantity “
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By rearranging, we get: 
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The optimal exchange rate is given as: 
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 (A.29) 

As the productivity, b, increases the exchange 

rate goes down. 
By rearranging, we get the optimal normalized 

value for the foreign loans )(/)()( tXtLtl  as: 
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 (A.30) 

This is the desired result. 
 
To study the impact of the savings on the foreign 
loans and reserves, we look at the ratio: 
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When the interest rate on local savings
 

si  
increases, we have the following scenarios: (1) 
Savings s(t) increases, (2) reserves r(t) increases, (3) 
foreign loans decrease, (4) a combination of the 
previous scenarios. 
 
To study the impact of the savings on the exchange 
rate, we look at the ratio: 
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When the interest rate on local savings

 
si  

increases, we have the following scenarios: (1) 
Savings s(t) increases, (2) exchange rate e(t) 
decreases, (3) inflation increases, (4) foreign loans 
decrease, (5) a combination of the previous scenarios. 
 
 

 
Fig. 1: Actual, Optimal (conservative), and Optimal (risky) Debt Ratios l(t)=L(t)/X(t) 

 
 

 
Fig. 2: Optimal, Official, and PPP Exchange Rates 
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