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Abstract: - The lack of certain assumptions is common in ordinary least squares regression models whenever 
there is/are outliers and high leverage in the observations with an extreme value on a predictor variable. This 
could have a great effect on the estimate of regression coefficients. However, this research investigates the 
performance of the ordinary least squares estimator method and some robust regression methods which include: 
M-Huber, M-Bisquare, MM, and M-Hampel estimator methods. This study applies both methods to a secondary 
data set with 28 years (from 1900 to 2021) 200 meter races Summer Olympic Games with a response variable 
(sprint time) and three predictor variables (age, weight, and height) for illustration.  Also, linearity, 
homoscedasticity, independence, and normality assumptions based on diagnostics regression like residual, 
normal Q-Q, scale-location, and cook’s distance were checked. Then, the results obtained show that the robust 
regression methods are more efficient than the ordinary least square estimator method. 
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1 Introduction 

In regression analysis, model fitting is always based 
on certain assumptions: linearity, homoscedasticity, 
independence, and normality. If the assumptions of 
the regression model, variables, and error terms are 
met, the application of the ordinary least squares 
approach in regression analysis works well. 
However, the OLS method of estimation becomes 
problematic when there are outliers (observation with 
large residual), high leverage points in which the 
explanatory variable turns away from its mean, and 
influence (the product of outlier and leverage) that 
can change the slope of the line or failure of the 
assumptions. This is because both good and bad 
leverage points, as well as vertical outliers, can have 
an impact on the model's residuals, coefficients, and 
standard errors [1]. Meanwhile, fitting a model 
requires regression diagnostics (an important tool) to 
evaluate the model assumptions and check whether 
or not there are observations with a large residual, 
outrageous, and undue influence on the analysis. 
Thereafter, we employ robustness checks to examine 
certain behaviors of regression coefficient estimates 

when modified by adding/removing regressors. Also, 
to reduce the impact of outliers the linearity 
assumption is still needed for proper inference using 
robust regression.           

Numerous researchers have worked on this area in 
several ways:  [2] investigated and defined vertical 
outliers as observations with outlying y-dimension 
values but not in predictor variables, impacting 
ordinary least squares estimation. [3] critically 
studied robust regression methods and fitted data that 
revealed the breakdown due to vertical outliers. 
However, he stated that robust methods effectively 
bound the influence of unusual observations, making 
them powerful statistical tools for identifying unusual 
observations. LTS performed more than ordinary 
least squares estimators when outliers were not 
removed. [4] discriminated between robust 
estimation methods to Ordinary least squares (OLSE) 
using a weak multi-co-linearity dataset. They found 
that OLSE is inefficient when outliers are introduced, 
with S-estimators performing better. Simulation 
studies showed OLSE is inactive with outliers.  
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[5] performed a simulation study to compare more 
than three estimation methods including the Ordinary 
Least Squares Method (OLSM), Least Absolute 
Deviations Method (LADM), M- Estimators (ME), 
TLS estimator, and Non-parametric Regression. 
They concluded that the Ordinary least squares 
method performed better without contamination. In 
the same vein, when outliers were introduced in the 
response and predictor variables, the method broke 
down. Then, non-parametric methods are highly 
performed with outliers in both X and Y dimensions. 
[6] made a comparative study between Huber ME 
and the OLSE, comparing robust regression methods 
such as the M, W, R estimator, least median of 
squares estimator, LTSE, and Re-weighted LSE. 
Among all, M-estimation is the most efficient 
method, minimizing standardized residuals and 
giving smaller weights to unusual observations. W-
estimators depict the importance of each observation, 
and R-estimators compute data ranks. L-estimators 
compute linear combinations of order statistics, 
including LTS and LMS. In the end, the Huber ME 
outperforms the OLSE in both standard error (SE) 
and coefficient of determination (CoD). [7] 
developed the MM-estimator, the most efficient with 
a high breakdown point. It uses an S-estimator as an 
initial estimate, achieving high breakdown point 
properties. The robust estimator was weighted to 
ordinary least squares, showing no influence from 
outliers. [8] also compared Iteratively Reweighted 
Least Squares (OLSE) with other estimators, but 
found Huber has leverage points issues and OLSE 
performed poorly overall. [9] extensively discussed 
the mean in OLS and median in different ME 
methods. The estimator's performance was evaluated 
using a Monte Carlo simulation study and depends on 
the mean square error of the regression coefficient. 
Meanwhile, it was concluded based on the results that 
the proposed ordinary least square robust GA method 
performed better than the OLS MD method for 
sample sizes. 

[10] stated that instead of the OLS method in the 
presence of outlier(s) or contamination or influential 
observation(s), it is better to use any of the robust 
regression methods such as ME (Huber, Hampel, and 
Bisquare), the LTSE, the S-estimation, and the MME 
method. However, he concluded that robust 
estimators had a positive effect on efficiency and 
reduced biasedness compared to the classical 
estimation method. [11] also explained in their work 
that the least squares method fails or underperforms 
in the case of outliers due to its unreliable results. 
Huber and Tukey bisquare, MM, and LTS estimator 
perform well even when there are outliers; and 

concluded that the M-Huber estimator is more 
efficient with outliers in the data set fitted. . [12] 
implemented some robust regression techniques that 
can help policymakers in formulating public policies. 
In [13], robust ridge and Liu estimators were made 
available in the literature. [14] proposed a new 
reweighted covariance based on a regression 
estimator by studying several robust estimators and 
[15] compared three main methods from different 
robust regression methods. The motivation for this 
study is it's useful for computer Scientists in 
understanding their data sets, analyzing, making 
decisions, and enhancing the efficiency of their 
algorithm based on statistical techniques considered. 
 

2 Material and Methods 
The regression model is defined as sections as here.  

 
𝑌 = 𝑋𝛽 + 𝜀      (1) 
where,  
 
𝑌 is the vector of the dependent variables in 
order (𝑛 × 1),  𝑋 is the matrix of one or more 
predictor variables in order (𝑛 × (𝑝 + 1)), 𝛽 is 
the vector of regression coefficients in order 
((𝑝 + 1), 1),  𝜀 is the vector of the error term in 
order (𝑛 × 1) and 𝑝 is the number of 
independent variables  [9]. 
 
2.1 The Ordinary Least Squares Method 

(OLS) 

The OLS has been in existence in literature for 
decades [21]. It is a common estimation method 
that has been commonly used for estimating 
linear models, and also, has the unbiased 
estimation property. Generally, the OLSE for 
regression coefficients can be obtained using the 
equations below: 

: 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌           (2) 

The normal density function is given by 

    𝑓(𝑦) = 1

√2𝜋𝜎2
𝑒−

1

2
(
𝑦−𝜇

𝜎
)
2

,    𝜇 > 0, 𝜎 > 0  (3) 

 Also, the bivariate linear model is given by 

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2023.3.9

Badmus Nofiu Idowu, 
Ogundeji Rotimi Kayode

E-ISSN: 2769-2477 73 Volume 3, 2023 



𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜀              (4) 

In (3) since 𝜇 is a location parameter, then for the 
unbiased estimate 𝜇 = 𝐸(𝑌) and by taking 𝐸(𝑌) 
in (3), we get 

𝐸(𝑌) = 𝛽0 + 𝛽1𝑋                            (5) 

By substituting (5) into (3), taking the logarithm, 
differentiating the outcome concerning 𝛽0 and 
𝛽1, and equating to zero. Thereafter, making 𝛽0 
and 𝛽1 the subject of the formula, the outcome 
can be estimated using the OLS method as 
follows: 

𝛽̂1 =
𝑛∑𝑦𝑥𝑖 −∑𝑥𝑖 ∑𝑦𝑖

𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)2

=
∑𝑦𝑥𝑖 −

∑𝑥𝑖∑𝑦𝑖

𝑛

∑𝑥𝑖
2 −

(∑𝑥𝑖)
2

𝑛

              (6) 

and 

𝛽̂0 =
∑𝑦∑𝑥𝑖

2 − ∑𝑥𝑖 𝑦 ∑𝑥𝑖

𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)2

= 𝑦̅ − 𝛽̂1𝑥̅                         (7) 

 

where,  

𝑦̅ =
∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
 and 𝑥̅ =

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 

 
2.2 Robust Regression (RR) 

RR is a choice method for least squares regression 
when data are infected with outliers or influential 
observations. In short, it is a form of weighted and 
reweighted least squares (WRLS) regression and can 
be used instead of LS regression. Furthermore, some 
high-leverage data points might surface in fitting an 
LS regression, and these data points might not be 
errors from data entry, either because they are from 
different populations. With this, there is no concrete 
reason to remove those points from the analysis. RR 
can be employed as an alternative method due to its 
ability to accommodate all the data points and treat 
all of them equally in OLS regression. In the same 
vein, RR weighs the observations differently based 
on how well-behaved these observations are. 

This study examines the impact of outliers, leverage 
points, non-normality, and infections on classical 
LSE in linear regression analysis. Robust methods 
like ME with Huber and bi-square weighting due to 
their high standard in estimating LS regression. ME 
defines a weight function, where the weights depend 
on the residuals and vice versa. 

Suppose that U is a diagonal matrix representing 
the weight function defined as: 

𝑈𝑖𝑖(𝜔𝑖) =
𝜑(𝜔𝑖)

𝜔𝑖
=
𝜑 [

𝑦𝑖−∑ 𝑥𝑖𝑗𝛽
𝑣
𝑖=1

𝜎̂
]

[
𝑦𝑖−∑ 𝑥𝑖𝑗𝛽

𝑣
𝑖=1

𝜎̂
]

 

The estimated equations for the model 
parameters: 

∑ 𝑋𝑖𝑗 𝜑
𝑛
𝑖=1 (

𝑦𝑖−∑ 𝑥𝑖𝑗𝛽
𝑣
𝑖=1

𝜎̂
) = 0 ; 𝑗 = 1,2, … , 𝑝   (8) 

where 𝜑(𝜔𝑖) = 𝑝́(𝜔𝑖) represents the influence 
function. Meanwhile, (8) is written in terms of 
the weighted function as follows: 

∑𝑋𝑖𝑗 𝑈𝑖 [
𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽

𝑣
𝑖=1

𝜎̂
] = 0                       (9)

𝑛

𝑖=1

 

Also, the solution of the estimated (9) can be 
obtained by reweighted OLS iteratively 
Reweighted Least Squares (IRLS) as follows: 

𝛽̂𝑡 = (𝑋′𝑈𝑡−1𝑋)−1𝑋′𝑈𝑡−1𝑌                       (10) 

𝛽̂0 are mostly represented by the OLS estimators 
as the initial estimates of the regression 
coefficients.  

By applying the ME method using Huber, there 
are some steps to follow. These are:  

a.  By obtaining the initial estimations of the 
regression coefficients by one of the 
estimation methods as OLS method. 

b.  Determine residual value error term (𝑒𝑖) 

c.  Compute the median (mn) of the error 
term (𝑒𝑖) 

d.  Calculate the median MD = |𝑒𝑖  −  𝑚𝑛| 
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e.  Estimate the scale parameter 𝜎 by 
computing 𝜎 ̂ as follows: 

𝜎̂ =
 𝑀𝐷

0.6745
 

f.  Calculate 𝜔𝑖, where, 𝜔𝑖 = 𝑒𝑖/𝜎̂𝑖 

g.  Calculate the diagonal values of 
weighted matrix W that are defined in (i) 

h.  Calculate 𝛽̂𝐻2 using the weighted least 
squares (WLS) method as: 

𝛽̂𝐻2 = = (X ́ 𝑈𝑖−1X)−1𝑋 ́ 𝑈𝑖−1𝑌 

i  Repeat steps b – h to obtain a convergent 
value of 𝛽̂𝑖𝐻2. [9] 

Table 1. The Weight Function of some of the 
Estimators 

Estimator Weight Function 𝝋(𝒖) =
𝒘(𝒖)

𝒖⁄  

Least 
Square 

1 

MM 
{⌈1 − (

𝑢𝑖
4.685

)
2

⌉
2

, |𝑢𝑖| ≤ 4.685

0                             , |𝑢𝑖| > 4.685

 

Huber 

𝑒 > 0 
{

1    𝑓𝑜𝑟  |𝑢| < 𝑒
𝑒

|𝑢|
 𝑓𝑜𝑟  |𝑢| ≥ 𝑒

 

Hampel  

 

 

𝑒, 𝑓, 𝑔 > 0 
{
 
 

 
 
1              𝑓𝑜𝑟                |𝑢| < 𝑒
𝑒

|𝑢|
          𝑓𝑜𝑟         𝑒 ≤ |𝑢| < 𝑓

𝑒
𝑔 |𝑢|−1⁄

𝑔−𝑓
  𝑓𝑜𝑟 𝑓 ≤ |𝑢| ≤ 𝑔

0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Bisquare 

𝑒 > 0 
{[1 − (

𝑢

𝑒
)
2

]
2

,   𝑓𝑜𝑟  |𝑢| ≤ 𝑒

0                    ,   𝑓𝑜𝑟 |𝑢| > 𝑒

 

Fig. 1: Plots of the Weight Functions of the 
Table 1 

 
3 Data Analysis 

Here, the secondary data used for the illustration is 
extracted from a sports journal [16]. The variables are 
age, weight, height (predictor variable), and sprint 
time (response variable) of 28 Olympic game 
winners from 1900 - 2021. It has 28 data points; age 
and weight are used to predict their sprint time. 
 
Table 2. Description of Variables  

Variable Code Description 

Sprint Y = Sp  Time spent by each 
winner of the 200m Race 
Summer Olympic game  

Age X1 = 
Ag 

Age of each 200m Race 
winner of the Summer 
Olympic game  

Weight X2 = 
Wg 

Weight of each 200m 
Race winner of the 
Summer Olympic game 

Height X3 = 
Hg 

Height of each 200m 
Race winner of the 
Summer Olympic game 

Source: [12] 
 

 

3.1 The Multiple Regression Model 

In regression analysis, a regression model with more 
than one regressor variable is known as a multiple 
regression model. Researchers in the literature have 
discussed extensively on major assumptions of the 
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multiple regression model [17]. In this study, sprint 
time(= 𝑦𝑖) (response variable), age (= 𝑥1), weight 
(= 𝑥2) and height (= 𝑥3) (predictor variable). The 
model is given by 
 
𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝜀𝑖               (11) 

where, 𝛽0 is the intercept and 𝜀𝑖 is the error term, 
and it is believed that the distribution of 𝑦𝑖 
follows the 𝜀𝑖. 
 

3.2 The Diagnostics Plot of the Sprint 

Time.   

Fitting regression model, the main tool for 
examining the fit is the residuals. In Figure 1 
below there are 4 diagnostic plots of sprint time 
to depict if the data set conforms to the 
assumptions of linear regression or 
deviates/violates any.  
 

 
Fig. 2: The Diagnostic Plots of Residual, Normal 
Q-Q, Scale-Location and Leverage. 
Table 3. The Coefficient, Standard Error (.) of 
the Estimators for Real Data Set with Normal 
Errors   
Meth

od 

Interce

pt 
𝜷̂𝑨𝒈𝒆 𝜷̂𝑾𝒆𝒊𝒈𝒉𝒕 𝜷̂𝑯𝒆𝒊𝒈𝒉𝒕 

OLS-
Est 

26.878(
6.284) 

- 
0.058(
0.060) 

- 
0.063(
0.037) 

- 
0.122(
4.482) 

Hube
r-Est 

24.895(
6.609) 

- 
0.056(
0.063) 

- 
0.070(
0.039) 

1.216(
4.714) 

Bisq
uare-
Est 

25.526(
6.668) 

- 
0.059(
0.064) 

- 
0.068(
0.039) 

0.806(
4.756) 

Ham
pel-
Est 

26.424(
6.379) 

- 
0.059(
0.061) 

- 
0.065(
0.037) 

0.208(
4.549) 

MM-
Est 

25.600(
6.641) 

- 
0.059(
0.063) 

- 
0.068(
0.039) 

0.755(
4.737) 

 
Table 4. The Mean Square Error (MSE), Root 
Mean Square Error (RMSE) Coefficient of 
Determination (CD)   
Metho

d 

MA

P 

RMS

E 

MAP

E 

MAD CD 

M-
Huber
-Est 

1.00
00 

1.000
0 

1.000
0 1.000

0 

0.70
97 

M-
Bisqua
re Est 

0.98
98 

0.969
6 

0.999
9 1.000

0 

0.71
76 

M-
Hamp
el Est 

1.00
00 

1.000
0 

1.000
0 1.000

0 

0.70
82 

MM-
Est 

0.33
57 

0.579
4 

- 
0.001

1 

1.27e
-16 

0.73
52 

 
 

4 Results and Discussion 

4.1 Results 

Figure 1 explains the various ways in which the 
𝜑(u) weigh the scaled residuals. It is obvious that 
the least squares estimator only assigns weight 
one to all observations, but M-estimators' weight 
functions reduced weights at the tails. This 
implies that the OLS method cannot handle 
unusually large residuals as the robust M-
estimators will have control over it. In a nutshell, 
M-estimators are more robust in governing 
heavy-tailed error distributions and non-constant 
error variance [18]. Meanwhile, the nature of 
outliers determines the kind of weight function 
to be selected and used by the researchers [19]. 
Then, Fig. 1 is critically studied, and the 
differences between M-estimators can be well 
understood.  
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Fig. 2, illustrates the diagnostic plot of residuals 
vs fitted values. Residuals are measured as 
follows: 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

=   𝑎𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 (𝑦)   –    𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 (𝑦̅) 

The purpose of the plot of residuals vs predicted 
values is to check the level of assumption of 
linearity and homoscedasticity, the normal QQ 
plot is used to determine normality 
assumption in observations. Also, a scale-
location plot is useful for checking the 
assumption of homoscedasticity. While Cook's 
distance is a measure of the influence of each 
observation on the regression coefficients. 
Generally, in these plots, it can be easily 
identified that observations in years: 3, 5, and 28 
are possibly problematic to the model. This is 
one of the major reasons some robust M-
estimator methods that can handle outliers, 
leverage, and influence observations than the 
OLS method, are employed. 

Table 1 contains the weight function of OLS, 
MM, Huber, Hampel, and Tukey Bisquare 
estimators with their mathematical expressions, 
and the plots are shown in Fig 1. Table 2 consists 
of the description of variables in the multiple 
regression model and the codes used in R 
software to generate the output in Table 3. 
Therefore, Table 3 summarizes the results (the 
coefficients) of the multiple regression analysis 
performed on the real data set. Based on the 
outcome, none of the predictors has a statistically 
significant contribution from the OLS method, 
but only variable height generated a positive 
value in all robust estimators considered in the 
study and it is statistically significant. Although 
other variables (age and weight) are not, this 
means that height has a positive impact on y 
(sprint time). That is, the time each winner 
finished the race. 

4.2 Model Selection Criteria  

In this study, the following estimators were used 
and considered when outliers appear in the data 
set, MSE, RMSE, MAPE, MAD, and CD were 
used as model selection criteria. Comparisons of 

the model were made according to the identity 
that the lower the value for MSE, RMSE, MAPE, 
MAD, and CD the more valuable a model can fit 
the data [20]. 

However, Table 4, narrates how closely each 
model is to fit the data. It was determined that the 
selection criteria were investigated, and revealed 
that the MME has a smaller value in terms of 
MSE, RMSE, and MAD, the M-Bisquare 
estimator also has a smaller value in terms of 
MAPE and also M-Hampel estimator has a 
smaller value in terms of CD. It is therefore 
recommended to use the MM-estimator to 
estimate the sprint time of the winners of the 
200m race of the summer Olympic game and any 
related observations. 
 

4.3  Conclusion  
This study demonstrated and determined the 
effective performances of MM, M-Huber, M-
Hampel, and M-Bisquare estimators due to the 
failure of the OLSE in basic linear regression 
assumptions. Firstly, the model predictions in the 
data set when there are: outliers, high leverage, 
and influence were obtained. Secondly, applying 
a correct estimator to analyze variables of 
interest will yield appropriate, accurate, and 
reliable results (s). Thirdly, we concluded that 
the model performance of the MME is preferable 
with outliers, high leverage, and influence in the 
data set. Finally, for further study, we suggest 
that more robust regression methods should be 
considered using both real observations and 
simulation data respectively. This could allow 
Computer scientists to have an impact on the 
study by generating an algorithm for simulating 
data to illustrate the estimators.  

.  
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