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Abstract: - In this article, we analyzed complex quaternions and the matrix representations associated with 2x2 
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1   Introduction 
Quaternion matrices, a complex extension of 
traditional matrices, have become a focal point in 
applied mathematics and practical fields.   
Recognized for their versatility, they find numerous 
applications in various real-world domains. This 
article explores the significant role of quaternion 
matrices in key sectors such as computer graphics, 
robotics, electrical engineering, machine learning, 
medical sciences, communications, and virtual 
reality.  

As powerful mathematical tools, quaternion 
matrices contribute significantly to technological 
advancements, enriching our daily lives. 

Quaternion matrices, owing to their versatility, 
bring substantial benefits across different fields.  

Within expert systems, they facilitate the 
representation and manipulation of three-dimensional 
knowledge, proving useful in spatial data analysis 
and decision-making in complex situations.  

In the realm of deep learning, quaternions can be 
integrated into neural network architectures to 
enhance the understanding and modeling of complex 
spatial information.  

This translates into practical applications, such as 
object recognition in 3D images or three-dimensional 
simulations, where the efficient representation of 
orientations and spatial transformations is essential.  

Thus, adapting specific technologies and 
considering the complexity of quaternion matrix 
calculations can significantly contribute to the 
efficient management and processing of spatial and 
three-dimensional information in these domains. 

The real quaternion algebra is denoted by ℍ. This 
algebra has elements respecting the following form: 
ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3, where 𝛼𝑛 ∈ ℝ, 𝑛 =
{0, 1,2 ,3 }, 

𝑓1
2 = 𝑓2

2 = 𝑓3
2 = −1 

and 
𝑓1𝑓2 = −𝑓2𝑓1 = 𝑓3, 𝑓2𝑓3 = −𝑓3𝑓2 = 𝑓1,  

𝑓3𝑓1 = −𝑓1𝑓3 = 𝑓2. 
 

The set of quaternions over the real numbers is a 
division algebra (which means any non-zero 
quaternion admits an inverse).ℍ is associative but 
does not satisfy the commutative property (so they 
are non-commutative).  
 
One of the bases of real quaternions is {1,  𝑓1,  
 𝑓2, 𝑓3}. 
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Starting from the matrix form of complex 
numbers I will represent the matrix form of complex 
quaternions in the following chapter. 

More information about the calculation and 
properties of real quaternions can be found in, [1], 
[2], [3], [4], and, [5]. 
 
 
2 The Complex Matrix Representations 

of Quaternions 
We consider the field ℙ that has the form    
ℙ = {(

𝑧𝑎 −𝑧𝑏
𝑧𝑏 𝑧𝑎

) |𝑧𝑎 , 𝑧𝑏 ∈ ℝ}. 
The map 

𝜓:ℂ → ℙ, 𝜓(𝑧𝑎 + 𝑧𝑏) = (
𝑧𝑎 −𝑧𝑏
𝑧𝑏 𝑧𝑎

), 
where 𝑖2 = −1 is a field morphism and 

𝜓(𝑧) = (
𝑧𝑎 −𝑧𝑏
𝑧𝑏 𝑧𝑎

), 
 
is called the matrix representation of the element   

𝑧 = 𝑧𝑎 + 𝑧𝑏𝑖 ∈ ℂ. 
 
The complex quaternion algebra is denoted with 
 ℍℂ and this algebra has the elements of the 
following form: 

ℎℂ = 𝑟0 + 𝑟1𝑓1 + 𝑟2𝑓2 + 𝑟3𝑓3, 
where 𝑟0, 𝑟1, 𝑟2, 𝑟3 ∈ ℂ, 𝑓1

2 = 𝑓2
2 = 𝑓3

2 = −1 and 
𝑓1𝑓2 = −𝑓2𝑓1 = 𝑓3, 𝑓2𝑓3 = −𝑓3𝑓2 = 𝑓1, 
 𝑓3𝑓1 = −𝑓1𝑓3 = 𝑓2. 
 
The form of the complex numbers 𝑟0, 𝑟1, 𝑟2 and 𝑟3 is 
the next one: 
𝑟0 = 𝑧𝑎0 + 𝑖𝑧𝑏0,  𝑧𝑎0,  𝑧𝑏0 ∈ ℝ, 
𝑟1 = 𝑧𝑎1 + 𝑖𝑧𝑏1 , 𝑧𝑎1, 𝑧𝑏1 ∈ ℝ, 
𝑟2 = 𝑧𝑎2 + 𝑖𝑧𝑏2,  𝑧𝑎2,  𝑧𝑏2 ∈ ℝ and 
𝑟3 = 𝑧𝑎3 + 𝑖𝑧𝑏3, 𝑧𝑎3,  𝑧𝑏3 ∈ ℝ where 𝑖2 = −1. 
 
Biquaternionic algebra (or complex quaternions) is a 
vector space of fourth dimension over the field of 
complex numbers.  
 
The canonical basis of biquaternions-ℍℂ is {1, 𝑓1, 𝑓2, 
𝑓3}, and 1 has the role of a unit element. 
 
Biquaternions belong to a special class of Clifford 
numbers. 
 

Clifford algebra is an algebra generated by a vector 
space with a quadratic form and is an unital 
associative algebra. Also, it generalizes the real 
numbers, complex numbers, quaternions, and several 
other hypercomplex number systems.  
Clifford numbers are hypercomplex numbers that 
come from real numbers and complex numbers.  
 
Hypercomplex numbers are obtained by 
generalizing the construction of complex numbers 
starting from real numbers. 
 The important part of the study of complex 
quaternions is to systematically present their 
algebraic structures and to determine a complete 
computational theory. 
 Biquaternions-ℍℂ is not  part of the algebra with 
division, because ∃𝑎1, 𝑎2 ∈ ℍℂ such that 
                          𝑎1 ⋅ 𝑎2 = 0. 
A well-known fact about the algebra of complex 
quaternions is that it is algebraically isomorphic to 
the 2×2 total matrix algebra  𝐶2×2 through the 
bijective map 𝛤:ℍℂ → 𝐶2×2 satisfying: 
 

𝛤(1) = (
1 0
0 1

), 

𝛤(𝑓1) = (
𝑖 0
0 −𝑖

), 

𝛤(𝑓2) = (
0 −1
1 0

), 

𝛤(𝑓3) = (
0 −𝑖
−𝑖 0

). 
 
The matrix representations 𝛤(1), 𝛤(𝑓1), 𝛤(𝑓2), 𝛤(𝑓3) 
are called the Pauli matrix. Based on this bijective 
map, we can introduce the following result: 
          
The matrix representation of  
ℎℂ = 𝑟0 + 𝑟1𝑓1 + 𝑟2𝑓2 + 𝑟3𝑓3 ∈ ℍℂ with  
𝑟𝑛 ∈ ℂ, 𝑛 = {0,1,2,3} over the set of complex 
numbers is given by the following expression: 
 

𝛤(ℎℂ) = (
𝑟0 + 𝑟1𝑖 −(𝑟2 + 𝑟3𝑖)
𝑟2 − 𝑟3𝑖 𝑟0 − 𝑟1𝑖

) ∈ 𝐶2×2, [6]. 

 

Proposition 1. 

We consider  𝛤(1), 𝛤(𝑓1), 𝛤(𝑓2), 𝛤(𝑓3), we have: 
det(𝛤(1))=det( 𝛤(𝑓1))=det(𝛤(𝑓2))=det(𝛤(𝑓3)) = 1. 
 

Proof. 

det(𝛤(1))=1, det( 𝛤(𝑓1) = −𝑖2 = 1, det(𝛤(𝑓2))=-(-
1)=1, det(𝛤(𝑓3)) = −𝑖2 = 1. 
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Proposition 2.  

We consider  𝛤(1), 𝛤(𝑓1), 𝛤(𝑓2), 𝛤(𝑓3), we have:  
𝛤4(𝑓1)= 𝛤4(𝑓2)= 𝛤4(𝑓3) = 𝐼2. 
 

Proof. 

𝛤2(𝑓1) = (
𝑖 0
0 −𝑖

) (
𝑖 0
0 −𝑖

) = (
−1 0
0 −1

) 

𝛤4(𝑓1) = (
−1 0
0 −1

)(
−1 0
0 −1

) = (
1 0
0 1

). 

𝛤2(𝑓2) = (
0 −1
1 0

)(
0 −1
1 0

) = (
−1 0
0 −1

) 

𝛤4(𝑓2) = (
−1 0
0 −1

)(
−1 0
0 −1

) = (
1 0
0 1

). 

𝛤2(𝑓3) = (
0 −𝑖
−𝑖 0

) (
0 −𝑖
−𝑖 0

) = (
−1 0
0 −1

), 

𝛤4(𝑓3) = (
1 0
0 1

). 
Remark.  
Here are some known basic properties of complex 
quaternions listed below. 
 

Theorem 1.   
Considering  

ℎ1ℂ = 𝑟0 + 𝑟1𝑓1 + 𝑟2𝑓2 + 𝑟3𝑓3, 

 ℎ2ℂ = 𝑤0 +𝑤1𝑓1 +𝑤2𝑓2 +𝑤3𝑓3 ∈ ℍℂ  

and 𝜆 ∈ ℂ.  
Then we have: 

1.  ℎ1ℂ = ℎ2ℂ ⇔  𝛤(ℎ1ℂ) = 𝛤(ℎ2ℂ) . 
2.  𝛤(ℎ1ℂ + ℎ2ℂ) = 𝛤(ℎ1ℂ) + 𝛤(ℎ2ℂ) . 
3.  𝛤(ℎ1ℂ ⋅ ℎ2ℂ) = 𝛤(ℎ1ℂ) ⋅ 𝛤(ℎ1ℂ) . 
4.  𝛤(𝜆 ⋅ ℎ1ℂ) = 𝛤(ℎ1ℂ ⋅ 𝜆) = 𝜆𝛤(ℎ1ℂ) . 
5.  𝛤(1) = (

1 0
0 1

) = 𝐼2[6]. 
 

Proof. 
1. 𝑟0 + 𝑟1𝑓1 + 𝑟2𝑓2 + 𝑟3𝑓3 = 𝑤0 +𝑤1𝑓1 +𝑤2𝑓2 +
𝑤3𝑓3 ⇔   

⇔ (
𝑟0 + 𝑟1𝑖 −(𝑟2 + 𝑟3𝑖)
𝑟2 − 𝑟3𝑖 𝑟0 − 𝑟1𝑖

)

= (
𝑤0 +𝑤1𝑖 −(𝑤2 +𝑤3𝑖)
𝑤2 −𝑤3𝑖 𝑤0 −𝑤1𝑖

). 

2. 𝛤(ℎ1ℂ + ℎ2ℂ) =

(
𝑟0 + 𝑤0 + (𝑟1 +𝑤1)𝑖 −(𝑟2 +𝑤2) − (𝑟3 +𝑤3)𝑖

𝑟2 +𝑤2 − (𝑟3 +𝑤3)𝑖 𝑟0 +𝑤0 − (𝑟1 +𝑤1)𝑖
)𝛤(ℎ1ℂ) +

𝛤(ℎ2ℂ) = (
𝑟0 + 𝑟1𝑖 −(𝑟2 + 𝑟3𝑖)
𝑟2 − 𝑟3𝑖 𝑟 − 𝑟1𝑖

) +

(
𝑤0 +𝑤1𝑖 −(𝑤2 +𝑤3𝑖)
𝑤2 −𝑤3𝑖 𝑤0 −𝑤1𝑖

) 

𝛤(ℎ1ℂ) + 𝛤(ℎ2ℂ)

= (
𝑟0 +𝑤0 + (𝑟1 +𝑤1)𝑖 −(𝑟2 + 𝑤2) − (𝑟3 +𝑤3)𝑖

𝑟2 +𝑤2 − (𝑟3 +𝑤3)𝑖 𝑟0 +𝑤0 − (𝑟1 +𝑤1)𝑖
)

= 𝛤(ℎ1ℂ + ℎ2ℂ) 

3. 𝛤(ℎ1ℂ ⋅ ℎ2ℂ) = (
𝑡0 + 𝑡1𝑖 −(𝑡2 + 𝑡3𝑖)
𝑡2 − 𝑡3𝑖 𝑡0 − 𝑡1𝑖

) =

(
𝑟0 + 𝑟1𝑖 −(𝑟2 + 𝑟3𝑖)
𝑟2 − 𝑟3𝑖 𝑟0 − 𝑟1𝑖

) ⋅

(
𝑤0 +𝑤1𝑖 −(𝑤𝑎2 +𝑤3𝑖)
𝑤2 −𝑤3𝑖 𝑤0 −𝑤1𝑖

) = 𝛤(ℎ1ℂ ⋅ 𝛤(ℎ2ℂ) 

 

4. 𝛤(𝜆 ⋅ ℎ1ℂ) = (
𝜆(𝑟0 + 𝑟1𝑖) −𝜆(𝑟2 + 𝑟3𝑖)

𝜆(𝑟2 − 𝑟3𝑖) 𝜆(𝑟0 − 𝑟1𝑖)
) 

𝜆𝛤(ℎ1ℂ) = 𝜆 ⋅ (
𝑟0 + 𝑟1𝑖 −(𝑟2 + 𝑟3𝑖)
𝑟2 − 𝑟3𝑖 𝑟0 − 𝑟1𝑖

) = 𝛤(𝜆 ⋅ ℎ1ℂ) 

 

Remark. In the following example, we will apply 
properties 2, 3, and 4 to quaternions ℎ1ℂ and ℎ2ℂ. 
 

Example 1. We consider ℎ1ℂ = 2 + 3𝑓1 − 𝑓2 + 4𝑓3 ,  

ℎ2ℂ = 1 − 2𝑓1 + 𝑓2 − 𝑓3 ∈ ℍℂ  

and 𝜆 = 3 + 𝑖 ∈ ℂ.  
Then we have:  

3.  ℎ1ℂ + ℎ2ℂ = 3 + 𝑓1 + 3𝑓3  

𝛤(ℎ1ℂ + ℎ2ℂ) = (
3 + 𝑖 −3𝑖
3𝑖 3 − 𝑖

) (1); 

𝛤(ℎ1ℂ) + 𝛤(ℎ2ℂ)=(
2 + 3𝑖 1 − 4𝑖
−1 − 4𝑖 2 − 3𝑖

) 

+(1 − 2𝑖 −1 + 𝑖
1 + 𝑖 1 + 2𝑖

) = (
3 + 𝑖 −3𝑖
3𝑖 3 − 𝑖

) (2); 
(1)=(2). 
4.  ℎ1ℂ ⋅ ℎ2ℂ = 13 − 4𝑓1 − 4𝑓2 + 3𝑓3 
𝛤(ℎ1ℂ ⋅ ℎ2ℂ) = (

13 − 4𝑖 4 − 3𝑖
−4 − 3𝑖 13 − 4𝑖

) (1); 
𝛤(ℎ1ℂ ⋅ 𝛤(ℎ2ℂ) =

(
2 + 3𝑖 1 − 4𝑖
−1 − 4𝑖 2 − 3𝑖

). (1 − 2𝑖 −1 + 𝑖
1 + 𝑖 1 + 2𝑖

) = 

(
13 − 4𝑖 4 − 3𝑖
−4 − 3𝑖 13 − 4𝑖

) (2); 
(1)=(2). 
5.  (𝜆 ⋅ ℎ1ℂ) =(3+i)( 2 + 3𝑓1 − 𝑓2 + 4𝑓3) = 
=(6+2i)+(9+3i) 𝑓1- (3+i) 𝑓2+(12+4i) 𝑓3. 

𝛤(𝜆 ⋅ ℎ1ℂ) = (
3 + 11𝑖 7 − 11𝑖
1 + 13𝑖 9 − 7𝑖

) (1); 

𝜆𝛤(ℎ1ℂ) = (3 + 𝑖) ⋅ (
2 + 3𝑖 1 − 4𝑖
−1 − 4𝑖 2 − 3𝑖

) = 

=(3 + 11𝑖 7 − 11𝑖
1 + 13𝑖 9 − 7𝑖

) (2); 
(1)=(2). 
 

Remark.  In the following, I will introduce some 
information about complex quaternions. 
For ℎℂ = 𝑟0 + 𝑟1𝑓1 + 𝑟2𝑓2 + 𝑟3𝑓3 ∈ ℍℂ, the dual 

quaternion of ℎℂ is 
ℎℂ = 𝑟0 − 𝑟1𝑓1 − 𝑟2𝑓2 − 𝑟3𝑓3; 

the complex conjugate of ℎℂ is 
ℎℂ
∗ = 𝑟0 + 𝑟1𝑓1 + 𝑟2𝑓2 + 𝑟3𝑓3; 

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2023.3.14 Țugui (Baias) Andreea-Elena

E-ISSN: 2769-2477 124 Volume 3, 2023 



the Hermitian conjugate of ℎℂ is 
ℎℂ

∗
= 𝑟0 − 𝑟1𝑓1 − 𝑟2𝑓2 − 𝑟3𝑓3; 

the semi-norm of ℎℂ is 
𝑛(ℎℂ) = 𝑟0

2 + 𝑟1
2 + 𝑟2

2 + 𝑟3
2. [6] 

 
Example 2. 

For ℎℂ = 2 + 3𝑓1 − 𝑖𝑓2 + 4𝑓3 ∈ ℍℂ,  
the dual quaternion of ℎℂ is 

ℎℂ = 2 − 3𝑓1 + i𝑓2 − 4𝑓3; 
the complex conjugate of ℎℂ is 

ℎℂ
∗ = 2 + 3𝑓1 + (−i)𝑓2 + 4𝑓3; 

the Hermitian conjugate of ℎℂ is 
ℎℂ

∗
= 2 − 3𝑓1 − (−i)𝑓2 − 4𝑓3; 

the semi-norm of ℎℂ is 
𝑛(ℎℂ) = 2

2 + 32 + (−i)2 + 42 = 28 
 

Theorem 2.   
Considering 

 ℎ1ℂ = 𝑟0 + 𝑟1𝑓1 + 𝑟2𝑓2 + 𝑟3𝑓3 ∈ ℍℂ. Then, 

1.  𝛤(ℎ1ℂ) = (
0 1
−1 0

)𝛤𝑇(ℎ1ℂ) (
0 −1
1 0

) 

where ℎ1ℂ = 𝑟0 − 𝑟1𝑓1 − 𝑟2𝑓2 − 𝑟3𝑓3. 
2.  𝛤(ℎ1ℂ

∗ ) = (
0 1
−1 0

) ⋅ 𝛤(ℎ1ℂ) ⋅ (
0 −1
1 0

) 

where ℎ1ℂ
∗ = ℎ1ℂ. 

3.  𝛤 ((ℎ1ℂ)
∗
) = 𝛤(ℎ1ℂ)

𝑇
= 𝛤(ℎ1ℂ)

∗, the 

conjugate transpose of the complex matrix 

𝛤(ℎ1ℂ) . 
4. 𝑑𝑒𝑡(𝛤(ℎ1ℂ)) = 𝑟0

2 + 𝑟1
2 + 𝑟2

2 + 𝑟3
2, is the 

semi-norm of ℎ1ℂ . 
5.  ℎ1ℂ =

1

4
⋅ 𝐸2 ⋅ 𝛤(ℎ1ℂ) ⋅ 𝐸2 where 𝐸2 =

(1 − 𝑖𝑓1, 𝑓2 + 𝑖𝑓3) . 
6.   ℎ1ℂ is invertible if and only if 𝛤(ℎ1ℂ) is 

invertible. In this case, we know 
𝛤−1(ℎ1ℂ) = 𝛤[(ℎ1ℂ)

−1] and (ℎ1ℂ)
−1 =

1

4
⋅

𝐸2 ⋅ 𝛤
−1(ℎ1ℂ) ⋅ 𝐸2 .[6] 

 

Proof. 

1. 𝛤(ℎ1ℂ) = (
𝑟0 − 𝑟1𝑖 𝑟2 + 𝑟3𝑖
−𝑟2 + 𝑟3𝑖 𝑟0 + 𝑟1𝑖

) and 

(
0 1
−1 0

) ⋅ 𝛤𝑇(ℎ1ℂ) ⋅ (
0 −1
1 0

)

= (
0 1
−1 0

) (
𝑟0 + 𝑟1𝑖 𝑟2 − 𝑟3𝑖
−𝑟2 − 𝑟3𝑖 𝑟0 − 𝑟1𝑖

) (
0 −1
1 0

) 

(
0 1
−1 0

) ⋅ 𝛤𝑇(ℎ1ℂ) ⋅ (
0 −1
1 0

)

= (
−𝑟2 − 𝑟3 𝑟0 − 𝑟1𝑖

−(𝑟0 + 𝑟1𝑖) −(𝑟2 − 𝑟3𝑖)
) (
0 −1
1 0

) 

(
0 1
−1 0

) ⋅ 𝛤𝑇(ℎ1ℂ) ⋅ (
0 −1
1 0

)

= (
𝑟0 − 𝑟1𝑖 𝑟2 + 𝑟3𝑖
−𝑟2 + 𝑟3𝑖 𝑟0 + 𝑟1𝑖

) = 𝛤(ℎ1ℂ). 

 

2. 𝛤(ℎ1ℂ∗ ) = (
𝑟0 + 𝑟1𝑖 −(𝑟2 + 𝑟3𝑖)
𝑟2 − 𝑟3𝑖 𝑟0 − 𝑟1𝑖

) and 

(
0 1
−1 0

) ⋅ 𝛤(ℎ1ℂ) ⋅ (
0 −1
1 0

)

= (
0 1
−1 0

) (
𝑟0 − 𝑟1𝑖 −𝑟2 + 𝑟3𝑖
𝑟2 + 𝑟3𝑖 𝑟0 + 𝑟1𝑖

) (
0 −1
1 0

) 

(
0 1
−1 0

) ⋅ 𝛤(ℎ1ℂ) ⋅ (
0 −1
1 0

)

= (
𝑟0 + 𝑟3𝑖 𝑟0 + 𝑟1𝑖
−𝑟0 + 𝑟1𝑖 𝑟2 − 𝑟3𝑖

) (
0 −1
1 0

) 

(
0 1
−1 0

) ⋅ 𝛤(ℎ1ℂ) ⋅ (
0 −1
1 0

)

= (
𝑟0 + 𝑟1𝑖 −(𝑟2 + 𝑟3𝑖)
𝑟2 − 𝑟3𝑖 𝑟0 − 𝑟1𝑖

) = 𝛤(ℎ1ℂ
∗ ). 

 
3. If follows from a direct verification. 
 

4. 𝑑𝑒𝑡(𝛤(ℎ1ℂ)) = ∣∣
∣𝑟0 + 𝑟1𝑖 −(𝑟2 + 𝑟3𝑖)
𝑟2 − 𝑟3𝑖 𝑟0 − 𝑟1𝑖 ∣∣

∣ = 

= 𝑟0
2 − 𝑟0𝑟1𝑖 + 𝑟0𝑟1𝑖 + 𝑟1

2 + 𝑟2
2 − 𝑟2𝑟3𝑖 + 𝑟2𝑟3𝑖 + 𝑟3

2 
 

𝑑𝑒𝑡(𝛤(ℎ1ℂ)) = 𝑟0
2 + 𝑟1

2 + 𝑟2
2 + 𝑟3

2. 
 
5. It follows from a direct verification. 
 
6. It follows from a direct verification. 
 
 
3  The Real Matrix Representations of 

Quaternions 
The set of quaternions over the real numbers is a 
division algebra (which means any non-zero 
quaternion admits an inverse). 
 

Definition 1.   
The conjugate of ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 =
𝑅𝑒(ℎ) + 𝐼𝑚(ℎ) ∈ ℍ, where 𝛼0, 𝛼1, 𝛼3, 𝛼4 ∈ ℝ is 

defined as 

 ℎ = 𝛼0 − 𝛼1𝑓1 − 𝛼2𝑓2 − 𝛼3𝑓3 = 𝑅𝑒(ℎ) − 𝐼𝑚(ℎ) 
with 𝛼0, 𝛼1, 𝛼3, 𝛼4 ∈ ℝ . 
 
Definition 2.  Let’s consider a quaternion ℎ ∈ ℍ 

with the form ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3. The 

real number |ℎ| = √𝛼0
2 + 𝛼1

2 + 𝛼2
2 + 𝛼3

2  represents 

the norm of the quaternion. 
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The semi-norm is then defined as ||ℎ1|| = 𝛼0
2 + 𝛼1

2 +
𝛼2
2 + 𝛼3

2. 
 

Definition 3.  Any quaternion ℎ ≠ 0,  

ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ is invertible and 

ℎ−1 can be written as ℎ

|ℎ|2
, because  

ℎ ⋅
ℎ

|ℎ|2
=
ℎ ⋅ ℎ

|ℎ|2
=
|ℎ|2

|ℎ|2
= 1. 

 

Definition 4.  In, [7], the map for the quaternion 

algebra ℍ is defined as follows: 𝜙: ℎ = 𝛼0 + 𝛼1𝑓1 +
𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ →ℳ4(ℝ), where 𝜙(ℎ) has the 

form presented below: 

 𝜙(ℎ) = (

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1 𝛼0 −𝛼3 𝛼2
𝛼2 𝛼3 𝛼0 −𝛼1
𝛼3 −𝛼2 𝛼1 𝛼0

) . 

However, ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ is  

an isomorphism between ℍ and the algebra of  

the matrices  

 

B =

{
 
 

 
 
(

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1 𝛼0 −𝛼3 𝛼2
𝛼2 𝛼3 𝛼0 −𝛼1
𝛼3 −𝛼2 𝛼1 𝛼0

)

𝛼0, 𝛼1, 𝛼2, 𝛼3 ∈ ℝ }
 
 

 
 

 .  

We can remark that the matrix 𝜙(ℎ) ∈ ℳ4(ℝ) has as 
columns the coefficients in ℝ of the basis        
                           {1, 𝑓1, 𝑓2, 𝑓3}  
for the elements 
                    {𝛼0, 𝛼1𝑓1, 𝛼2𝑓2, 𝛼3𝑓3}. 
The matrix 𝜙(ℎ) is called the left matrix 
representation of the element ℎ ∈ ℍ. 
 

Definition 5.  Analogously with the left matrix 

representation, for the element 

t ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ, inm [7], the 

right matrix representation was defined as follows: 

𝛾:ℍ → ℳ4(ℝ), where 𝛾(ℎ) is given by: 𝛾(ℎ) =

(

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1 𝛼0 𝛼3 −𝛼2
𝛼2 −𝛼3 𝛼0 𝛼1
𝛼3 𝛼2 −𝛼1 𝛼0

) . 

 

  

However, γ is an isomorphism between ℍ and the 
algebra of the matrices 

 𝒞 =

{
 
 

 
 
(

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1 𝛼0 𝛼3 −𝛼2
𝛼2 −𝛼3 𝛼0 𝛼1
𝛼3 𝛼2 −𝛼1 𝛼0

)

, 𝛼0, 𝛼1, 𝛼2, 𝛼3 ∈ ℝ }
 
 

 
 

 . 

      
The matrix 𝛾(ℎ) is called the right matrix 
representation of the quaternion ℎ ∈ ℍ. 
To define the matrix representations of imaginary 
units, consider the following expressions: For the 
first imaginary part 𝑓1 of quaternions h=𝑓1, the matrix 
representation 𝜙 (𝑓1) is given by: 
 

𝜙(𝑓1) = (

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

), 

 
where 𝑓1 is the initial imaginary component of the 
quaternion h=𝑓1, and 𝜙 (𝑓1) represents this part in 
matrix form. 

 

For the second imaginary part 𝑓2of the quaternion  h
= 𝑓2, the matrix representation 𝜙(𝑓2) is defined as: 

𝜙(𝑓2) = (

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

), 

 
where 𝜙(𝑓2) serves as the matrix representation of 
𝑓2, the secondary imaginary component of the 
quaternion h=𝑓2. 

The matrix representation 𝜙(𝑓3) for the third 
imaginary part of the quaternion h=𝑓3 is given by: 

𝜙(𝑓3) = (

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

). 

This matrix, 𝜙(𝑓3), represents 𝑓3, the third imaginary 
part of the quaternion h=𝑓3. 
 
The unit matrix is considered 

𝐼4 = (

1 0 0 0
0  1  0  0
0  0  1 0
0  0  0 1

). 
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Remark. In what follows, I will employ the matrix 
forms presented in Proposition 1. Let's examine the 
matrix  

𝛱 = (

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

) = 𝜙(𝑓1). 

 
Next, consider the matrix 

𝐸4 = (1,−𝑓1, −𝑓2, −𝑓3)
𝑇 = (

1
−𝑓1
−𝑓2
−𝑓3

) . 

 

Proposition 3. 
Let’s consider 𝑦 = 𝑦0 + 𝑦1𝑓1 + 𝑦2𝑓2 + 𝑦3𝑓3 ∈ ℍ. 

The vector representation of y is denoted by �⃗� =
[𝑦0, 𝑦1, 𝑦2, 𝑦3]

𝑇. So for all  

ℎ1 = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ,  
ℎ2 = 𝛽0 + 𝛽1𝑓1 + 𝛽2𝑓2 + 𝛽3𝑓3 ∈ ℍ we have 
 

ℎ1 ⋅ 𝑦⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜙(ℎ1) ⋅ �⃗�; 
 

𝑦 ⋅ ℎ2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝛾(ℎ2) ⋅ �⃗�; 
 
ℎ1 ⋅ 𝑦 ⋅ ℎ2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝜙(ℎ1) ⋅ 𝛾(ℎ2) ⋅ �⃗� = 𝛾(ℎ2) ⋅ 𝜙(ℎ1) ⋅ �⃗�; 

 
𝜙(ℎ1) ⋅ 𝛾(ℎ2) = 𝛾(ℎ2) ⋅ 𝜙(ℎ1), [8]. 
 

Proof. 
We can observe that �⃗� = 𝜙(𝑦)𝛽4𝑇 , and 
 �⃗� = 𝛾(𝑦)𝛽4𝑇 where 𝛽4 = (1, 0, 0, 0) 

ℎ1𝑦⃗⃗⃗⃗⃗⃗⃗⃗ = 𝜙(ℎ1𝑦)𝛽4
𝑇 = 𝜙(ℎ1)𝜙(𝑦)𝛽4

𝑇 = 𝜙(ℎ1)�⃗� 
𝑦ℎ2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝛾(𝑦ℎ2)𝛽4

𝑇 = 𝛾(𝑦)𝛾(ℎ2)𝛽4
𝑇 = 𝛾(ℎ2)�⃗�  

ℎ1𝑦ℎ2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = ℎ1(𝑦ℎ2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜙(ℎ1)(𝑦ℎ2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝜙(ℎ1)𝛾(ℎ1)�⃗� 
ℎ1𝑦ℎ2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = (ℎ1𝑦)ℎ2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝛾(ℎ2)(ℎ1𝑦)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝛾(ℎ2)𝜙(ℎ1)�⃗�; 

Lemma 1 

Let’s consider ℎ = 𝑅𝑒(ℎ) + 𝐼𝑚(ℎ) ∈ ℍ given. 

 Moreover, let 𝛼0, 𝛼1, 𝛼2, 𝛼3 be coefficients in the 

field of real numbers. 

Then, we can assert that the quaternion's diagonal is 
(𝛼0, 𝛼0, 𝛼0, 𝛼0), and it satisfies the following unitary 

similarity factorization  

equality: 

𝑆

(

 
 

𝛼0 0 0 0
0 𝛼0 0 0
0 0 𝛼0 0
0 0 0 𝛼0

)

 
 
𝑆∗

= (

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1  𝛼0  − 𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  − 𝛼1
𝛼3  − 𝛼2 𝛼1  𝛼0

) ∈ ℝ4𝑥4, 

where the matrix S is written as: 

𝑆 = 𝑆∗ =
1

2
(

1 𝑓1 𝑓2 𝑓3
−𝑓1 1 𝑓3 −𝑓2
−𝑓2 −𝑓3 1 𝑓1
−𝑓3 𝑓2 −𝑓1 1

) which is a 

unitary matrix over ℍ.[8] 

 

Remark. Two quaternion matrices 𝜙(ℎ1) and 𝜙(ℎ2) 
of the same order 𝑚 × 𝑛 are considered equal if all of 
their components are equal: 
 𝛼𝑖,𝑗 = 𝛽𝑖,𝑗, for all 𝑖 ∈ {1,⋯ ,𝑚}, 𝑗 ∈ {1,⋯ , 𝑛}. 
 

Lemma 2.   
Either ℎ1 = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ, ℎ2 =
𝛽0 + 𝛽1𝑓1 + 𝛽2𝑓2 + 𝛽3𝑓3 ∈ ℍ and 𝜂 ∈ ℝ (a real 

scalar number). Then 

 
 (1) ℎ1 = ℎ2 if and only if 𝜙(ℎ1) = 𝜙(ℎ2), where 

   𝜙(ℎ1) =

(

 
 

𝛼0 −𝛼1 −𝛼2 −𝛼3

𝛼1  𝛼0  –𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  –𝛼1
𝛼3  –𝛼2 𝛼1  𝛼0 )

 
 
, 

 

𝜙(ℎ2) = (

𝛽0 −𝛽1 −𝛽2 −𝛽3
𝛽1  𝛽0  − 𝛽3  𝛽2
𝛽2  𝛽3  𝛽0  − 𝛽1
𝛽3  − 𝛽2 𝛽1  𝛽0

); 

 
  (2)  𝜙 (h1+h2)=𝜙(ℎ1) + 𝜙(ℎ2),  
          𝜙(ℎ1ℎ2) = 𝜙(ℎ1)𝜙(ℎ2),  
          𝜙(𝜂ℎ1) = 𝜂𝜙(ℎ1); 

(3)𝜙(1) = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) = 𝐼4. 

 
  (4) ℎ1 =

1

4
𝐴4𝜙(ℎ1)𝐴4

∗ ; 𝐴4 = (1, 𝑓1, 𝑓2, 𝑓3) and 

𝐴4
∗ = (1,−𝑓1, −𝑓2, −𝑓3)

𝑇. 
 

 (7) 𝜙(ℎ1) = 𝜙𝑇(ℎ1). 
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(5)𝜙𝑇(ℎ1)𝜙(ℎ1) = 𝜙(ℎ1)𝜙

𝑇(ℎ1) = |ℎ1|
2𝐼4. 

 
(6) 𝜙(ℎ1−1) = 𝜙−1(ℎ1), ⟹ ℎ1 is non-zero. 

 

(7) 𝑑𝑒𝑡[𝜙(ℎ1)] = 
 

∣
∣
∣
∣
∣
∣𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1  𝛼0  − 𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  − 𝛼1
𝛼3  − 𝛼2 𝛼1  𝛼0 ∣

∣
∣
∣
∣
∣

= |ℎ1|
4[8]. 

 
Proof. 
(1) 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 = 𝛽0 + 𝛽1𝑓1 + 𝛽2𝑓2 +
𝛽3𝑓3 
 if and only if  
 

(

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1  𝛼0  − 𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  − 𝛼1
𝛼3  − 𝛼2 𝛼1  𝛼0

)

= (

𝛽0 −𝛽1 −𝛽2 −𝛽3
𝛽1  𝛽0  − 𝛽3  𝛽2
𝛽2  𝛽3  𝛽0  − 𝛽1
𝛽3  − 𝛽2 𝛽1  𝛽0

) 

 
(2) ℎ1 + ℎ2 = (𝛼0 + 𝛽0) + (𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3) +
(𝛽1𝑓1 + 𝛽2𝑓2 + 𝛽3𝑓3) ℎ1 + ℎ2 = (𝛼0 + 𝛽0) +
(𝛼1 + 𝛽1)𝑓1 + (𝛼2 + 𝛽2)𝑓2 + (𝛼3 + 𝛽3)𝑓3 
 
𝜙(ℎ1 + ℎ2)= 

(

𝛼0 + 𝛽0 −(𝛼1 + 𝛽1) −(𝛼2 + 𝛽2) −(𝛼3 + 𝛽3)

𝛼1 + 𝛽1  𝛼0 + 𝛽0  − (𝛼3 + 𝛽3)  𝛼2 + 𝛽2
𝛼2 + 𝛽2  𝛼3 + 𝛽3  𝛼0 + 𝛽0  − (𝛼1 + 𝛽1)
𝛼3 + 𝛽3  − 𝛼2 + 𝛽2 𝛼1 + 𝛽1  𝛼0 + 𝛽0

) 

=

(

 
 

𝛼0 −𝛼1 −𝛼2 −𝛼3

𝛼1  𝛼0  –𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  –𝛼1
𝛼3  –𝛼2 𝛼1  𝛼0 )

 
 
+

(

 
 

𝛽0 −𝛽1 −𝛽2 −𝛽3

𝛽1  𝛽0  –𝛽3  𝛽2
𝛽2  𝛽3  𝛽0  –𝛽1
𝛽3  –𝛽2 𝛽1  𝛽0 )

 
 
= 𝜙(ℎ1) + 𝜙(ℎ2). 

 

Remark.  
Now we are trying to prove this expression:  

𝜙(ℎ1 ⋅ ℎ2) = 𝜙(ℎ1) ⋅ 𝜙(ℎ2). 

 
I will start by multiplying two quaternions and then I 
will write the corresponding matrix representations. 

ℎ1 ⋅ ℎ2 = (𝛼0𝛽0 − 𝛼1𝛽1 − 𝛼2𝛽2 − 𝛼3𝛽3) 
+(𝛼0𝛽1 + 𝛽0𝛼1 + 𝛼2𝛽3 − 𝛽2𝛼3)𝑓1 
+(𝛼0𝛽2 + 𝛽0𝛼2 + 𝛼3𝛽2 − 𝛽3𝛼1)𝑓2 
+(𝛼0𝛽3 + 𝛽0𝛼3 + 𝛼1𝛽2 − 𝛽1𝛼2)𝑓3, 

 
We will mark the brackets above with x, y, z, t,  
as follows: 
x=(𝛼0𝛽0 − 𝛼1𝛽1 − 𝛼2𝛽2 − 𝛼3𝛽3) 
y=(𝛼0𝛽1 + 𝛽0𝛼1 + 𝛼2𝛽3 − 𝛽2𝛼3) 
z=(𝛼0𝛽2 + 𝛽0𝛼2 + 𝛼3𝛽2 − 𝛽3𝛼1) 
 
t=(𝛼0𝛽3 + 𝛽0𝛼3 + 𝛼1𝛽2 − 𝛽1𝛼2). 
 
Then the final form of the multiplication of the two 
quaternions will be: 
 

ℎ1 ⋅ ℎ2 = 𝑥 + 𝑦𝑓1 + 𝑧𝑓2 + 𝑡𝑓3. 

𝜙(ℎ1 ⋅ ℎ2) = (

𝑥 −𝑦 −𝑧 −𝑡
𝑦  𝑥  − 𝑡  𝑧
𝑧  𝑡  𝑥  − 𝑦
𝑡  − 𝑧 𝑦  𝑥

) 

= (

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1  𝛼0  − 𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  − 𝛼1
𝛼3  − 𝛼2 𝛼1  𝛼0

) ⋅ 

 

⋅ (

𝛽0 −𝛽1 −𝛽2 −𝛽3
𝛽1  𝛽0  − 𝛽3  𝛽2
𝛽2  𝛽3  𝛽0  − 𝛽1
𝛽3  − 𝛽2 𝛽1  𝛽0

)= 

= 𝜙(ℎ1) ⋅ 𝜙(ℎ2). 
 
 
To prove this equality 𝜙(𝜂 ⋅ ℎ1) = 𝜂 ⋅ 𝜙(ℎ1) we will 
calculate 𝜂 ⋅ ℎ1 as follows: 𝜂 ⋅ ℎ1 = 𝜂𝛼0 + 𝜂𝛼1𝑓1 +
𝜂𝛼2𝑓2 + 𝜂𝛼3𝑓3. 
The matrix representation of the quaternion 
𝜂 ⋅ ℎ1 is: 
 
  𝜙(𝜂 ⋅ ℎ1) = 

= (

𝜂𝛼0 −𝜂𝛼1 −𝜂𝛼2 −𝜂𝛼3
𝜂𝛼1  𝜂𝛼0  − 𝜂𝛼3  𝜂𝛼2
𝜂𝛼2  𝜂𝛼3  𝜂𝛼0  − 𝜂𝛼1
𝜂𝛼3  − 𝜂𝛼2 𝜂𝛼1  𝜂𝛼0

). 
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𝜙(𝜂 ⋅ ℎ1) = 𝜂 ⋅ (

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1  𝛼0  − 𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  − 𝛼1
𝛼3  − 𝛼2 𝛼1  𝛼0

) 

= 𝜂 ⋅ 𝜙(ℎ1). 
The relations from (3), (4), (5), (6), (7) are obvious. 
 

Lemma 3.   
 Left matrix representation for the quaternion  
ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ is given by: 

 𝛾(ℎ) : = 𝑅𝜙𝑇(ℎ)𝑅 =

(

 𝛼0  − 𝛼1  − 𝛼2 −𝛼3
𝛼1  𝛼0 𝛼3 −𝛼2
𝛼2  − 𝛼3 𝛼0 𝛼1
𝛼3  𝛼2 −𝛼1 𝛼0

), 

where  

𝑅 = (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

). 

 

Here are some basic properties for 𝛾(ℎ): 
𝛾(ℎ1 + ℎ2) = 𝛾(ℎ1) + 𝛾(ℎ2), 
𝛾(ℎ1 ⋅ ℎ2) = 𝛾(ℎ1) ⋅ 𝛾(ℎ2), 

                     𝛾( ℎ1) = 𝛾𝑇(ℎ1).  
The determinant of γ(h) is given by: 
 

𝑑𝑒𝑡[𝛾(ℎ)] =

∣
∣
∣
∣
∣
∣ 𝛼0  − 𝛼1  − 𝛼2 −𝛼3
𝛼1  𝛼0 𝛼3 −𝛼2
𝛼2  − 𝛼3 𝛼0 𝛼1
𝛼3  𝛼2 −𝛼1 𝛼0 ∣

∣
∣
∣
∣
∣

 

 
𝑑𝑒𝑡[𝛾(ℎ)] = |ℎ|4, [9] 

 

Remark. As follows, I will present two matrix 
representations of a quaternion ℎ, which has the form 
ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3, where  
𝛼𝑖 ∈ ℝ. 
We denote with 𝜙(ℎ) = 𝐻ℎ

𝑙  the left matrix 
representation and with 𝛾(ℎ) = 𝐻ℎ𝑟 the right matrix 
representation. 

𝜙(ℎ) = 𝐻ℎ
𝑙 = (

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1 𝛼0 −𝛼3 𝛼2
𝛼2 𝛼3 𝛼0 −𝛼1
𝛼3 −𝛼2 𝛼1 𝛼0

) , 

𝛾(ℎ) = 𝐻ℎ
𝑟 = (

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1 𝛼0 𝛼3 −𝛼2
𝛼2 −𝛼3 𝛼0 𝛼1
𝛼3 𝛼2 −𝛼1 𝛼0

) . 

 
Theorem 3.  

 Consider the quaternion 
 ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ. 

The two matrix representations of a quaternion 

satisfy the following three properties: 
1. (𝐻ℎ

𝑙 )
2
= 𝜙(ℎ2) ; 

2. (𝐻ℎ
𝑟)2 = 𝛾(ℎ2) ; 

3. (𝐻ℎ
𝑙 )(𝐻ℎ

𝑟) = (𝐻ℎ
𝑟)(𝐻ℎ

𝑙 )[9] . 
 
Proposition 4. 
For each quaternion ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 +
𝛼3𝑓3 ∈ ℍ, we have : 
                          det𝐻ℎ

𝑙 = det𝐻ℎ
𝑟.[9] 

Proof. 
 

𝑑𝑒𝑡𝐻ℎ
𝑙 =

∣
∣
∣
∣
∣
∣𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1  𝛼0  − 𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  − 𝛼1
𝛼3  − 𝛼2 𝛼1  𝛼0 ∣

∣
∣
∣
∣
∣

 

 
det𝐻ℎ

𝑙 = (𝛼0
2 + 𝛼1

2 + 𝛼2
2 + 𝛼3

2)2 = |ℎ|4. 
 

𝑑𝑒𝑡𝐻ℎ
𝑟 =

∣
∣
∣
∣
∣
∣ 𝛼0  − 𝛼1  − 𝛼2 −𝛼3
𝛼1  𝛼0 𝛼3 −𝛼2
𝛼2  − 𝛼3 𝛼0 𝛼1
𝛼3  𝛼2 −𝛼1 𝛼0 ∣

∣
∣
∣
∣
∣

 

 
det𝐻ℎ𝑟 = (𝛼02 + 𝛼12 + 𝛼22 + 𝛼32)2 = |ℎ|4. 
 

Preposition 5. 

Let’s consider the matrix 𝑁8 where 𝑁8 = (
𝛱𝐸4
−𝐸4

), 

therefore we have −
1

4
𝑁8
𝑇 ⋅ 𝑁8 = 1, [9]. 

 
Proof. 
To demonstrate this relation we must determine the 
extended form of the matrix 𝑁8 as follows: 

𝑁8 =

(

 
 
 
 
 

𝑓1
1
𝑓3
−𝑓2
−1
𝑓1
𝑓2
𝑓3 )

 
 
 
 
 

. 

 
Now we will determine the product of 𝑁8𝑇 and 𝑁8. 
 

𝑁8
𝑇𝑁8 = 
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(𝑓1 1 𝑓3 −𝑓2 −1 𝑓1 𝑓2 𝑓3) ⋅

(

 
 
 
 
 

𝑓1
1
𝑓3
−𝑓2
−1
𝑓1
𝑓2
𝑓3 )

 
 
 
 
 

 

= −4. 

−
1

4
𝑁8
𝑇 ⋅ 𝑁8 = −

1

4
(−4) = 1. 

 

Proposition 6.   
Let’s take 𝜖 ∈ ℳ4(ℝ) and ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 +
𝛼3𝑓3 ∈ ℍ. If we consider 𝜖 a matrix that has this 

form: 

 

𝜖 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) 

 

 then we can say: 

1. 𝜖𝜙(ℎ)𝜖 = 𝜙(ℎ∗), 
where ℎ∗ = 𝛼0 + 𝛼1𝑓1 − 𝛼2𝑓2 − 𝛼3𝑓3  2. 𝜖𝛾(ℎ)𝜖 =
𝛾(ℎ∗),  
where ℎ∗ = 𝛼0 + 𝛼1𝑓1 − 𝛼2𝑓2 − 𝛼3𝑓3.[9] 
 

Proof.  1. 𝜖𝜙(ℎ)𝜖 = 

= (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1  𝛼0  − 𝛼3  𝛼2
𝛼2  𝛼3  𝛼0  − 𝛼1
𝛼3  − 𝛼2 𝛼1  𝛼0

) 

 

(

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

), 

 
𝜖𝜙(ℎ)𝜖= 

= (

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1  𝛼0  − 𝛼3  𝛼2
−𝛼2  − 𝛼3  − 𝛼0  𝛼1
−𝛼3  𝛼2 −𝛼1  − 𝛼0

)(

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

), 

𝜖𝜙(ℎ)𝜖 = (

𝛼0 −𝛼1 𝛼2 𝛼3
𝛼1  𝛼0  𝛼3  − 𝛼2
−𝛼2  − 𝛼3  𝛼0  − 𝛼1
−𝛼3  𝛼2 𝛼1  𝛼0

) 

 
and the matrix representation of 
 ℎ∗ = 𝛼0 + 𝛼1𝑓1 − 𝛼2𝑓2 − 𝛼3𝑓3 is 

𝜙(ℎ∗) = (

𝛼0 −𝛼1 𝛼2 𝛼3
𝛼1  𝛼0  𝛼3  − 𝛼2
−𝛼2  − 𝛼3  𝛼0  − 𝛼1
−𝛼3  𝛼2 𝛼1  𝛼0

)= 

= 𝜖𝜙(ℎ)𝜖. 
 
Proceeding in the same way as for property 1, I will 
also determine the other two equalities. 
2.  𝜖𝛾(ℎ)𝜖 = 

= (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) .(

 𝛼0  − 𝛼1  − 𝛼2 −𝛼3
𝛼1  𝛼0 𝛼3 −𝛼2
𝛼2  − 𝛼3 𝛼0 𝛼1
𝛼3  𝛼2 −𝛼1 𝛼0

) 

.(

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) ; 

𝜖𝛾(ℎ)𝜖 = 

= (

 𝛼0  − 𝛼1  − 𝛼2 −𝛼3
𝛼1  𝛼0 𝛼3 −𝛼2
−𝛼2  𝛼3 −𝛼0 −𝛼1
−𝛼3  − 𝛼2 𝛼1 −𝛼0

)(

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

), 

𝜖𝛾(ℎ)𝜖 = (

 𝛼0  − 𝛼1  𝛼2 𝛼3
𝛼1  𝛼0 −𝛼3 𝛼2
𝛼2  − 𝛼3 𝛼0 𝛼1
−𝛼3  − 𝛼2 −𝛼1 𝛼0

) = 𝛾(ℎ∗). 

 

Proposition 7.   
If ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3, where 𝛼𝑖 ∈ ℝ, then 

we have: 
𝑖.  𝜙(ℎ) ⋅ 𝐸4 = 𝐸4 ⋅ ℎ . 
𝑖𝑖.  𝛱 ⋅ 𝐸4 = 𝐸4 ⋅ 𝑓1. 
𝑖𝑖𝑖.  𝜙(𝑓1 ⋅ ℎ) = 𝛱 ⋅ 𝜙(ℎ) and 
 𝜙(ℎ ⋅ 𝑓1) = 𝜙(ℎ) ⋅ 𝛱.[9] 

 
 
 
Proof.  

i. 𝜙(ℎ) ⋅ 𝐸4 = (

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1 𝛼0 −𝛼3 𝛼2
𝛼2 𝛼3 𝛼0 −𝛼1
𝛼3 −𝛼2 𝛼1 𝛼0

) ⋅

(

1
−𝑓1
−𝑓2
−𝑓3

) 

 

𝜙(ℎ) ⋅ 𝐸4 = (

𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3
𝛼1 − 𝛼0𝑓1 + 𝛼3𝑓2 − 𝛼2𝑓3
𝛼2 − 𝛼3𝑓1 − 𝛼0𝑓2 + 𝛼1𝑓3
𝛼3 + 𝛼2𝑓1 − 𝛼1𝑓2 − 𝛼0𝑓3

) 
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𝜙(ℎ) ⋅ 𝐸4 =

(

 

𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3
−𝑓1(𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3)

−𝑓2(𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3)

−𝑓3(𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3))

 

= (

1
−𝑓1
−𝑓2
−𝑓3

) ⋅ (𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3) 

ii. 𝛱 ⋅ 𝐸4 = (

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

) ⋅ (

1
−𝑓1
−𝑓2
−𝑓3

) = (

𝑓1
1
𝑓3
−𝑓2

) 

𝛱 ⋅ 𝐸4 = (

1
−𝑓1
−𝑓2
−𝑓3

) ⋅ 𝑓1 = 𝐸4 ⋅ 𝑓1. 

iii. For ℎ = 𝛼0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝛼3𝑓3 ∈ ℍ, we have 
𝑓1ℎ = 𝛼1 + 𝛼0𝑓1 − 𝛼3𝑓2 + 𝛼2𝑓3. It results that 

𝜙(𝑓1 ⋅ ℎ) = (

−𝛼1 −𝛼0 𝛼3 −𝛼2
𝛼0 −𝛼1 −𝛼2 −𝛼3
−𝛼3 𝛼2 −𝛼1 −𝛼0
𝛼2 𝛼3 𝛼0 −𝛼1

). 

𝛱 ⋅ 𝜙(ℎ) = (

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

) 

(

𝛼0 −𝛼1 −𝛼2 −𝛼3
𝛼1 𝛼0 −𝛼3 𝛼2
𝛼2 𝛼3 𝛼0 −𝛼1
𝛼3 −𝛼2 𝛼1 𝛼0

) 

𝛱 ⋅ 𝜙(ℎ) = (

−𝛼1 −𝛼0 𝛼3 −𝛼2
𝛼0 −𝛼1 −𝛼2 −𝛼3
−𝛼3 𝛼2 −𝛼1 −𝛼0
𝛼2 𝛼3 𝛼0 −𝛼1

). 

 
So the required relationships are obtained.  
 

Proposition 8. 

For h=𝑓1, h=𝑓2, h=𝑓3 ∈ ℍ,we have: 
det(𝜙 (𝑓1))=det(𝜙(𝑓2))=det(𝜙 (𝑓3))=1. 

 

Proof. 

𝑑𝑒𝑡(𝜙(𝑓1)) =

∣
∣
∣
∣
∣
∣0 −1 0 0
1  0  0  0
0  0  0  − 1
0  0 1  0 ∣

∣
∣
∣
∣
∣

= 1, 

det(𝜙(𝑓2)) = 
∣
∣
∣
∣
∣
∣0 0 −1 0
0  0  0  1
1  0  0  0
0  − 1 0  0∣

∣
∣
∣
∣
∣

=1, 

det(𝜙 (𝑓3) =
∣
∣
∣
∣
∣
∣0 0 0 −1
0  0  − 1  0
0  1  0  0
1  0 0  0 ∣

∣
∣
∣
∣
∣

=1. 

 
 
4   Conclusion  
This article is structured into two distinct chapters.  

In the first chapter, it explores the algebra of 
complex quaternions and its connections with 2x2 
matrices. Complex quaternions are represented 
through a matrix formulation and the theorems and 
properties presented contribute to the development of 
a fundamental understanding.  

The isomorphism with 2x2 matrices and details 
related to conjugation and norms provide a robust 
framework for the efficient manipulation of these 
complex mathematical entities.. 

In the second chapter, we conducted a study on 
the matrix forms of quaternions on the set of real 
numbers and introduced two real matrix 
representations: the right matrix representation and 
the left matrix representation.  

Based on these matrix representations, we 
detailed several theorems and propositions with their 
corresponding proofs.  

This article represents a significant starting point 
for further research on matrices of biquaternions and 
real quaternion matrices. 
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