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Key-Words: non-Newtonian calculus, geometric calculus, Cesaro sequence spaces, geometric Cesaro
sequence spaces, G-modular, Luxemburg G-norm, G-nonsquare

Received: March 7, 2024. Revised: October 9, 2024. Accepted: November 7, 2024. Published: December 2, 2024.

1 Introduction

Grossman and Katz [11] introduced non-Newtonian
calculus, which is a novel framework composed of
the branches of geometric, bigeometric, harmonic,
biharmonic, quadratic, and biquadratic calculus.
Non-Newtonian calculus encompasses a diverse
range of uses that include subjects like interest rates,
the theory of economic elasticity, blood viscosity,
biology, and computer science, including image
processing and artificial intelligence, functional
analysis, probability theory, and differential
equations. One of the most well-known classes of
non-Newtonian calculus is geometric calculus, which
offers a variety of viewpoints that are helpful for
applications in the fields of science and engineering.
It offers differentiation and integration methods
grounded in multiplication rather than addition. In
general, geometric calculus is a methodology that
allows for a different perspective on problems that
can be studied through calculus. Geometric calculus
is preferred over a traditional Newtonian one in
specific cases, particularly when dealing with issues
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related to price elasticity and growth. To have a
deeper understanding of non-Newtonian calculus,
one must be familiar with several forms of arithmetic
and their generators. The all, p-absolutely summable,
boundedness, convergent and null sequence spaces in
the context of non-Newtonian calculus denoted by
w(N), lu(N), I,(N),c(N), co(N), respectively, are
defined and it is shown that these sets constitute a
complete metric space by Cakmak and Basar [4].
Gilingor [10] investigated some geometric properties
of the non-Newtonian geometric sequence spaces
l,(N). Boruah and Hazarika [2] introduced the
generalized geometric difference sequence spaces
25 (A%, cC(A™), & (AT) with some properties.
Mahto et al. [16] introduced bigeometric Cesaro
difference sequence spaces and investigated the a-
duals of these sequence spaces. More information on
the non-Newtonian calculus may be found for the
reader in [1, 6-9,12-14,17-20,23,26].

Sequence spaces have applications in a wide
variety of disciplines, including economics and
engineering. Studies on the geometric and topologic
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aspects of sequence spaces have been the focus of
research in both pure and applied analysis due to the
significance of sequence spaces as an example of
function spaces and their involvement in the study of
the theory of Banach spaces. The Cesaro sequence
spaces, cesp (1 < p < o) and ces,, were established
in 1968 as a part of the Dutch Mathematical Society's
challenge to find duals. Shiue [24] investigated some
properties of these spaces and gave the first norm-
based description of them. Leibowitz [15] showed
that ces; = {0}, ces,, are separable reflexive Banach
spaces for 1 < p < oo and the [,, spaces are in ces,
for 1 < p < co. Sanhan and Suantai [21] defined the
generalized Cesaro sequence spaces ces(p). They
examined the space for completeness and also
discussed its rotundity. Suantai [25] showed that the
space ces(p) has property (H) and property (G), and
it is rotund. Many mathematicians have extensively
researched the Cesaro sequence spaces via geometric
and topological properties.

Motivated essentially by the aforementioned
publications above, this study considers the
geometric calculus concept of generalized Cesaro
sequence space a novel and intriguing addition to the
current literature in this field. We investigate
geometric calculus versions of some concepts and
properties given for classical generalized Cesaro
sequence spaces. We hope this study will shed fresh
light on how to approach solving issues in contexts
where the theory of sequence spaces in fields ranging
from engineering to economics and the theory of
geometric calculus have a wide variety of uses.

Now, we offer a brief introduction to geometric
calculus that emphasizes the terminology required for
this discussion.

The building blocks of every arithmetic system
are the four operations on the set R (addition,
subtraction, multiplication and division) and an
ordering relation that follows the rules of a
completely ordered field. The set R is referred to as
the realm, and the elements of the set R are termed
the numbers of the system. A generator is an injective
function whose domain is R and whose range is a
subset of R. The range of the generator 7 is called
non-Newtonian real line and it is demonstrated by
R;,. n — arithmetic operations and ordering relations
are described as follows [11]:

n — addition vts =n{n W) +n7(s)}

n — subtraction v=s =n{n~t W) —n71(s)}

n — multiplication v X s =n{n"'() -n~(s)}
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n — division v/s = n{n~ () ~n7(s)}
v<s ©n W) <n71(s)
n — order

w<sen i) <n7i(s).

Particularly, the identity function generates classical
arithmetic.

In  * —calculus, the paired arithmetics
(n —arithmetic, S —arithmetic) are utilized for
arguments and values, respectively. The subsequent
particular calculi are derived when 1 and [ are
chosen as either I and exp, representing the identity
and exponential functions, respectively [11]:

Calculus n B
Classical I I
Geometric I exp
Anageometric exp I
Bigeometric exp exp.

The classical arithmetic is derived from the identity
function. If the n —generator is chosen as exponential
function defined by n(v) =e” for v €R, then
n71(v) =Inv, n arithmetic turns into geometric
arithmetic. The definitions of geometric operations
and ordering relation are [2, 11]:
Geometric additon
v@®s=n{n"tw) +n7l(s)} = eVt =4 5
Geometric subtraction
vOs=n{n""w) —n ()} = el
==,5#0
N

Geometric multiplication

vOs = n{n—l(v) . n—l(s)} = e(nvxlns) — ,lns
Inv

=S

Geometric division

EG (OI‘U %) S) = 77{77_1(1)) - 77_1(5)} — e(lnu+lns)

1
=uylns,s # 1
Geometric order

V<sSW<s5) e Inv<iIns (Inv<Ins).
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The set of geometric real numbers which is denoted
by R, is defined as {e”: v € R}. (R;,D,©) is a field
with geometric zero 0; = 1 and geometric identity
1; = e. The sets of geometric positive real numbers
and geometric negative real numbers are defined as
Rf = {v € Rs:v >, 1} and R; ={veE
Rg:v <g 1}, respectively. The set of all geometric
integers are as follows:

ZG = {...,OG e eZ,OG e e, OG,e,ez, }

={.,e % e 1 1,¢¢€?.}
The geometric absolute value of v € Rg; is defined by

v, v>e1

1, v=1
|U|G: 1

-, U<Gl

v

and this is equivalent to expression e!™*!. For
any v, s € R, the subsequent statements are valid:
) [v®sle <¢ vl ®Islg

i) [vO sl =6 lvlg © Islg

i) [v O slg = |vlg O Islg

V) [v @ sl = |vlg @ Isle-

G
For any v € R, vP6 = e(nv)? _

and% =

Ulnp_lv
1
ev)? 2 11].

Definition 1.1. [3, 5] A geometric vector space (G-
vector space) over a geometric field R, is a non-
empty set IV equipped with two operations @ and ©,
called geometric vector addition and geometric scalar
multiplication, respectively, which satisfy the
following properties:

GV1) Closure: If v,s € V, then v @ s belong to V.

GV2) Associative law:(v @D s) Pt=vP (s Dt)
forallv,s,t V.

GV3) Additive identity: V contains an additive
identity element denoted by 6, such that v @ 6, =
vforallveV.

GV4) Additive inverse: Forall v € V, there is a vector
0, ©veV with v (B;Ov)=60; and (6; ©
v) P v=2=0.

GV5) Commutative law: v @ s =s P v forallv,s €
V.

GV6) Closure: If veV and 1€ R; , then 1 Qv
belong to V.

GV7) Distributive laws:
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A0 WD) =20vPAOs, forallv,s €V and
A ER;.

ABBHOv=20QvB L Ou, for all veV and
LB ER;

GV8) Associative law: A O (B Ov) = 1O B) O
vforallv e Vand 4,8 € R;.

GV9) Unitary law: e Qv =v forallv € V.

The set of all sequences of the geometric real
numbers demonstrated by wg, ie., wg={v=
(vi)l v:N->R;}. Based on the algebraic
operations P addition and O multiplication, wg is a
G-vector space over R [2,4].

Definition 1.2. [4] Let V be a G-vector space. If the
function |||lz: V= R;  holds the following
properties for allv,y € V and 1 € R,

GNl) |[vllg=1 & v=26;

GN2) |12 O vllg = 1A O llvilg

GN3) [[v @ yllc <¢ IIvllc @ llyllg

then (V, ||-||) is said to be a G-normed space.
Definition 1.3. [4, 27] Let (V,|.|ls) be G-normed
space and (v ) be a sequence in V. If for every given
€ > 1, there exist kg = ky(¢) € Nand v € V such
that [|[vy © V|| <g €forall k = kg, then (v;) is said

to be G-convergent and it is denoted by v, 5 Vv as
k — oo.

Definition 1.4. [27] Let (V,||.llg) be G-normed
space and (v ) be a sequence in V. If for every given
€ > 1, there is kg = ky(e) € N such that ||v, ©
Vimlle <¢ € for all k,m > kg, then (v;,) is said to be
G-Cauchy sequence.

If every G-Cauchy sequence in V converges, then
it is said that V is a G-Banach. For example,
(Rg, |- 1¢) is a G-Banach space.

Definition 1.5. [10] Let f:I1 S R; - R; be a
function. The function f is said to be G-convex, if for
every r, s € [ it satisfies

frOrd ey Os)
ScvOfr) @ (e©y)Of(s)

withy € [1,e].

Proposition 1.6. [22] Let r,s =; 1, then (r &
sPe <z rPe PsPafor0<p<1.

2 Main Results

This section introduces the idea of generalized
geometric Cesaro sequence space with a new
perspective on the concept of Cesaro sequence space
and it provides a basic explanation of the theory
behind this sequence space.
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First, we will present the concepts of modular,
modular spaces and Luxemburg norm according to
geometric calculation style.

Definition 2.1. Let V be a G-vector space on R
field. The function @ :V — [1,] is called G-
modular provided that it satisfies the given
requirements:

i) o(v) = lifand onlyifv = 6,

i) o(la ©v) =p() for all scalar @ € R; with
IalG =e,

i) 0(@aOVBPLOY) <colv) Do(y) for all
viyEVanda,fB =; 1witha @ S =e.

Moreover, the G-modular g is called G-convex (G-
convex modular) if

iv) 0(@aOVvBLOY)<a@o(v) DB Ooy)
forallv,y e Xanda,f =; 1 witha @ S =e.
Definition 2.2. If p isa G-modular in V, we define

G
A ={VEV : Q(e’lOv)—>1,/1—>0+}
and it is called G-modular spaces.

Theorem 2.3. If ¢ is a G-convex modular, then the
function ||. |[¢: V, — R defined as

v
Vil = Glnf{el >c1:0 (e_/lG) < e}
is G-norm on V,.
Proof.
GN1) Letv = 6. Since ¢ (5.6
R, then we find ||[v]|; = 1.
Conversely, let ||v]l; = 1. Since ¢ is a G-convex
modular
e(@@v) =e0(@Ovd(e ©a)O b)
<ca@Qeo(m)®(e ©a)©e(bs)
=a o)
foralla € R; with1 <; a <; e. Therefore, we can
write

) = 1 forevery e? €

1
e =0(e" 060V
1
<¢ —nG Ooee"Ov)
oz
for every n € N. Hence, it is obtained that p(v) = 1
which implies v = 6;.

GN2) Take any v € V, and a € R;. If a = 1, then

clearly [|a O V|l = |a|G O |Ivllg. Assume that a €
R; — {1}. Based on the provided definition of ||. ||,
we can write
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”a@v
llg
a®v
= sinfiet >;1: 9 Ia:;l G|<ge
= i A H _ <
cinfse* >, 1:p eAOIaIGG <cer
(24

Let @ >; 1. Considering e? %G then we

obtain
”aOv
lelg
P
e Oa %
= ;infi——G>;1:90 —G < e}

G { |a|G G ( ) G
=mGO Glnf{e 1>-1: Q( G) <G e}
= Vil . (1)

Let a <; 1. If we take it as e?2 = %G, we get
aQ®v
|a|G G
. 20016 (16e)0
= ;In f{%G >;1: Q(%G) <g 6}

10«

1Iaelc ——G O ginffet >¢ 1 g(—c;) <; e}

— O vllg

Jalg
= |[vilg. (2)
By using (1) and (2), we obtain

aQ®@v

G

=llvlle (3)

| |G G
for all @ € R; — {1}. If we take et = et @ lalg,
then we can see that

a@®v
© G|
|a|G G @
aQ®v
= inf{e’1> 1: ( )S e}
G ,G 0 20 |alg G
. e’ a@®v
=G1nf—G®a>Glzg< 7 )SGe
lalg
1 v
=—G@Ginf{'1>61 Q( @ G)Sge}
Iallc et
=|—G O lla ©Vllg. €©))
Xl

Using the expressions (3) and (4), we obtain

la O vllg = lals O llvile
forall @ € R; — {1}.
GN3) Letany v,y €

A={e’11 >6 1IQ(£G) <¢ e}

B={e)‘2 >c lzg(iG) <¢ e}

V, be given. Let
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and

vy
c=fere s o(1220) ;o)
Since g is a G-convex modular, we find
v@y _ v y
0 (e’ll@elz G) =0 (91169312 GO erM@etz G)
et v etz y
= Q(eiG O—GﬂaiGO—G)

el el @ etz el2

SGWGOQ(LG)
@m ©e(%6)

G et @ elz et ) elz
=e
for arbitrary et @ e?2. Selecting D = {ell (&)
et2:eMi e A Netz € B}, then we can see that D
C. Because of D cC, ¢infC <; ¢infD =
cinfA @ ;infB holds. As a result, we get
v @ yllc <c lIvllc @ lIyllg-

G

Now, the concept of generalized geometric
Cesaro sequence space is given, which forms the
basis of this paper:

Definition 2.4. Let p = (p,) represent a bounded
sequence of positive real numbers with p,, > 1 for all
n € N. The generalized geometric Cesaro sequence
space is defined as

Ces®(p) = {v = (v) Ewg : a(v) < o}
whenever

n)G
o) = 631 (56 O 6 Toalvils) .

In the present study, we make the assumption that
p = (pp) be a sequence of positive real numbers
where p,, = 1 for everyn € N and M = sup p,,.

neN

Proposition 2.5. Let g € [1,0) and , s € Ry, then
the following statement holds:

Ir @ s1¢° <g (€®)% O (Ir|¢° @ IsI¢f).
Proof. We can write
I @ sl <¢ Irle @ Islg
<¢ e* © gmaks{|r|g, |sls}
for any r, s € R;. Therefore, we get
Ir @ 1 < (€2)% O (gmaks{lrls, Isle})™

= (e?)% O gmaks{|r|¢%, Isl¢}
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<¢ (2% O (Ir1g° + Is1¢°).
Theorem 2.6. Ces®(p) is a G-vector spaces under
geometric  addition and  geometric  scalar
multiplication operations for geometric real
sequences.
Proof. Given any v = (v), ¥ = (yx) € Ces%(p)

and A € R;. Let M = sup p,,. If it is choosen a,, =
neN

%" for all n € N, we have

a(v®y)

n (Pn)c
e
= GZ(EGOGZW’C@yle)
n= k=1

1

) n (May)g
e
= Gz <e_”G © GZWk @}’kh;)
n=1 -1

n=1 k=1 k=1
00 n (andg
e
=¢ GZ (e_"G © GZ|V1<|G>
n=1 k=1
n (an)g G
e
@ (e—na o GZkaIG>
k=1
from Proposition 1.6. We get
c(v®y)
o n (@)e\ M
e
< Gz(ez)Mc ©) <_nG O] GZ|Vk|G>
n=1 ¢ k=1
M

oo n (rn)g
e
= (M O |6 (e_"G © GZ|VI<|G>
n=1

k=1
0o n (Pndc
e
®G )y (e—na © GZka|G>
n=1 k=1

= ()Y O [o(v) ® o(y)] < »

from Proposition 2.5. This demonstrates that o(v @
y) <g ©,ie,v@y € Ces’(p).

Taken L = Gmaks{e |/1|Z1G} it is obtained that

(rn)c
c(AQv)= GZ( G@GZM@VMG)
foe) o (rn)c
=G z (e”G ©) GZWG © |Vk|G>

n=1
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e
<¢ |/1|E;pn)6 o)X z (e_”
=1

n=
<S¢ LOo(v) <z
This shows that A ©® v € Ces®(p). Consequently,
Ces%(p) is G-vector space.
Proposition 2.7. The function f:R; - R;, t —
Itlép")‘; is G-convex where p,, = 1 forall n € N.
Proof. Let’s taken y € [1, e]. We have

frOved (eOy) Oyt
=y Ov® (O OyP"
= [exp{in(v1n7 - y -t e
= exp {(ln(e|lny-lnv+(1—1ny)-lny|))pn}
=exp{|/lny -Inv+ (1 —Iny) - Iny|Pn} (5
for all v,y € R;. Since y € [1,e] implies Iny €
[0,1], we get
Iny -Inv+ (1 —1Iny) -Iny|Pr
<Iny:|lnv|P»+ (1 —Iny) : |Iny|Pr (6)
by aid of the convexity of the function t — [t|P» in
classical calculus. From (5) and (6), we find

foOvd (oY) Oy)

<; exp{lny - |lnv|Pn + (1 —Iny) - |Iny|Pn}

= exp{lny - Ine™vP" 4+ (1 —Iny)-In e““ﬂ”"}
exp{lny - In[v[?* + (1 — Iny) - Iny[?"}

exp {lny ‘Ine™E" + (1 —1ny)-In elnlyIZ"}
exp {lny lnlvl(p")c + (1 —1Iny)- ln|y|(Gp")G}

=y0 |v|8’n>6 ® Oy O ly|Pe.

Hence, the proof is completed.

Theorem 2.8. ¢ is a G-convex modular on
Ces%(p).

Proof. Let v,y € Ces%(p).
i) It is obvious that c(v) = 1 & x = 1.

ii) For a € R; with |a|; = e, we write

(Pndc
a(a@v)—GZ( GOGZla@vklc;)
(9L
Gzlal(pn)G(D( GOGZlvklg)

o(v).
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i) Let a,f €R; with a@ f =e, a,f>;1

Since t — |t|£.p")a is G-convex function for all n €
N, we have
c(@aOvOLOY)
o n (pn)c
e
=6 ) (e—na ©6) 10V eaﬁ@ykh;)
n=1 =
. n (rn)c
e
=¢ GZ a© <e_"G @GZ|V1<|G>
n=1 k=1
n (rn)c
e
DlLO (e_"G © GZ|}’k|G
k=1

n=1 k=1
co n (rn)c
e
®FOGCY <e—na © GZlykla>
n=1 k=1

=aQaow)® O ().

Proposition 2.9. The G-modular ¢ on Ces®(p) has
the subsequent properties:

i) If 1<;a<ge, then a¥c © O'(EG) <¢co(v)
ando(a Qv) <z a®© a(v).

ii) Ifa >; e, theno(v) <; aMe © O'(%G).

i) Ifa=;e, thenoc(v) <ga®aoWw) <z 0(a®

V).
Proof.
i) Let 1 <; a <; e. Hence we find

(rn)c
a(v)_az< GOG Z| ka6|>

(Pndg
_Gzlal(pn)GC)( GQGZ|—G|>

(Pndg
>GaMG®Gz< GQGZ|—G|)

=aMé © O'(EG).

Volume 4, 2024



International Journal of Computational and Applied Mathematics & Computer Science

DOI: 10.37394/232028.2024.4.13

Since a®é <. a for all n € N, we have

(rn)c
a(aOv)—GZ< GOGZ|aOVk|G>

k=1
(=] n (rn)c
e
<caQ© GZ <e_"G © GZ|V1<|G>
n=1 k=1
=a® o).
i) Leta >; e, then we get

e
:Gza(pn)c@<e_n
n=1
) (rndg
v
GaMGQGZ< G@GZ|—"G|>
a ‘¢

=1 1
=aMé O'(EG).

iii) Let a > e. Since ¢ is G-convex modular, we
can write 0(v) <; a © a(v). Also, we find

(rn)c
U(aOv)—GZ< GQGZlakalc,-)
0 n (rndc
e
= GZ|G|(Gp")G © (e_”G © GZh/le)
n=1

=a® o).
Hence, we obtain the required inequalities.

Theorem 2.10. Ces®(p) is G-normed space with
regard to the Luxemburg G-norm
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Ivllg = Ginf{e’1 >q1: a(:7 G) <c e}

(rndc
|Vk|G
= ;infiet > 1: GZ G@GZ <¢ e

Proof.

GN1) Let v=1. Since GY,- 1( GO
1 (pn)c

GYr=1 = ) =1 for every e* € R;, then we

find ||v||G =1.

Conversely, let ||v||; = 1. Since a(a O V) <z a ©
o(v)foralla € R; with1 <; a <; e, we can write

oo n | | (Pn)c
e Viklg
G Y (e—nc;@(; > G)

k=1

n 1 (rn)c
e €m©e—mG@|Vk|G
SGOG6 ) = G

k=1

for all m € N. Hence, it is obtained that o(v) =
(rn)
63 (56 06Xk, "E0) =1 which

e
implies v = 1.

GN2) Let’s take any v € Ces®(p) and a € R;. If
a =1, then it is obvious that ||a O V|| = |a|ls O
l[v|l¢. Suppose that « € R; — {1}. We can write

lla O vllg

oo (pn)
. 1 € N la O vilg ’
= ;inf{e >01:Gz e—nGOG TG <ce
n=1

k=1

(rnd¢
|Vk|c;
csinfiet>;1:6 —G@G oF G <ce;.

=1 Jalg

A:

If it is taken as e e © |@|¢, then we obtain
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lla O vllg = ginf {e¥ O lalg >¢ 1

i ( (Pn)a
GOG )

© ginf {e

| le

IA

G €
A,>Gl:

= |alg

G

n (rn)e
e COG |Vk|GG <
on o =g €
k=1

NgE

n=1

= lalg O lIvllg.

GN3) Let any v,y € Ces%(p) be given. A, B and C
be sets of the positive geometric numbers e?t, ez
and e? hold the following inequalities

n=1 k=1
o n | | (rn)c
e Ykl
G Z <e_”G 06y = G) <ce
n=1 k=1

and

00 n | @ | (Pndg
€ Vk © Vklg
n=1 k=1

respectively. Taken as D = {e’ll @ ezt €
A Netz € B}. For any et @ e?2, we get

oo (rn)c
DAL g
e Vil

Z( — AZGOe—nGOG; 26

| Vi @ yilg
/11@312
=1

<g
1 n (Pn)a
@ e’? G@iGOGzlyleG
e @ e’z en ez
k=1

(Pna
[vil
S elz@c}( G@GE ""')
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P (pndc
o etz G@GZ GOGZlyle
eh @ etz
e ez
G ell @ elz ell @ elz G =

Therefore, we have D c C. It is obtained that
cinfC <; ;infD = ;infA @ ;infB, because of
D c C.So, we get|[[vD ylle <¢ llvllg @ lIylle-

Now, we discuss some relations between the G-
modular and Luxemburg G-norm on Ces® (p).

Proposition 2.11. For any v € Ces®(p), we have
i) Ifllvllg <¢ e, thenao(v) <¢ [lvllg

i) If ||[v][¢ >¢ e, then o (v) =¢ [vllg
iiIfivllg=ee=dlv) =e

VIf|vls <cee o) <ge

V) If |[V|lg >¢c e © a(v) >; e.

Proof.

i) Let € >; 1 be such that 1 <; € <; e © ||v||¢.

Hence we can write ||[v|| @ € <;e. By the
definiton of ||.||s, there exists e* >; 1 such that
Wllc ® &> e* and  o(%6)<se. From

Proposition 2.9 (i) and (iii), we find

o(v) < o (”V”Z Wis®e . )

< (Ml ® ) © o (56)

<ce O (lvllc @ e)
= lvllc @ e.

Thus a(v) <; |[Vllg @ €, forall e € (1,e © ||vlls).
Takenas A={|vl[¢ D e : 1<se<s;eO|vlc}

then we see that [|[v||; = ;infA. Since o(v) is a
lower bound of 4, we have oa(v) <; ||[Vll;.

ii) Let € >; 1 be such that 1 <; € <g

Ivlig©e
G,
Iviig

hence we can write ||v|lz >¢ lIVig © (e ©
€)>;e. By the definiton of |.||; and
Proposition 2.9 (i), we find
v
e < 0( G)
NCISYOYE

e
S eoaom,’ ™
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So, we can write (e © €) O ||v|ls <g o(v) for all

Ivilg©e
cE (1, e ) Taken as

A= {(e ©e)0|lvlg: 1<ge<g ”V”G@e}’

lvile

then we see that ||[v||; = ssupA. Since a(v) is an
upper bound of A, we have ||v|; <; a(v).

iii) Let € >; 1. Suppose that [|v||; = e. From the
definiton of ||.]|;, there exists e? >; 1 such that

(e ® ) >; e* > |lvllg and 0(:76) <; e. Since

et > e,
o(v) <¢ (e’l)MG O (% G)
<¢ (e’l)MG <; (e @ )M

1
by Proposition 2.9 (ii). Hence (a(v))(ﬁ)G <sePe
forall € >; 1 which implies 0(v) <; e. Assume that
o(v) <g e, we can choose a € (1,e) such that
o(v) <g aMé <. e. Hence we have

aMe © O'(EG) <; o(v)
O'(EG) <¢ ae%GG O o) <ge

by  Proposition 2.9 ().  Therefore, we
lvllg <¢ a <g e which contradicts to
assumption that ||v||; = e. Hence a(v) = e.

get
our

Conversely, suppose that a(v) = e. The definition of
Luxemburg  G-norm ||.||z, we  conclude
that ||v|| <¢ e. If ||V|lgs <¢ e, then we have by (i)
that 0(v) <; ||vll¢ < e which contradicts to our
assumption that o (v) = e. Therefore, ||v||; = e.

iv) If ||vllg <ge, then we have by (i) that
o) <¢ lIvllg <g e.

Conversely, assume that o(v) <; e. It follows from
(1) and (11) ”V”G <G e.

V) It follows from (iii) and (iv).

Proposition 2.12. Let v € Ces®(p) and M =
sup pp,.

neN

i) If 1<ga<ge and ||vl|g >¢ a, then a(v)
>; aMa,

ii) Ifa >; eand ||v|l; <g a,theno(v) <; as.
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Proof.

i) Assume that 1 <; a <; e and ||v||g >¢ a. Hence

we can  write ”EG” >-e. We have
G

7 (%6) 2 by

Proposition 2.11 (ii). Since 1 <; a <; e, we obtain

o) =>; avs © O'(EG) >c aMé © e = aMé from

Proposition 2.9 (i).

using

v
EG”G >q e

ii) Assume that a > e and ||v||; <; a. Hence we

can write ”KG ” <g e. We find
a llg
v v
O'(EG) <c ||£G||G <ce from
Proposition 2.11 (). If a=-e, then we get
o(v)<ge=d"e. If a>;e, we obtain

o) <g a6 © O'(EG) <caMe O e=aMe
from Proposition 2.9 (ii).

Proposition 2.13. Let (vy) be a sequence in
Ces%(p).

i) If G,li_r){}o”Vk”G = e, then G}li_{rc}oa(vk) =e.

i) If G}lim o(vi) = 1, then Gllim lville = 1.

Proof.

i) Assume that G}lim lvillc = e. Let € € (1,e).
Then there exists ko €N such that (e ©
€) <¢ villg <¢ (@ e) for all k >k, By

Proposition 2.12 (i) and (i), we find (e &
M < a(vy) < (e @ £)M6 for all k > k, which

G

implies that g (x;) - e as k - .

ii) Assume that G}lim [lvillg # 1. Then there exists
—00

€ € (1, e) and a subsequence (an) of (vy) such that
”an”G > ¢ for all n € N. By Proposition 2.12 (i),

we have o (v, ) >¢ "6 for all n € N. This implies
o(vy) _i 1ask - oo.

Proposition 2.14. Let v = (vy), vy = (vk(s)):i1 €
Ces%(p) for all s € N. If a(vk)ga(v) as k > o

G
and vi(s) »v(s) as k » oo for all s € N, then v, -
vask — oo,

Proof.

Let € >4 1 be given. Since o(v) = G Yn- (einG 0)

(pn)c
G4 Iv()ls)
that

< %, there exists ng € N such
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o n (Pn)c
e
Y (e—nc © GZIv(s)M)
n=ng+1 s=1
€ e
<6 =GO — G 7)
e
Since
ng n (rn)c
e
cWOG Y (?nG © GZM(s)lG)
n=1 s=1
ng n (rn)c
e
5006 ) <e—nG © GZM%)
n=1 s=1

G
as k — o and v, (s) 2 v(s) as k = oo, there exists
ko € N such that

(Pn)c
o(v) © GZ ( 6O GZ|vk(s)|G>
(g
<co(v)OG Z ( GO GZh/(S)lG)

& e
@;GQWG ®)
for all k > kg, and
(rndc
GZ ( G@GZwk(s)ev(s)l ) 5 O

for all k>ky It follows from (7), (8) and (9) that for
all k > kg,

a(v ©V)

o) n (2]
G ; (einc 06 Zlvk(s) o V(5)|G>

(pn)G
G ( G@(;Z|vk(s)ev(s)|a>

(pn)G
Y- Z ( GQGZIVR(S)GV(S)Ic;)

n= n0+1
&
¢ 3D e’ @
[ ¢ n (Pna
G Y (e—nc@GZwk(snc)
n=ngy+1 =
(Pnde
®6 Z ( G@GZIv(s)la)
c n= nD+L
= 23 Be? O
ng . n (Pndc
o) O G Y (e—na © 62|vk(s)|a>
n=1 s=1
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(Pn)c
DG Z ( G@GElv(s)l(;)p

n= n0+1
£
¢ 3D e? @
no o n (rnde
oG ) (e—nG o GZlv(s)l(;)
n=1 s=1

(Pn)c
® G z ( G@GZMs)lG)p

n=ng+1
=@ O
o0 n (rn)c
e
¢y (e—nG@GZ'”“)'G)
n=ng+1 s=1
GB_GQ 2M+1
(Pndc
®G Z ( GQGZIV(S)Ic;)
gn =ng+1
=—6962 ©)
(pndg
06 Z ( GOGZIV(S)M)
e
698_3 OeW

£ £ £
<G€_SG@€_3G®;G=€

G
This shows that o(vy B v)—-1 k — oo.

G
Therefore, by Proposition 2.13 (ii) ||[vy — vl =1
as k — oo,

as

Theorem 2.15. Ces®(p) is a G-Banach space under
the Luxemburg G-norm.

Proof. Let (v(™) = (v,g")) be G-Cauchy sequence

in Ces®(p). Given any ¢ € (1,e). Hence there
exists ny € N such that

||v(”) = V(S)”G <; eMa
for all n, s > n,. By Proposition 2.11 (i), we have
c(vW 6 v®) <, ™ 6 V(S)”G <c &M (10)

for all n, s > n,. Hence, we can write
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(rc
) <; eMs

)(Pk)G <

z( GGGZ| ™ gy

Because of

for

(e 0est b oo
all N € N, we find

N
oY b,
k=1

This implies

<ce@eVN =gV,

|v,£n) ) vlgs) . <g ek

for all k € N and for all n, s > n,. Since (v,ﬁ”)) bea
G-Cauchy sequence in R, there exists vy € R

such that v( m vy for all k € N. Let v = (vy), we
shall show that v € Ces®(p). Taken as V|, =
(v, vy, ..,v,1,1,1,...). For all r €N and n,s >
n,, we find

o ((v<n> o V(S))|r) < eMo

()8

by using (10). Since v~ —v, for all k=

1,2,3,...,r, we find
((v(n) o v®)| ) s ((v(”) ev)| )

as s — oo . Hence, we get o ((v(”) S v)|r) < eMa
for all r € N and n > n,,. This implies

o(vW B v) <; eMe
for all n > n,. By Proposition 2.12 (i), we obtain

||v(”) ) v||G <; €

for all n > n,. This means that v i v where n —
. Also, we see that v=v® O (v(”) ) v) €
Ces®(p), because of v™® Qv e CesC(p).
Therefore, Ces®(p) is G-Banach space.

Definition 2.16. Let VV be a G-Banach space. A point
veSW)={eV:||vlg=-e} is referred to as
G-nonsquare point if for every y € S(V) the
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GByG”

. v
min  (|=3

Definition 2.17. A G-Banach space V is called G-
nonsquare, if all element v in S(V) is G-nonsquare
point.

condition vey G ” } <ge

holds true.

Proposition 2.18. Let p = (p,) be a bounded
sequence of positive real numbers with p,, > 1 for
alln € N. Thenv € S(CesG(p)) is a G-nonsquare
point & ag(v) = e.

Proof. From Proposition 2.11 (iii), it seen that if v €
Ces%(p), then a(v) = e. Now let 6(v) = e and
suppose that v is not G-nonsquare point. Then
there exits y € S(CesG(p)) suchthat|[v@® vy |l =
llv© yllg = e. Hence, we can write c(v @ y) =
o(vO y) = e by using Proposition 2.11 (iii).
Since p, > 1foralln € N

e=a(v)=a(v62yGEBvezyG>

e
e e
<g e—ZGOU(V Dy @;G@a(v Oy)=e

is obtained due to strict G-convexity. This
constitutes a contradiction.

Theorem 2.19. Let p = (p,) be a bounded
sequence of positive real numbers with p,, > 1 for
allm € N. Then Ces®(p) is G-nonsquare.

Proof. It follows from Proposition 2.11 (iii) and
Proposition 2.18.

3 Conclusion

The concepts of modular, modular spaces, and
Luxemburg norm are given from a new perspective
using geometric arithmetic. We define the
generalized geometric Cesaro sequence space and
construct a G-modular on this space. Luxemburg G-
norm, produced by the G-modular, is built into the
generalized geometric Cesaro sequence space. The
relationships between G-modular and Luxemburg G-
norm are investigated. Also, we provide evidence that
the generalized geometric Cesaro sequence space is,
in fact, a G-Banach space under the Luxemburg G-
norm. Moreover, one gets that the generalized
geometric Cesaro sequence space is G-nonsquare
when p,, > 1 for all n € N. This sets the way for our
future work, which will look into the dual spaces of
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the geometric Cesaro sequence space and establish
the relevant matrix transformations. Since the theory
of sequence space and geometric calculus is quite
active and has extensive applications, we believe
many researchers will use our newly acquired results
for future works and applications in related fields.
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