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1 Introduction 

Grossman and Katz [11] introduced non-Newtonian 
calculus, which is a novel framework composed of 
the branches of geometric, bigeometric, harmonic, 
biharmonic, quadratic, and biquadratic calculus. 
Non-Newtonian calculus encompasses a diverse 
range of uses that include subjects like interest rates, 
the theory of economic elasticity, blood viscosity, 
biology, and computer science, including image 
processing and artificial intelligence, functional 
analysis, probability theory, and differential 
equations. One of the most well-known classes of 
non-Newtonian calculus is geometric calculus, which 
offers a variety of viewpoints that are helpful for 
applications in the fields of science and engineering. 
It offers differentiation and integration methods 
grounded in multiplication rather than addition. In 
general, geometric calculus is a methodology that 
allows for a different perspective on problems that 
can be studied through calculus. Geometric calculus 
is preferred over a traditional Newtonian one in 
specific cases, particularly when dealing with issues 

related to price elasticity and growth. To have a 
deeper understanding of non-Newtonian calculus, 
one must be familiar with several forms of arithmetic 
and their generators. The all, 𝑝-absolutely summable, 
boundedness, convergent and null sequence spaces in 
the context of non-Newtonian calculus denoted by 
𝜔(𝑁),  𝑙∞(𝑁),  𝑙𝑝(𝑁), 𝑐(𝑁), 𝑐₀(𝑁), respectively, are 
defined and it is shown that these sets constitute a 
complete metric space by Çakmak and Başar [4]. 
Güngör [10] investigated some geometric properties 
of the non-Newtonian geometric sequence spaces 
 𝑙𝑝(𝑁). Boruah and Hazarika [2] introduced the 
generalized geometric difference sequence spaces 
ℓ∞

𝐺 (Δ𝐺
𝑚), 𝑐𝐺(Δ𝐺

𝑚), 𝑐0
𝐺(Δ𝐺

𝑚) with some properties. 
Mahto et al. [16] introduced bigeometric Cesàro 
difference sequence spaces and investigated the 𝛼-
duals of these sequence spaces. More information on 
the non-Newtonian calculus may be found for the 
reader in [1, 6-9,12-14,17-20,23,26].  

Sequence spaces have applications in a wide 
variety of disciplines, including economics and 
engineering. Studies on the geometric and topologic 
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aspects of sequence spaces have been the focus of 
research in both pure and applied analysis due to the 
significance of sequence spaces as an example of 
function spaces and their involvement in the study of 
the theory of Banach spaces.  The Cesàro sequence 
spaces, 𝑐𝑒𝑠𝑝 (1 ≤ 𝑝 < ∞) and 𝑐𝑒𝑠∞ were established 
in 1968 as a part of the Dutch Mathematical Society's 
challenge to find duals. Shiue [24] investigated some 
properties of these spaces and gave the first norm-
based description of them. Leibowitz [15] showed 
that 𝑐𝑒𝑠1 = {0}, 𝑐𝑒𝑠𝑝 are separable reflexive Banach 
spaces for 1 ≤ 𝑝 < ∞ and the 𝑙𝑝 spaces are in 𝑐𝑒𝑠𝑝 
for 1 < 𝑝 < ∞. Sanhan and Suantai [21] defined the 
generalized Cesàro sequence spaces 𝑐𝑒𝑠(𝑝). They 
examined the space for completeness and also 
discussed its rotundity. Suantai [25] showed that the 
space 𝑐𝑒𝑠(𝑝) has property (H) and property (G), and 
it is rotund. Many mathematicians have extensively 
researched the Cesàro sequence spaces via geometric 
and topological properties. 

Motivated essentially by the aforementioned 
publications above, this study considers the 
geometric calculus concept of generalized Cesàro 
sequence space a novel and intriguing addition to the 
current literature in this field. We investigate 
geometric calculus versions of some concepts and 
properties given for classical generalized Cesàro 
sequence spaces. We hope this study will shed fresh 
light on how to approach solving issues in contexts 
where the theory of sequence spaces in fields ranging 
from engineering to economics and the theory of 
geometric calculus have a wide variety of uses. 

Now, we offer a brief introduction to geometric 
calculus that emphasizes the terminology required for 
this discussion.  

The building blocks of every arithmetic system 
are the four operations on the set ℝ (addition, 
subtraction, multiplication and division) and an 
ordering relation that follows the rules of a 
completely ordered field. The set ℝ is referred to as 
the realm, and the elements of the set ℝ are termed 
the numbers of the system. A generator is an injective 
function whose domain is ℝ and whose range is a 
subset of ℝ. The range of the generator 𝜂 is called 
non-Newtonian real line and it is demonstrated by 
ℝ𝜂. 𝜂 − arithmetic operations and ordering relations 
are described as follows [11]: 

𝜂 − addition  𝜐+̇𝑠 = 𝜂{𝜂−1(𝜐) + 𝜂−1(𝑠)} 

𝜂 − subtraction 𝜐−̇𝑠 = 𝜂{𝜂−1(𝜐) − 𝜂−1(𝑠)} 

𝜂 − multiplication 𝜐 ×̇ 𝑠 = 𝜂{𝜂−1(𝜐) ⋅ 𝜂−1(𝑠)} 

𝜂 − division 𝜐/̇𝑠 = 𝜂{𝜂−1(𝜐) ÷ 𝜂−1(𝑠)} 

𝜂 − order  
𝜐 <̇ 𝑠 ⇔ 𝜂−1(𝜐) < 𝜂−1(𝑠) 

(𝜐 ≤̇ 𝑠 ⇔ 𝜂−1(𝜐) ≤ 𝜂−1(𝑠)). 

Particularly, the identity function generates classical 
arithmetic. 

 In ∗ −calculus, the paired arithmetics 
(𝜂 −arithmetic, 𝛽 −arithmetic) are utilized for 
arguments and values, respectively. The subsequent 
particular calculi are derived when 𝜂 and 𝛽 are 
chosen as either 𝐼 and exp, representing the identity 
and exponential functions, respectively [11]: 

Calculus 𝜂 𝛽 
Classical 𝐼 𝐼 
Geometric 𝐼 exp 
Anageometric exp 𝐼 
Bigeometric exp exp. 

The classical arithmetic is derived from the identity 
function. If the 𝜂 −generator is chosen as exponential 
function defined by 𝜂(𝜐) = 𝑒𝜐 for 𝜐 ∈ ℝ, then 
𝜂−1(𝜐) = ln 𝜐, 𝜂 arithmetic turns into geometric 
arithmetic. The definitions of geometric operations 
and ordering relation are [2, 11]: 

Geometric additon 

𝜐 ⊕ 𝑠 = 𝜂{𝜂−1(𝜐) + 𝜂−1(𝑠)} = 𝑒(ln 𝜐+ln 𝑠) = 𝜐. 𝑠 

Geometric subtraction 

𝜐 ⊖ 𝑠 = 𝜂{𝜂−1(𝜐) − 𝜂−1(𝑠)} = 𝑒(ln 𝜐−ln 𝑠) 

                  = 𝜐

𝑠
, 𝑠 ≠ 0 

Geometric multiplication 

𝜐 ⊙ 𝑠 = 𝜂{𝜂−1(𝜐) ⋅ 𝜂−1(𝑠)} = 𝑒(ln 𝜐×ln 𝑠) = 𝜐ln 𝑠 

             = 𝑠ln 𝜐 

Geometric division 

𝜐

𝑠
𝐺 (or 𝜐 ⊘ 𝑠) = 𝜂{𝜂−1(𝜐) ÷ 𝜂−1(𝑠)} = 𝑒(ln 𝜐÷ln 𝑠) 

                      = 𝜐
1

ln 𝑠, 𝑠 ≠ 1 
Geometric order 

𝜐 <𝐺 𝑠 (𝜐 ≤𝐺 𝑠) ⇔ ln 𝜐 < ln 𝑠  (ln 𝜐 ≤ ln 𝑠). 
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The set of geometric real numbers which is denoted 
by ℝ𝐺, is defined as {𝑒𝜐: 𝜐 ∈ ℝ}. (ℝ𝐺 ,⊕,⊙) is a field 
with geometric zero 0𝐺 = 1 and geometric identity 
1𝐺 = 𝑒. The sets of geometric positive real numbers 
and geometric negative real numbers are defined as 
ℝ𝐺

+ = {𝜐 ∈ ℝ𝐺: 𝜐 >𝐺 1} and ℝ𝐺
− = {𝜐 ∈

ℝ𝐺: 𝜐 <𝐺 1}, respectively. The set of all geometric 
integers are as follows: 

ℤ𝐺 = {… , 0𝐺 ⊖ 𝑒2, 0𝐺 ⊖ 𝑒, 0𝐺 , 𝑒, 𝑒2, … } 

                = {… , 𝑒−2, 𝑒−1, 1, 𝑒, 𝑒2, … } 
The geometric absolute value of 𝜐 ∈ ℝ𝐺 is defined by  

|𝜐|𝐺 = {

𝜐,   𝜐 >𝐺 1
1, 𝜐 = 1
1

𝜐
, 𝜐 <𝐺 1

 

and this is equivalent to expression 𝑒|ln 𝜐|. For 
any 𝜐, 𝑠 ∈ ℝ𝐺, the subsequent statements are valid: 
i) |𝜐 ⊕ 𝑠|𝐺 ≤𝐺 |𝜐|𝐺 ⊕ |𝑠|𝐺  
ii) |𝜐 ⊖ 𝑠|𝐺 ≥𝐺 |𝜐|𝐺 ⊖ |𝑠|𝐺  
iii) |𝜐 ⊙ 𝑠|𝐺 = |𝜐|𝐺 ⊙ |𝑠|𝐺  
iv) |𝜐 ⊘ 𝑠|𝐺 = |𝜐|𝐺 ⊘ |𝑠|𝐺 .  
For any 𝜐 ∈ ℝ𝐺, 𝜐𝑝𝐺 = 𝑒(ln 𝜐)𝑝

= 𝜐ln𝑝−1 𝜐 and √𝜐
𝑝 𝐺

=

𝑒(ln 𝜐)
1
𝑝 [2, 11]. 

Definition 1.1. [3, 5] A geometric vector space (𝐺-
vector space) over a geometric field ℝ𝐺 is a non-
empty set 𝑉 equipped with two operations ⊕ and ⊙, 
called geometric vector addition and geometric scalar 
multiplication, respectively, which satisfy the 
following properties: 

GV1) Closure: If 𝜐, 𝑠 ∈ 𝑉, then 𝜐 ⊕ 𝑠 belong to 𝑉. 

GV2) Associative law:(𝜐 ⊕ 𝑠) ⊕ 𝑡 = 𝜐 ⊕ (𝑠 ⊕ 𝑡) 
for all 𝜐, 𝑠, 𝑡 ∈ 𝑉. 

GV3) Additive identity: 𝑉 contains an additive 
identity element denoted by 𝜃𝐺, such that 𝜐 ⊕ 𝜃𝐺 =
𝜐 for all 𝜐 ∈ 𝑉. 

GV4) Additive inverse: For all 𝜐 ∈ 𝑉, there is a vector 
𝜃𝐺 ⊝ 𝜐 ∈ 𝑉 with 𝜐 ⊕ (𝜃𝐺 ⊝ 𝜐) = 𝜃𝐺 and (𝜃𝐺 ⊝
𝜐) ⊕  𝜐 = 𝜃𝐺. 

GV5) Commutative law: 𝜐 ⊕ 𝑠 = 𝑠 ⊕ 𝜐 for all 𝜐, 𝑠 ∈
𝑉. 

GV6) Closure: If 𝜐 ∈ 𝑉 and 𝜆 ∈ ℝ𝐺 , then 𝜆 ⊙ 𝜐 
belong to 𝑉. 

GV7) Distributive laws:  

 𝜆 ⊙ (𝜐 ⊕ 𝑠) = 𝜆 ⊙ 𝜐 ⊕ 𝜆 ⊙ 𝑠, for all 𝜐, 𝑠 ∈ 𝑉 and 
𝜆 ∈ ℝ𝐺. 

(𝜆 ⊕ 𝛽) ⊙ 𝜐 = 𝜆 ⊙ 𝜐 ⊕ 𝛽 ⊙ 𝜐, for all 𝜐 ∈ 𝑉 and 
𝜆, 𝛽 ∈ ℝ𝐺 

GV8) Associative law: 𝜆 ⊙ (𝛽 ⊙ 𝜐) =  (𝜆 ⊙ 𝛽) ⊙
𝜐 for all 𝜐 ∈ 𝑉 and 𝜆, 𝛽 ∈ ℝ𝐺. 

GV9) Unitary law: 𝑒 ⊙ 𝜐 = 𝜐 for all 𝜐 ∈ 𝑉. 
 The set of all sequences of the geometric real 
numbers demonstrated by 𝜔𝐺, i.e., 𝜔𝐺 = {𝜈 =
(𝜈𝑘)|  𝜈 ∶ ℕ → ℝ𝐺}. Based on the algebraic 
operations ⊕ addition and ⊙ multiplication, 𝜔𝐺 is a 
𝐺-vector space over ℝ𝐺 [2,4]. 
Definition 1.2. [4] Let 𝑉 be a 𝐺-vector space. If the 
function ‖⋅‖𝐺 ∶  𝑉 →  ℝ𝐺  holds the following 
properties for all 𝜈, 𝑦 ∈ 𝑉 and 𝜆 ∈ ℝ𝐺, 
GN1) ‖𝜈‖𝐺 = 1 ⇔   𝜈 = 𝜃𝐺 
GN2) ‖𝜆 ⊙ 𝜈‖𝐺 = |𝜆|𝐺 ⊙ ‖𝜈‖𝐺 

GN3) ‖𝜈 ⊕ 𝑦‖𝐺 ≤𝐺 ‖𝜈‖𝐺 ⊕ ‖𝑦‖𝐺 

then (𝑉, ‖⋅‖𝐺) is said to be a 𝐺-normed space. 
Definition 1.3. [4, 27] Let (𝑉, ‖. ‖𝐺) be 𝐺-normed 
space and (𝜈𝑘) be a sequence in 𝑉. If for every given 
𝜀 >𝐺 1, there exist 𝑘0 = 𝑘0(𝜀) ∈  ℕ and 𝜈 ∈ 𝑉 such 
that ‖𝜈𝑘 ⊖ 𝜈‖𝐺 <𝐺 𝜀 for all 𝑘 ≥ 𝑘0, then (𝜈𝑘) is said 
to be 𝐺-convergent and it is denoted by 𝜈𝑘 →

𝐺
𝜈 as 

𝑘 → ∞. 
Definition 1.4. [27] Let (𝑉, ‖. ‖𝐺) be 𝐺-normed 
space and (𝜈𝑘) be a sequence in 𝑉. If for every given 
𝜀 >𝐺 1, there is 𝑘0 = 𝑘0(𝜀) ∈  ℕ such that ‖𝜈𝑘 ⊖
𝜈𝑚‖𝐺 <𝐺 𝜀 for all 𝑘, 𝑚 ≥ 𝑘0, then (𝜈𝑘) is said to be 
𝐺-Cauchy sequence. 
 If every 𝐺-Cauchy sequence in 𝑉 converges, then 
it is said that 𝑉 is a 𝐺-Banach. For example, 
(ℝ𝐺 , |. |𝐺) is a 𝐺-Banach space. 
Definition 1.5. [10] Let 𝑓: 𝐼 ⊆ ℝ𝐺 →  ℝ𝐺 be a 
function. The function 𝑓 is said to be 𝐺-convex, if for 
every 𝑟, 𝑠 ∈ 𝐼 it satisfies 
𝑓(𝛾 ⊙ 𝑟 ⊕ (𝑒 ⊖ 𝛾) ⊙ 𝑠) 
≤𝐺 𝛾 ⊙ 𝑓(𝑟) ⊕ (𝑒 ⊖ 𝛾) ⊙ 𝑓(𝑠) 
with 𝛾 ∈ [1, 𝑒].  

Proposition 1.6. [22] Let 𝑟, 𝑠 ≥𝐺 1, then (𝑟 ⊕
𝑠)𝑝𝐺 ≤𝐺 𝑟𝑝𝐺 ⊕ 𝑠𝑝𝐺  for 0 < 𝑝 < 1 . 
 

2 Main Results 

This section introduces the idea of generalized 
geometric Cesàro sequence space with a new 
perspective on the concept of Cesàro sequence space 
and it provides a basic explanation of the theory 
behind this sequence space. 
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First, we will present the concepts of modular, 
modular spaces and Luxemburg norm according to 
geometric calculation style. 

Definition 2.1. Let 𝑉 be a 𝐺-vector space on ℝ𝐺 
field. The function 𝜚 ∶ 𝑉 → [1, ∞] is called 𝐺-
modular provided that it satisfies the given 
requirements: 

i)  𝜚(𝜈) = 1 if and only if 𝜈 = 𝜃𝐺, 

ii) 𝜚(𝛼 ⊙ 𝜈) = 𝜚(𝜈) for all scalar 𝛼 ∈ ℝ𝐺   with 
|𝛼|𝐺 = 𝑒 , 

iii) 𝜚(𝛼 ⊙ 𝜈 ⊕ 𝛽 ⊙ 𝑦) ≤𝐺 𝜚(𝜈) ⊕ 𝜚(𝑦) for all 
𝜈, 𝑦 ∈ 𝑉 and 𝛼, 𝛽 ≥𝐺 1 with 𝛼 ⊕ 𝛽 = 𝑒. 

Moreover, the 𝐺-modular 𝜚 is called 𝐺-convex (𝐺-
convex modular) if 

iv) 𝜚(𝛼 ⊙ 𝜈 ⊕ 𝛽 ⊙ 𝑦) ≤𝐺 𝛼 ⊙ 𝜚(𝜈) ⊕ 𝛽 ⊙ 𝜚(𝑦) 
for all 𝜈, 𝑦 ∈ 𝑋 and 𝛼, 𝛽 ≥𝐺 1 with 𝛼 ⊕ 𝛽 = 𝑒. 
Definition 2.2. If 𝜚 is a  𝐺-modular in 𝑉, we define  

𝑉𝜚 = {𝜈 ∈ 𝑉 ∶ 𝜚(𝑒𝜆 ⊙ 𝜈)
𝐺
→ 1, 𝜆 ⟶ 0+} 

and it is called 𝐺-modular spaces. 
Theorem 2.3. If 𝜚 is a 𝐺-convex modular, then the 
function ‖. ‖𝐺: 𝑉𝜚 ⟶ ℝ𝐺 defined as 

‖𝜈‖𝐺 = inf {𝑒𝜆 >𝐺 1 ∶ 𝜚 (
𝜈

𝑒𝜆
𝐺) ≤𝐺 𝑒}𝐺  

is 𝐺-norm on 𝑉𝜚.  
Proof.  

GN1) Let 𝜈 = 𝜃𝐺. Since 𝜚 (
𝜃𝐺

ⅇ𝜆 𝐺) = 1 for every 𝑒𝜆 ∈

ℝ𝐺, then we find ‖𝜈‖𝐺 = 1.  
Conversely, let ‖𝜈‖𝐺 = 1. Since 𝜚 is a  𝐺-convex 
modular 

𝜚(𝛼 ⊙ 𝜈) = 𝜚(𝛼 ⊙ 𝜈⨁(𝑒 ⊙ 𝛼) ⊙ 𝜃𝐺) 
                            ≤𝐺 𝛼 ⊙ 𝜚(𝜈)⨁(𝑒 ⊙ 𝛼) ⊙ 𝜚(𝜃𝐺) 

            = 𝛼 ⊙ 𝜚(𝜈) 
for all 𝛼 ∈ ℝ𝐺 with 1 ≤𝐺  𝛼 ≤𝐺 𝑒. Therefore, we can 
write 

𝜚(𝜈) = 𝜚 (𝑒𝑛 ⊙
1

𝑒𝑛
𝐺 ⊙ 𝜈) 

≤𝐺

1

𝑒𝑛
𝐺 ⊙ 𝜚(𝑒𝑛 ⊙ 𝜈) 

        = 1

ⅇ𝑛 𝐺 ⊙ 𝜚 (
𝜈

1

𝑒𝑛𝐺
𝐺) 

for every 𝑛 ∈ ℕ. Hence, it is obtained that 𝜚(𝜈) = 1 
which implies 𝜈 = 𝜃𝐺. 
GN2) Take any 𝜈 ∈ 𝑉𝜚 and 𝛼 ∈ ℝ𝐺. If 𝛼 = 1, then 
clearly ‖𝛼 ⊙ 𝜈‖𝐺 = |𝛼|𝐺 ⊙ ‖𝜈‖𝐺. Assume that 𝛼 ∈
ℝ𝐺 − {1}. Based on the provided definition of  ‖. ‖𝐺, 
we can write 

‖
𝛼 ⊙ 𝜈

|𝛼|𝐺
𝐺‖

𝐺

 

= inf {𝑒𝜆 >𝐺 1 ∶ 𝜚 (

𝛼⊙𝜈

|𝛼|𝐺
𝐺

𝑒𝜆
𝐺) ≤𝐺 𝑒}𝐺  

= inf {𝑒𝜆 >𝐺 1 ∶ 𝜚 (
𝜈

ⅇ𝜆⊙|𝛼|𝐺

𝛼
𝐺

𝐺) ≤𝐺 𝑒}𝐺 . 

Let 𝛼 >𝐺 1. Considering 𝑒𝜆1 =
ⅇ𝜆⊙|𝛼|𝐺

𝛼
𝐺, then we 

obtain 

‖
𝛼 ⊙ 𝜈

|𝛼|𝐺
𝐺‖

𝐺

 

= inf {
𝑒𝜆1 ⊙ 𝛼

|𝛼|𝐺
𝐺 >𝐺 1 ∶ 𝜚 (

𝜈

𝑒𝜆1
𝐺) ≤𝐺 𝑒}𝐺  

=
𝛼

|𝛼|𝐺
𝐺 ⊙ inf {𝑒𝜆1 >𝐺 1 ∶ 𝜚 (

𝜈

𝑒𝜆1
𝐺) ≤𝐺 𝑒}𝐺  

= ‖𝜈‖𝐺 .                                                                  (1) 
Let 𝛼 <𝐺 1. If we take it as 𝑒𝜆2 =

ⅇ𝜆⊙|𝛼|𝐺

1⊖𝛼
𝐺, we get 

‖
𝛼 ⊙ 𝜈

|𝛼|𝐺
𝐺‖

𝐺

 

= inf {
ⅇ𝜆2⊙(1⊖𝛼)

|𝛼|𝐺
𝐺 >𝐺 1 ∶ 𝜚 (

(1⊖ⅇ)⊙𝜈

ⅇ𝜆2
𝐺) ≤𝐺 𝑒}𝐺   

=
1 ⊖ 𝛼

|𝛼|𝐺
𝐺 ⊙ inf {𝑒𝜆2 >𝐺 1 ∶ 𝜚 (

𝜈

𝑒𝜆2
𝐺) ≤𝐺 𝑒}𝐺  

=
1 ⊖ 𝛼

|𝛼|𝐺
⊙ ‖𝜈‖𝐺 

= ‖𝜈‖𝐺 .                                                                          (2) 
By using (1) and (2), we obtain  

                           ‖
𝛼 ⊙ 𝜈

|𝛼|𝐺
𝐺‖

𝐺

= ‖𝜈‖𝐺                        (3) 

for all 𝛼 ∈ ℝ𝐺 − {1}. If we take 𝑒𝜆′
= 𝑒𝜆 ⊙ |𝛼|𝐺 , 

then we can see that 

‖
𝛼 ⊙ 𝜈

|𝛼|𝐺
𝐺‖

𝐺

 

= inf {𝑒𝜆 >𝐺 1 ∶ 𝜚 (
𝛼 ⊙ 𝜈

𝑒𝜆 ⊙ |𝛼|𝐺
𝐺) ≤𝐺 𝑒}𝐺  

= inf {
𝑒𝜆′

|𝛼|𝐺
𝐺 ⊙ 𝛼 >𝐺 1 ∶ 𝜚 (

𝛼 ⊙ 𝜈

𝑒𝜆′ 𝐺) ≤𝐺 𝑒}𝐺  

=
1

|𝛼|𝐺
𝐺 ⊙ inf {𝑒𝜆′

>𝐺 1 ∶ 𝜚 (
𝛼 ⊙ 𝜈

𝑒𝜆′ 𝐺) ≤𝐺 𝑒}𝐺  

=
1

|𝛼|𝐺
𝐺 ⊙ ‖𝛼 ⊙ 𝜈‖𝐺 .                                          (4) 

Using the expressions (3) and (4), we obtain  
‖𝛼 ⊙ 𝜈‖𝐺 = |𝛼|𝐺 ⊙ ‖𝜈‖𝐺 

for all 𝛼 ∈ ℝ𝐺 − {1}. 
GN3) Let any 𝜈, 𝑦 ∈ 𝑉𝜚 be given. Let  

𝐴 = {𝑒𝜆1 >𝐺 1 ∶ 𝜚 (
𝜈

𝑒𝜆1
𝐺) ≤𝐺 𝑒} 

𝐵 = {𝑒𝜆2 >𝐺 1 ∶ 𝜚 (
𝑦

𝑒𝜆2
𝐺) ≤𝐺 𝑒} 
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and 

𝐶 = {𝑒𝜆3 >𝐺 1 ∶  𝜚 (
𝜈 ⊕ 𝑦

𝑒𝜆3
𝐺) ≤𝐺 𝑒}. 

Since 𝜚 is a 𝐺-convex modular, we find 
𝜚 (

𝜈⊕𝑦

ⅇ𝜆1⊕ⅇ𝜆2
𝐺) = 𝜚 (

𝜈

ⅇ𝜆1⊕ⅇ𝜆2
𝐺 ⊕

𝑦

ⅇ𝜆1⊕ⅇ𝜆2
𝐺)  

= 𝜚 (
𝑒𝜆1

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 ⊙

𝜈

𝑒𝜆1
𝐺 ⊕

𝑒𝜆2

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 ⊙

𝑦

𝑒𝜆2
𝐺) 

≤𝐺

𝑒𝜆1

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 ⊙ 𝜚 (

𝜈

𝑒𝜆1
𝐺) 

    ⊕
ⅇ𝜆2

ⅇ𝜆1⊕ⅇ𝜆2
𝐺 ⊙ 𝜚 (

𝑦

ⅇ𝜆2
𝐺)  

≤𝐺

𝑒𝜆1

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 ⊕

𝑒𝜆2

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 

= 𝑒 
for arbitrary 𝑒𝜆1 ⊕ 𝑒𝜆2. Selecting 𝐷 = {𝑒𝜆1 ⊕

𝑒𝜆2: 𝑒𝜆1 ∈ 𝐴 ⋀ 𝑒𝜆2 ∈ 𝐵}, then we can see that 𝐷 ⊂

𝐶. Because of 𝐷 ⊂ 𝐶,  inf 𝐶𝐺 ≤𝐺 inf 𝐷𝐺 =

inf 𝐴𝐺 ⊕ inf 𝐵𝐺  holds. As a result, we get 
‖𝜈 ⊕ 𝑦‖𝐺 ≤𝐺 ‖𝜈‖𝐺 ⊕ ‖𝑦‖𝐺 . 

Now, the concept of generalized geometric 
Cesàro sequence space is given, which forms the 
basis of this paper: 
Definition 2.4. Let 𝑝 = (𝑝𝑛) represent a bounded 
sequence of positive real numbers with 𝑝𝑛 ≥ 1 for all 
𝑛 ∈ ℕ. The generalized geometric Cesàro sequence 
space is defined as 

𝐶𝑒𝑠𝐺(𝑝) = {𝜈 = (𝜈𝑘) ∈ 𝜔𝐺 ∶  𝜎(𝜈) <𝐺 ∞} 
whenever  

𝜎(𝜈) = 𝐺 ∑ (
ⅇ

ⅇ𝑛 𝐺 ⊙ 𝐺 ∑ |𝜈𝑘|𝐺
𝑛
𝑘=1 )

(𝑝𝑛)𝐺∞
𝑛=1 . 

In the present study, we make the assumption that 
𝑝 = (𝑝𝑛) be a sequence of positive real numbers 
where 𝑝𝑛 ≥ 1 for every 𝑛 ∈ ℕ and 𝑀 = sup

𝑛∈ℕ
 𝑝𝑛. 

Proposition 2.5. Let 𝑞 ∈ [1, ∞) and 𝑟, 𝑠 ∈ ℝ𝐺, then 
the following statement holds: 

|𝑟 ⊕ 𝑠|𝐺
𝑞𝐺 ≤𝐺 (𝑒2)𝑞𝐺 ⊙ (|𝑟|𝐺

𝑞𝐺 ⊕ |𝑠|𝐺
𝑞𝐺). 

Proof. We can write  

|𝑟 ⊕ 𝑠|𝐺 ≤𝐺 |𝑟|𝐺 ⊕ |𝑠|𝐺 

                                     ≤𝐺 𝑒2 ⊙ maks𝐺 {|𝑟|𝐺 , |𝑠|𝐺} 

for any 𝑟, 𝑠 ∈ ℝ𝐺.  Therefore, we get 

|𝑟 ⊕ 𝑠|𝐺
𝑞𝐺 ≤𝐺 (𝑒2)𝑞𝐺 ⊙ ( maks𝐺 {|𝑟|𝐺 , |𝑠|𝐺})

𝑞𝐺 

                     = (𝑒2)𝑞𝐺  ⊙ maks𝐺 {|𝑟|𝐺
𝑞𝐺 , |𝑠|𝐺

𝑞𝐺} 

            ≤𝐺 (𝑒2)𝑞𝐺  ⊙ (|𝑟|𝐺
𝑞𝐺 + |𝑠|𝐺

𝑞𝐺). 
Theorem 2.6. 𝐶𝑒𝑠𝐺(𝑝) is a 𝐺-vector spaces under 
geometric addition and geometric scalar 
multiplication operations for geometric real 
sequences.  
Proof. Given any 𝜈 = (𝜈𝑘), 𝑦 = (𝑦𝑘) ∈  𝐶𝑒𝑠𝐺(𝑝) 
and 𝜆 ∈ ℝ𝐺. Let 𝑀 = sup

𝑛∈ℕ
 𝑝𝑛. If it is choosen 𝛼𝑛 =

𝑝𝑛

𝑀
 for all 𝑛 ∈ ℕ, we have  

 𝜎(𝜈 ⊕ 𝑦) 

= 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘 ⊕ 𝑦𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘 ⊕ 𝑦𝑘|𝐺

𝑛

𝑘=1

)

(𝑀𝛼𝑛)𝐺∞

𝑛=1

 

≤𝐺 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

⊕
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝑦𝑘|𝐺

𝑛

𝑘=1

)

(𝑀𝛼𝑛)𝐺∞

𝑛=1

 

 ≤𝐺 𝐺 ∑ ((
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝛼𝑛)𝐺∞

𝑛=1

 

        ⊕ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝑦𝑘|𝐺

𝑛

𝑘=1

)

(𝛼𝑛)𝐺

)

𝑀𝐺

. 

from Proposition.1.6. We get  
𝜎(𝜈 ⊕ 𝑦) 

≤𝐺 𝐺 ∑(𝑒2)𝑀𝐺

∞

𝑛=1

⊙ [((
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝛼𝑛)𝐺

)

𝑀𝐺

 

              ⊕ ((
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝑦𝑘|𝐺

𝑛

𝑘=1

)

(𝛼𝑛)𝐺

)

𝑀𝐺

] 

= (𝑒2)𝑀𝐺 ⊙ [𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

            ⊕ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝑦𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

] 

= (𝑒2)𝑀𝐺 ⊙ [𝜎(𝜈) ⊕ 𝜎(𝑦)] <𝐺 ∞ 
from Proposition 2.5. This demonstrates that 𝜎(𝜈 ⊕
𝑦) <𝐺 ∞, i.e., 𝜈 ⊕ 𝑦 ∈  𝐶𝑒𝑠𝐺(𝑝).  
Taken 𝐿 = maks{𝑒, |𝜆|𝐺

𝑀𝐺}𝐺 , it is obtained that 

𝜎(𝜆 ⊙ 𝜈) = 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜆 ⊙ 𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜆|𝐺

𝑛

𝑘=1

⊙ |𝜈𝑘|𝐺)

(𝑝𝑛)𝐺∞

𝑛=1
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 ≤𝐺 |𝜆|𝐺
(𝑝𝑛)𝐺 ⊙ 𝐺 ∑ (

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

 ≤𝐺 𝐿 ⊙ 𝜎(𝜈) <𝐺 ∞. 
This shows that 𝜆 ⊙ 𝜈 ∈  𝐶𝑒𝑠𝐺(𝑝). Consequently, 
𝐶𝑒𝑠𝐺(𝑝) is 𝐺-vector space. 
Proposition 2.7. The function 𝑓: ℝ𝐺 → ℝ𝐺, 𝑡 →

|𝑡|𝐺
(𝑝𝑛)𝐺 is 𝐺-convex where 𝑝𝑛 ≥ 1 for all 𝑛 ∈ ℕ. 

Proof. Let’s taken 𝛾 ∈ [1, 𝑒]. We have 
𝑓(𝛾 ⊙ 𝜈 ⊕ (𝑒 ⊖ 𝛾) ⊙ 𝑦)t 

= |𝛾 ⊙ 𝜈 ⊕ (𝑒 ⊖ 𝛾) ⊙ 𝑦|𝐺
(𝑝𝑛)𝐺 

= [exp{|ln(𝜈ln 𝛾 ⋅ 𝑦(1−ln 𝛾))|}]
(𝑝𝑛)𝐺 

= exp {(ln(𝑒|ln 𝛾⋅ln 𝜈+(1−ln 𝛾)⋅ln 𝑦|))
𝑝𝑛

} 
= exp{|ln 𝛾 ⋅ ln 𝜈 + (1 − ln 𝛾) ⋅ ln 𝑦|𝑝𝑛}               (5) 
for all 𝜈, 𝑦 ∈ ℝ𝐺. Since 𝛾 ∈ [1, 𝑒] implies ln 𝛾 ∈
[0,1], we get 
|ln 𝛾 ⋅ ln 𝜈 + (1 − ln 𝛾) ⋅ ln 𝑦|𝑝𝑛   
≤ ln 𝛾 ⋅ |ln 𝜈|𝑝𝑛 + (1 − ln 𝛾) ⋅ |ln 𝑦|𝑝𝑛                   (6) 
by aid of the convexity of the function 𝑡 → |𝑡|𝑝𝑛 in 
classical calculus. From (5) and (6), we find 
𝑓(𝛾 ⊙ 𝜈 ⊕ (𝑒 ⊖ 𝛾) ⊙ 𝑦) 
≤𝐺  exp{ln 𝛾 ⋅ |ln 𝜈|𝑝𝑛 + (1 − ln 𝛾) ⋅ |ln 𝑦|𝑝𝑛} 
= exp{ln 𝛾 ⋅ ln 𝑒|ln 𝜈|𝑝𝑛

+ (1 − ln 𝛾) ⋅ ln 𝑒|ln 𝑦|𝑝𝑛
} 

= exp{ln 𝛾 ⋅ ln|𝜈|𝐺
𝑝𝑛 + (1 − ln 𝛾) ⋅ ln|𝑦|𝐺

𝑝𝑛} 
= exp {ln 𝛾 ⋅ ln 𝑒ln|𝜈|𝐺

𝑝𝑛
+ (1 − ln 𝛾) ⋅ ln 𝑒ln|𝑦|𝐺

𝑝𝑛
} 

=  exp {ln 𝛾 ⋅ ln|𝜈|𝐺
(𝑝𝑛)𝐺 + (1 − ln 𝛾) ⋅ ln|𝑦|𝐺

(𝑝𝑛)𝐺} 

=  exp {ln (𝑒 ln 𝛾⋅ln|𝜈|
𝐺

(𝑝𝑛)𝐺
) + ln (𝑒lnⅇ(lne−lnλ)⋅ln|𝑦|

𝐺

(𝑝𝑛)𝐺
)} 

=  𝛾 ⊙ |𝜈|𝐺
(𝑝𝑛)𝐺 ⊕ (𝑒 ⊖ 𝛾) ⊙ |𝑦|𝐺

(𝑝𝑛)𝐺 . 
Hence, the proof is completed. 

Theorem 2.8. 𝜎 is a 𝐺-convex modular on 
𝐶𝑒𝑠𝐺(𝑝). 

Proof. Let 𝜈, 𝑦 ∈ 𝐶𝑒𝑠𝐺(𝑝). 

i) It is obvious that 𝜎(𝜈) = 1 ⇔ 𝑥 = 1. 

ii) For 𝛼 ∈ ℝ𝐺 with |𝛼|𝐺 = 𝑒, we write 

𝜎(𝛼 ⊙ 𝜈) = 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝛼 ⊙ 𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑|𝛼|𝐺
(𝑝𝑛)𝐺 ⊙ (

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

=  𝜎(𝜈). 

iii) Let 𝛼, 𝛽 ∈ ℝ𝐺 with 𝛼 ⊕ 𝛽 = 𝑒, 𝛼, 𝛽 ≥𝐺 1. 
Since 𝑡 ⟶ |𝑡|𝐺

(𝑝𝑛)𝐺 is 𝐺-convex function for all 𝑛 ∈
ℕ, we have 

𝜎(𝛼 ⊙ 𝜈 ⊕ 𝛽 ⊙ 𝑦) 

= 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝛼 ⊙ 𝜈𝑘 ⊕ 𝛽 ⊙ 𝑦𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

≤𝐺 𝐺 ∑ (𝛼 ⊙ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

))

(𝑝𝑛)𝐺∞

𝑛=1

 

⊕ (𝛽 ⊙ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝑦𝑘|𝐺

𝑛

𝑘=1

))

(𝑝𝑛)𝐺

 

= 𝛼 ⊙ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

⊕ 𝛽 ⊙ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝑦𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

=  𝛼 ⊙ 𝜎(𝜈) ⊕  𝛽 ⊙ 𝜎(𝑦). 

Proposition 2.9. The 𝐺-modular 𝜎 on 𝐶𝑒𝑠𝐺(𝑝) has 
the subsequent properties: 
i) If 1 <𝐺 𝑎 <𝐺 𝑒, then 𝑎𝑀𝐺 ⊙ 𝜎 (

𝜈

𝑎
𝐺) ≤𝐺 𝜎(𝜈) 

and 𝜎(𝑎 ⊙ 𝜈) ≤𝐺 𝑎 ⊙ 𝜎(𝜈). 
ii)  If 𝑎 >𝐺 𝑒, then 𝜎(𝜈) ≤𝐺 𝑎𝑀𝐺 ⊙ 𝜎 (

𝜈

𝑎
𝐺). 

iii)  If 𝑎 ≥𝐺 𝑒, then 𝜎(𝜈) ≤𝐺 𝑎 ⊙ 𝜎(𝜈) ≤𝐺 𝜎(𝑎 ⊙
𝜈). 
Proof.  

i)   Let 1 <𝐺 𝑎 <𝐺 𝑒. Hence we find 

𝜎(𝜈) = 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑ |

𝑎 ⊙ 𝜈𝑘

𝑎
𝐺|

𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑|𝑎|𝐺
(𝑝𝑛)𝐺 ⊙ (

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑ |

𝜈𝑘

𝑎
𝐺|

𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

≥𝐺 𝑎𝑀𝐺 ⊙ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑ |

𝜈𝑘

𝑎
𝐺|

𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝑎𝑀𝐺 ⊙  𝜎 (
𝜈

𝑎
𝐺). 
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Since 𝑎(𝑝𝑛)𝐺 ≤𝐺 𝑎 for all 𝑛 ∈ ℕ, we have 

𝜎(𝑎 ⊙ 𝜈) = 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝑎 ⊙ 𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑ 𝑎(𝑝𝑛)𝐺 ⊙ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

≤𝐺 𝑎 ⊙ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝑎 ⊙  𝜎(𝜈). 
ii)  Let 𝑎 >𝐺 𝑒, then we get 

𝜎(𝜈) = 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑ 𝑎(𝑝𝑛)𝐺 ⊙ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑ |

𝜈𝑘

𝑎
𝐺|

𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

≤𝐺 𝑎𝑀𝐺 ⊙ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑ |

𝜈𝑘

𝑎
𝐺|

𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝑎𝑀𝐺 ⊙  𝜎 (
𝜈

𝑎
𝐺). 

iii) Let 𝑎 ≥𝐺 𝑒. Since 𝜎 is 𝐺-convex modular, we 
can write 𝜎(𝜈) ≤𝐺  𝑎 ⊙ 𝜎(𝜈). Also, we find 

𝜎(𝑎 ⊙ 𝜈) = 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝑎 ⊙ 𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑|𝑎|𝐺
(𝑝𝑛)𝐺 ⊙ (

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

≥𝐺 𝑎 ⊙ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘|𝐺

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝑎 ⊙  𝜎(𝜈). 

Hence, we obtain the required inequalities. 

Theorem 2.10. 𝐶𝑒𝑠𝐺(𝑝) is 𝐺-normed space with 
regard to the Luxemburg 𝐺-norm 

‖𝜈‖𝐺 = inf {𝑒𝜆 >𝐺 1 ∶ 𝜎 (
𝜈

𝑒𝜆
𝐺) ≤𝐺 𝑒}𝐺  

= inf {𝑒𝜆 >𝐺 1 ∶ 𝐺 ∑ (
𝑒

𝑒𝑛 𝐺 ⊙ 𝐺 ∑
|𝜈𝑘|𝐺

𝑒𝜆

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

≤𝐺 𝑒}𝐺 . 

Proof.  

GN1) Let 𝜈 = 1. Since 𝐺 ∑ (
ⅇ

ⅇ𝑛 𝐺 ⊙∞
𝑛=1

𝐺 ∑
1

ⅇ𝜆
𝑛
𝑘=1 𝐺)

(𝑝𝑛)𝐺
= 1 for every 𝑒𝜆 ∈ ℝ𝐺, then we 

find ‖𝜈‖𝐺 = 1. 

Conversely, let ‖𝜈‖𝐺 = 1. Since 𝜎(𝛼 ⊙ 𝜈) ≤𝐺 𝛼 ⊙
𝜎(𝜈) for all 𝛼 ∈ ℝ𝐺 with 1 <𝐺  𝛼 <𝐺 𝑒, we can write 

𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘|𝐺

𝑒𝜆

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

𝑒𝑚 ⊙
1

ⅇ𝑚 𝐺 ⊙ |𝜈𝑘|𝐺

𝑒𝜆

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

 

≤𝐺

1

𝑒𝑚
𝐺 ⊙ 𝐺 ∑ (

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

𝑒𝑚 ⊙ |𝜈𝑘|𝐺

𝑒𝜆

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

 

=
1

𝑒𝑚
𝐺 ⊙ 𝐺 ∑ (

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘|𝐺

ⅇ𝜆

ⅇ𝑚 𝐺

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

 

for all 𝑚 ∈ ℕ. Hence, it is obtained that 𝜎(𝜈) =

𝐺 ∑ (
ⅇ

ⅇ𝑛 𝐺 ⊙ 𝐺 ∑
|𝜈𝑘|𝐺

ⅇ𝜆
𝑛
𝑘=1 𝐺)

(𝑝𝑛)𝐺∞
𝑛=1 = 1 which 

implies 𝜈 = 1. 

GN2) Let’s take any 𝜈 ∈ 𝐶𝑒𝑠𝐺(𝑝) and 𝛼 ∈ ℝ𝐺. If 
𝛼 = 1, then it is obvious that ‖𝛼 ⊙ 𝜈‖𝐺 = |𝛼|𝐺 ⊙
‖𝜈‖𝐺. Suppose that 𝛼 ∈ ℝ𝐺 − {1}. We can write 

‖𝛼 ⊙ 𝜈‖𝐺 

= inf {𝑒𝜆 >𝐺 1 ∶ 𝐺 ∑ (
𝑒

𝑒𝑛 𝐺 ⊙ 𝐺 ∑
|𝛼 ⊙ 𝜈𝑘|𝐺

𝑒𝜆

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

≤𝐺 𝑒}𝐺  

= inf {𝑒𝜆 >𝐺 1 ∶ 𝐺 ∑ (
𝑒

𝑒𝑛 𝐺 ⊙ 𝐺 ∑
|𝜈𝑘|𝐺

ⅇ𝜆

|𝛼|𝐺

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

≤𝐺 𝑒} .𝐺  

If it is taken as 𝑒𝜆 = 𝑒𝜆′
⊙ |𝛼|𝐺 , then we obtain 
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‖𝛼 ⊙ 𝜈‖𝐺 = inf  {𝑒𝜆′
⊙ |𝛼|𝐺  >𝐺 1 ∶𝐺  

𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘|𝐺

𝑒𝜆′

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

≤𝐺 𝑒} 

       = |𝛼|𝐺  ⊙ inf {𝑒𝜆′
>𝐺 1 ∶𝐺  

𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘|𝐺

𝑒𝜆′

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

≤𝐺 𝑒} 

       = |𝛼|𝐺 ⊙ ‖𝜈‖𝐺. 

GN3) Let any 𝜈, 𝑦 ∈ 𝐶𝑒𝑠𝐺(𝑝) be given. 𝐴, 𝐵 and 𝐶 
be sets of the positive geometric numbers 𝑒𝜆1, 𝑒𝜆2 
and 𝑒𝜆3 hold the following inequalities 

𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘|𝐺

𝑒𝜆1

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

≤𝐺 𝑒, 

𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝑦𝑘|𝐺

𝑒𝜆2

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

≤𝐺 𝑒 

and 

𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘 ⊕ 𝑦𝑘|𝐺

𝑒𝜆3

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

≤𝐺 𝑒, 

respectively. Taken as 𝐷 = {𝑒𝜆1 ⊕ 𝑒𝜆2: 𝑒𝜆1 ∈

𝐴 ⋀ 𝑒𝜆2 ∈ 𝐵}. For any 𝑒𝜆1 ⊕ 𝑒𝜆2, we get 

𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘 ⊕ 𝑦𝑘|𝐺

𝑒𝜆1 ⊕ 𝑒𝜆2

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

 

≤𝐺 𝐺 ∑ (
𝑒𝜆1

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 ⊙

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘|𝐺

𝑒𝜆1

𝑛

𝑘=1

𝐺

∞

𝑛=1

 

⊕
𝑒𝜆2

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 ⊙

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝑦𝑘|𝐺

𝑒𝜆2

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺

 

≤𝐺

𝑒𝜆1

𝑒𝜆1 ⊕ 𝑒𝜆2
⊙ 𝐺 ∑ (

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝜈𝑘|𝐺

𝑒𝜆1

𝑛

𝑘=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

⊕
𝑒𝜆2

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 ⊙ 𝐺 ∑ (

𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑

|𝑦𝑘|𝐺

𝑒𝜆2

𝑛

𝑘=1

𝐺)

(𝑝𝑛)𝐺∞

𝑛=1

 

≤𝐺

𝑒𝜆1

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 ⊕

𝑒𝜆2

𝑒𝜆1 ⊕ 𝑒𝜆2
𝐺 = 𝑒. 

Therefore, we have 𝐷 ⊂ 𝐶. It is obtained that 
inf 𝐶𝐺 ≤𝐺 inf 𝐷𝐺 = inf 𝐴𝐺 ⊕ inf 𝐵𝐺 , because of 

𝐷 ⊂ 𝐶. So, we get ‖𝜈 ⊕ 𝑦‖𝐺 ≤𝐺 ‖𝜈‖𝐺 ⊕ ‖𝑦‖𝐺. 

Now, we discuss some relations between the 𝐺-
modular and Luxemburg 𝐺-norm on 𝐶𝑒𝑠𝐺(𝑝). 

Proposition.2.11. For any 𝜈 ∈ 𝐶𝑒𝑠𝐺(𝑝), we have 
i)    If ‖𝜈‖𝐺 <𝐺 𝑒, then 𝜎(𝜈) ≤𝐺 ‖𝜈‖𝐺 
ii) If ‖𝜈‖𝐺 >𝐺 𝑒, then 𝜎(𝜈) ≥𝐺 ‖𝜈‖𝐺 
iii) If ‖𝜈‖𝐺 = 𝑒 ⇔ 𝜎(𝜈) = 𝑒 
iv) If ‖𝜈‖𝐺 <𝐺 𝑒 ⇔ 𝜎(𝜈) <𝐺 𝑒  
v) If ‖𝜈‖𝐺 >𝐺 𝑒 ⇔ 𝜎(𝜈) >𝐺 𝑒. 

Proof.  

i) Let 𝜀 >𝐺 1 be such that 1 <𝐺 𝜀 <𝐺 𝑒 ⊖ ‖𝜈‖𝐺. 
Hence we can write ‖𝜈‖𝐺 ⊕ 𝜀 <𝐺 𝑒. By the 
definiton of ‖. ‖𝐺, there exists 𝑒𝜆 >𝐺 1 such that 
‖𝜈‖𝐺 ⊕ 𝜀 >𝐺 𝑒𝜆 and 𝜎 (

𝜈

ⅇ𝜆 𝐺) ≤𝐺 𝑒. From 
Proposition.2.9.(i) and (iii), we find  

𝜎(𝜈) ≤𝐺  𝜎 (
‖𝜈‖𝐺 ⊕ 𝜀

𝑒𝜆
𝐺 ⊙ 𝜈) 

         ≤𝐺 (‖𝜈‖𝐺 ⊕ 𝜀) ⊙  𝜎 (
𝜈

𝑒𝜆
𝐺) 

        ≤𝐺 𝑒 ⊙ (‖𝜈‖𝐺 ⊕ 𝜀) 

        = ‖𝜈‖𝐺 ⊕ 𝜀. 

Thus 𝜎(𝜈) ≤𝐺 ‖𝜈‖𝐺 ⊕ 𝜀, for all 𝜀 ∈ (1, 𝑒 ⊖ ‖𝜈‖𝐺). 
Taken as 𝐴 = {‖𝜈‖𝐺 ⊕ 𝜀 ∶  1 <𝐺 𝜀 <𝐺 𝑒 ⊖ ‖𝜈‖𝐺}, 
then we see that ‖𝜈‖𝐺 = inf 𝐴𝐺 . Since 𝜎(𝜈) is a 
lower bound of 𝐴, we have 𝜎(𝜈) ≤𝐺 ‖𝜈‖𝐺. 
ii) Let 𝜀 >𝐺 1 be such that 1 <𝐺 𝜀 <𝐺

‖𝜈‖𝐺⊖ⅇ

‖𝜈‖𝐺
𝐺, 

hence we can write ‖𝜈‖𝐺 >𝐺 ‖𝜈‖𝐺 ⊙ (𝑒 ⊖
𝜀) >𝐺 𝑒. By the definiton of ‖. ‖𝐺 and 
Proposition.2.9.(i), we find  

𝑒 <𝐺 𝜎 (
𝜈

(𝑒 ⊖ 𝜀) ⊙ ‖𝜈‖𝐺
𝐺)   

     ≤𝐺

𝑒

(𝑒 ⊖ 𝜀) ⊙ ‖𝜈‖𝐺
𝐺 ⊙ 𝜎(𝜈). 
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So, we can write (𝑒 ⊖ 𝜀) ⊙ ‖𝜈‖𝐺 <𝐺 𝜎(𝜈) for all 
𝜀 ∈ (1,

‖𝜈‖𝐺⊖ⅇ

‖𝜈‖𝐺
). Taken as                    

 𝐴 = {(𝑒 ⊖ 𝜀) ⊙ ‖𝜈‖𝐺 ∶  1 <𝐺 𝜀 <𝐺
‖𝜈‖𝐺⊖ⅇ

‖𝜈‖𝐺
},  

then we see that ‖𝜈‖𝐺 = sup 𝐴𝐺 . Since 𝜎(𝜈) is an 
upper bound of 𝐴, we have ‖𝜈‖𝐺 ≤𝐺 𝜎(𝜈). 

iii) Let 𝜀 >𝐺 1. Suppose that ‖𝜈‖𝐺 = 𝑒. From the 
definiton of ‖. ‖𝐺, there exists 𝑒𝜆 >𝐺 1 such that 
(𝑒 ⊕ 𝜀) >𝐺 𝑒𝜆 >𝐺 ‖𝜈‖𝐺 and 𝜎 (

𝜈

ⅇ𝜆 𝐺) ≤𝐺 𝑒. Since 
𝑒𝜆 >𝐺 𝑒,  

𝜎(𝜈) ≤𝐺 (𝑒𝜆)
𝑀𝐺

⊙  𝜎 (
𝜈

𝑒𝜆
𝐺) 

≤𝐺 (𝑒𝜆)
𝑀𝐺

 <𝐺 (𝑒 ⊕ 𝜀)𝑀𝐺  

by Proposition.2.9 (ii). Hence (𝜎(𝜈))
(

1

𝑀
)

𝐺 <𝐺 𝑒 ⊕ 𝜀 
for all 𝜀 >𝐺 1 which implies 𝜎(𝜈) ≤𝐺 𝑒. Assume that 
𝜎(𝜈) <𝐺 𝑒, we can choose 𝑎 ∈ (1, 𝑒) such that 
𝜎(𝜈) <𝐺 𝑎𝑀𝐺 <𝐺 𝑒. Hence we have  

𝑎𝑀𝐺 ⊙  𝜎 (
𝜈

𝑎
𝐺) ≤𝐺  𝜎(𝜈) 

𝜎 (
𝜈

𝑎
𝐺) ≤𝐺

𝑒

𝑎𝑀𝐺
𝐺 ⊙  𝜎(𝜈) <𝐺 𝑒 

by Proposition.2.9.(i). Therefore, we get 
‖𝜈‖𝐺 ≤𝐺 𝑎 <𝐺 𝑒 which contradicts to our 
assumption that ‖𝜈‖𝐺 = 𝑒. Hence 𝜎(𝜈) = 𝑒. 

Conversely, suppose that 𝜎(𝜈) = 𝑒. The definition of 
Luxemburg 𝐺-norm ‖. ‖𝐺, we conclude 
that ‖𝜈‖𝐺 ≤𝐺 𝑒. If ‖𝜈‖𝐺 <𝐺 𝑒, then we have by (i) 
that 𝜎(𝜈) ≤𝐺 ‖𝜈‖𝐺 <𝐺 𝑒 which contradicts to our 
assumption that 𝜎(𝜈) = 𝑒. Therefore, ‖𝜈‖𝐺 = 𝑒. 

iv) If ‖𝜈‖𝐺 <𝐺 𝑒, then we have by (i) that 
𝜎(𝜈) ≤𝐺 ‖𝜈‖𝐺 <𝐺 𝑒. 

Conversely, assume that 𝜎(𝜈) <𝐺 𝑒. It follows from 
(i) and (ii) ‖𝜈‖𝐺 <𝐺 𝑒. 

v) It follows from (iii) and (iv). 

Proposition 2.12. Let 𝜈 ∈ 𝐶𝑒𝑠𝐺(𝑝) and 𝑀 =
sup
𝑛∈ℕ

 𝑝𝑛. 

i) If 1 <𝐺 𝑎 <𝐺 𝑒 and ‖𝜈‖𝐺 >𝐺 𝑎, then 𝜎(𝜈) 
>𝐺 𝑎𝑀𝐺 . 
ii) If 𝑎 ≥𝐺 𝑒 and ‖𝜈‖𝐺 <𝐺  𝑎, then 𝜎(𝜈) <𝐺 𝑎𝑀𝐺 . 

Proof. 

i) Assume that 1 <𝐺 𝑎 <𝐺 𝑒 and ‖𝜈‖𝐺 >𝐺 𝑎. Hence 
we can write ‖

𝜈

𝑎
𝐺‖

𝐺
>𝐺 𝑒. We have 

𝜎 (
𝜈

𝑎
𝐺) ≥𝐺 ‖

𝜈

𝑎
𝐺‖

𝐺
>𝐺 𝑒 by using 

Proposition.2.11.(ii). Since 1 <𝐺 𝑎 <𝐺 𝑒, we obtain 
𝜎(𝜈) ≥𝐺 𝑎𝑀𝐺 ⊙  𝜎 (

𝜈

𝑎
𝐺) >𝐺 𝑎𝑀𝐺 ⊙ 𝑒 = 𝑎𝑀𝐺  from 

Proposition.2.9.(i).  

ii) Assume that 𝑎 ≥𝐺 𝑒 and ‖𝜈‖𝐺 <𝐺  𝑎. Hence we 

can write ‖
𝜈

𝑎
𝐺‖

𝐺
<𝐺 𝑒. We find 

𝜎 (
𝜈

𝑎
𝐺) ≤𝐺 ‖

𝜈

𝑎
𝐺‖

𝐺
<𝐺 𝑒 from 

Proposition.2.11.(i). If 𝑎 = 𝑒, then we get 
𝜎(𝜈) <𝐺 𝑒 = 𝑎𝑀𝐺 . If 𝑎 >𝐺 𝑒, we obtain 
𝜎(𝜈) ≤𝐺 𝑎𝑀𝐺 ⊙  𝜎 (

𝜈

𝑎
𝐺) <𝐺 𝑎𝑀𝐺 ⊙ 𝑒 = 𝑎𝑀𝐺  

from Proposition.2.9.(ii). 

Proposition 2.13. Let (𝜈𝑘) be a sequence in 
𝐶𝑒𝑠𝐺(𝑝). 
i) If lim

𝑘→∞
𝐺 ‖𝜈𝑘‖𝐺 = 𝑒, then lim

𝑘→∞
𝐺 𝜎(𝜈𝑘) = 𝑒. 

ii) If lim
𝑘→∞

𝐺 𝜎(𝜈𝑘) = 1, then lim
𝑘→∞

𝐺 ‖𝜈𝑘‖𝐺 = 1. 

Proof. 

i) Assume that lim
𝑘→∞

𝐺 ‖𝜈𝑘‖𝐺 = 𝑒. Let 𝜀 ∈ (1, 𝑒). 
Then there exists 𝑘0 ∈ ℕ such that (𝑒 ⊖
𝜀) <𝐺 ‖𝜈𝑘‖𝐺 <𝐺 (𝜀 ⊕ 𝑒) for all 𝑘 > 𝑘0. By 
Proposition.2.12 (i) and (ii), we find (𝑒 ⊖
𝜀)𝑀𝐺 <𝐺 𝜎(𝜈𝑘) <𝐺 (𝑒 ⊕ 𝜀)𝑀𝐺  for all 𝑘 > 𝑘0 which 
implies that 𝜎(𝑥𝑘)

𝐺
→ 𝑒 as 𝑘 → ∞.  

ii) Assume that lim
𝑘→∞

𝐺 ‖𝜈𝑘‖𝐺 ≠ 1. Then there exists 

𝜀 ∈ (1, 𝑒) and a subsequence (𝜈𝑘𝑛) of (𝜈𝑘) such that 
‖𝜈𝑘𝑛‖

𝐺
>𝐺  𝜀 for all 𝑛 ∈ ℕ. By Proposition.2.12.(i), 

we have 𝜎(𝜈𝑘𝑛) >𝐺 𝜀𝑀𝐺  for all 𝑛 ∈ ℕ. This implies 

𝜎(𝜈𝑘) 𝐺
↛

1 as 𝑘 → ∞. 

Proposition.2.14..Let 𝜈 = (𝜈𝑠),  𝜈𝑘 = (𝜈𝑘(𝑠))
𝑠=1

∞
∈

𝐶𝑒𝑠𝐺(𝑝) for all 𝑠 ∈ ℕ. If 𝜎(𝜈𝑘)
𝐺
→ 𝜎(𝜈) as 𝑘 → ∞ 

and 𝜈𝑘(𝑠)
𝐺
→ 𝜈(𝑠) as 𝑘 → ∞ for all 𝑠 ∈ ℕ, then 𝜈𝑘 →

𝜈 as 𝑘 → ∞. 
Proof.  
Let 𝜀 >𝐺 1 be given. Since 𝜎(𝜈) = 𝐺 ∑ (

ⅇ

ⅇ𝑛 𝐺 ⊙∞
𝑛=1

𝐺 ∑ |𝜈(𝑠)|𝐺
𝑛
𝑠=1 )

(𝑝𝑛)𝐺
<𝐺 ∞, there exists 𝑛0 ∈ ℕ such 

that  
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𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺∞

𝑛=𝑛0+1

 

 <𝐺

𝜀

𝑒3
𝐺⨀

𝑒

𝑒2𝑀+1 𝐺.                                                     (7) 

Since  

𝜎(𝜈𝑘) ⊖ 𝐺 ∑  

𝑛0

𝑛=1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

𝐺
→ 𝜎(𝜈) ⊖ 𝐺 ∑  

𝑛0

𝑛=1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

 as 𝑘 → ∞ and 𝜈𝑘(𝑠)
𝐺
→ 𝜈(𝑠) as 𝑘 → ∞, there exists 

𝑘0 ∈ ℕ such that 

𝜎(𝜈𝑘) ⊖ 𝐺 ∑  

𝑛0

𝑛=1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

<𝐺 𝜎(𝜈) ⊖ 𝐺 ∑  

𝑛0

𝑛=1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

       ⊕
𝜀

𝑒3
𝐺⨀

𝑒

𝑒2𝑀+1 𝐺                                                 (8) 

for all 𝑘 > 𝑘0, and  

𝐺 ∑  

𝑛0

𝑛=1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘(𝑠) ⊖ 𝜈(𝑠)|

𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

<𝐺

𝜀

𝑒3
  (9) 

for all 𝑘 > 𝑘0. It follows from (7), (8) and (9) that for 
all 𝑘 > 𝑘0, 
𝜎(𝜈𝑘 ⊖ 𝜈) 

= 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘(𝑠) ⊖ 𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺∞

𝑛=1

 

= 𝐺 ∑  

𝑛0

𝑛=1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘(𝑠) ⊖ 𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

⊕ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘(𝑠) ⊖ 𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺∞

𝑛=𝑛0+1

 

<𝐺

𝜀

𝑒3
⊕ 𝑒2𝑀

⊙ 

[𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺∞

𝑛=𝑛0+1

 

⊕ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺∞

𝑛=𝑛0+1

] 

=
𝜀

𝑒3
⊕ 𝑒2𝑀

⊙ 

(𝜎(𝜈𝑘) ⊖ 𝐺 ∑  

𝑛0

𝑛=1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈𝑘(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

⊕ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺∞

𝑛=𝑛0+1

) 

<𝐺

𝜀

𝑒3
⊕ 𝑒2𝑀

 ⊙ 

(𝜎(𝜈) ⊖ 𝐺 ∑  

𝑛0

𝑛=1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

⊕
𝜀

𝑒3
𝐺⨀

𝑒

𝑒2𝑀+1 𝐺 

⊕ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺∞

𝑛=𝑛0+1

) 

<𝐺

𝜀

𝑒3
⊕ 𝑒2𝑀

 ⊙ 

(𝐺 ∑  

∞

𝑛=𝑛0+1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

⊕
𝜀

𝑒3
𝐺 ⊙

𝑒

𝑒2𝑀+1 𝐺 

⊕ 𝐺 ∑ (
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺∞

𝑛=𝑛0+1

) 

=
𝜀

𝑒3
⊕ 𝑒2𝑀

 ⊙ 

(𝑒2 ⊙ 𝐺 ∑  

∞

𝑛=𝑛0+1

(
𝑒

𝑒𝑛
𝐺 ⊙ 𝐺 ∑|𝜈(𝑠)|𝐺

𝑛

𝑠=1

)

(𝑝𝑛)𝐺

 

⊕
𝜀

𝑒3
𝐺⨀

𝑒

𝑒2𝑀 𝐺) 

<𝐺

𝜀

𝑒3
𝐺 ⊕

𝜀

𝑒3
𝐺 ⊕

𝜀

𝑒3
𝐺 = 𝜀. 

This shows that 𝜎(𝜈𝑘 ⊖ 𝜈)
𝐺
→ 1 as 𝑘 → ∞. 

Therefore, by Proposition 2.13 (ii) ‖𝜈𝑘 − 𝜈‖𝐺

𝐺
→ 1 

as 𝑘 → ∞. 

Theorem 2.15. 𝐶𝑒𝑠𝐺(𝑝) is a 𝐺-Banach space under 
the Luxemburg 𝐺-norm. 

Proof. Let (𝜈(𝑛)) = (𝜈𝑘
(𝑛)

) be 𝐺-Cauchy sequence 
in 𝐶𝑒𝑠𝐺(𝑝). Given any 𝜀 ∈ (1, 𝑒). Hence there 
exists 𝑛0 ∈ ℕ such that  

‖𝜈(𝑛) ⊖ 𝜈(𝑠)‖
𝐺

<𝐺 𝜀𝑀𝐺  

for all 𝑛, 𝑠 > 𝑛𝑜. By Proposition.2.11.(i), we have  

𝜎(𝜈(𝑛) ⊖ 𝜈(𝑠)) <𝐺 ‖𝜈(𝑛) ⊖ 𝜈(𝑠)‖
𝐺

<𝐺 𝜀𝑀𝐺      (10 ) 

for all 𝑛, 𝑠 > 𝑛𝑜. Hence, we can write 
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𝐺 ∑ (
𝑒

𝑒𝑁
𝐺 ⊙ 𝐺 ∑ |𝜈𝑘

(𝑛)
⊖ 𝜈𝑘

(𝑠)
|

𝐺

𝑁

𝑘=1

)

(𝑝𝑘)𝐺∞

𝑁=1

<𝐺 𝜀𝑀𝐺  

Because of   

(
ⅇ

ⅇ𝑁 𝐺 ⊙ 𝐺 ∑ |𝜈𝑘
(𝑛)

⊖ 𝜈𝑘
(𝑠)

|
𝐺

𝑁
𝑘=1 )

(𝑝𝑘)𝐺
<𝐺 𝜀𝑀𝐺  for 

all 𝑁 ∈ ℕ, we find 

𝐺 ∑ |𝜈𝑘
(𝑛)

⊖ 𝜈𝑘
(𝑠)

|
𝐺

𝑁

𝑘=1

<𝐺 𝜀 ⊙ 𝑒𝑁 = 𝜀𝑁 . 

This implies 

|𝜈𝑘
(𝑛)

⊖ 𝜈𝑘
(𝑠)

|
𝐺

<𝐺 𝜀𝑘 

for all 𝑘 ∈ ℕ and for all 𝑛, 𝑠 > 𝑛𝑜. Since (𝜈𝑘
(𝑛)

) be a 
𝐺-Cauchy sequence in ℝ𝐺, there exists 𝜈𝑘 ∈  ℝ𝐺 
such that 𝜈𝑘

(𝑛) 𝐺
→ 𝜈𝑘 for all 𝑘 ∈ ℕ. Let 𝜈 = (𝜈𝑘), we 

shall show that 𝜈 ∈ 𝐶𝑒𝑠𝐺(𝑝). Taken as 𝜈|𝑟 =
(𝜈1, 𝜈2, . . . , 𝜈𝑟, 1,1,1, . . . ). For all 𝑟 ∈ ℕ and 𝑛, 𝑠 >
𝑛𝑜, we find 

𝜎 ((𝜈(𝑛) ⊖ 𝜈(𝑠))|
𝑟

) <𝐺 𝜀𝑀𝐺  

by using (10). Since 𝜈𝑘
(𝑠) 𝐺

→ 𝜈𝑘 for all 𝑘 =
1,2,3, . . . , 𝑟,  we find 

𝜎 ((𝜈(𝑛) ⊖ 𝜈(𝑠))|
𝑟

)
𝐺
→ 𝜎 ((𝜈(𝑛) ⊖ 𝜈)|

𝑟
) 

as 𝑠 → ∞ . Hence, we get 𝜎 ((𝜈(𝑛) ⊖ 𝜈)|
𝑟

) <𝐺 𝜀𝑀𝐺  
for all 𝑟 ∈ ℕ and 𝑛 > 𝑛𝑜. This implies 

𝜎(𝜈(𝑛) ⊖ 𝜈) <𝐺 𝜀𝑀𝐺  

for all 𝑛 > 𝑛𝑜. By Proposition.2.12.(i), we obtain  

‖𝜈(𝑛) ⊖ 𝜈‖
𝐺

<𝐺  𝜀  

for all 𝑛 > 𝑛𝑜. This means that 𝜈(𝑛)
𝐺
→ 𝜈 where 𝑛 →

∞. Also, we see that 𝜈 = 𝜈(𝑛) ⊖ (𝜈(𝑛) ⊖ 𝜈) ∈

𝐶𝑒𝑠𝐺(𝑝), because of 𝜈(𝑛) ⊖ 𝜈 ∈ 𝐶𝑒𝑠𝐺(𝑝). 
Therefore, 𝐶𝑒𝑠𝐺(𝑝) is 𝐺-Banach space. 

Definition 2.16. Let 𝑉 be a 𝐺-Banach space. A point 
𝜈 ∈ 𝑆(𝑉) = {𝜐 ∈ 𝑉: ‖𝜐‖𝐺 = 𝑒} is referred to as                        
𝐺-nonsquare point if for every 𝑦 ∈ 𝑆(𝑉) the 

condition min {‖
𝜈⊕𝑦

ⅇ2 𝐺 ‖
𝐺

, ‖
𝜈⊖𝑦

ⅇ2 𝐺 ‖
𝐺

} <𝐺 𝑒 
holds true. 

Definition 2.17. A 𝐺-Banach space 𝑉 is called 𝐺-
nonsquare, if all element 𝜈 in 𝑆(𝑉) is 𝐺-nonsquare 
point. 

Proposition 2.18. Let 𝑝 = (𝑝𝑛) be a bounded 
sequence of positive real numbers with 𝑝𝑛 > 1 for 
all 𝑛 ∈ ℕ. Then 𝜈 ∈ 𝑆(𝐶𝑒𝑠𝐺(𝑝)) is a 𝐺-nonsquare 
point ⇔ 𝜎(𝜈) = 𝑒. 

Proof. From Proposition 2.11 (iii), it seen that if 𝜈 ∈
𝐶𝑒𝑠𝐺(𝑝), then 𝜎(𝜈) = 𝑒. Now let 𝜎(𝜈) = 𝑒 and 
suppose that 𝜈 is not 𝐺-nonsquare point. Then 
there exits 𝑦 ∈  𝑆(𝐶𝑒𝑠𝐺(𝑝)) such that ‖𝜈 ⊕ 𝑦 ‖𝐺 =

‖𝜈 ⊖ 𝑦‖𝐺 = 𝑒. Hence, we can write 𝜎(𝜈 ⊕ 𝑦) =
𝜎(𝜈 ⊖ 𝑦) = 𝑒 by using Proposition 2.11 (iii). 
Since  𝑝𝑛 > 1 for all 𝑛 ∈ ℕ 

𝑒 = 𝜎(𝜈) = 𝜎 (
𝜈 ⊕ 𝑦

𝑒2
𝐺 ⊕

𝜈 ⊖ 𝑦

𝑒2
𝐺) 

<𝐺

𝑒

𝑒2
𝐺⨀𝜎(𝜈 ⊕ 𝑦) ⊕

𝑒

𝑒2
𝐺⨀𝜎(𝜈 ⊖ 𝑦) = 𝑒 

is obtained due to strict 𝐺-convexity. This 
constitutes a contradiction. 

Theorem 2.19. Let 𝑝 = (𝑝𝑛) be a bounded 
sequence of positive real numbers with 𝑝𝑛 > 1 for 
all 𝑛 ∈ ℕ. Then 𝐶𝑒𝑠𝐺(𝑝) is 𝐺-nonsquare. 

Proof. It follows from Proposition 2.11 (iii) and 
Proposition 2.18. 
 

3 Conclusion 

The concepts of modular, modular spaces, and 
Luxemburg norm are given from a new perspective 
using geometric arithmetic. We define the 
generalized geometric Cesàro sequence space and 
construct a 𝐺-modular on this space. Luxemburg 𝐺-
norm, produced by the 𝐺-modular, is built into the 
generalized geometric Cesàro sequence space. The 
relationships between 𝐺-modular and Luxemburg 𝐺-
norm are investigated. Also, we provide evidence that 
the generalized geometric Cesàro sequence space is, 
in fact, a 𝐺-Banach space under the Luxemburg 𝐺-
norm. Moreover, one gets that the generalized 
geometric Cesàro sequence space is 𝐺-nonsquare 
when 𝑝𝑛 > 1 for all 𝑛 ∈ ℕ. This sets the way for our 
future work, which will look into the dual spaces of 
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the geometric Cesàro sequence space and establish 
the relevant matrix transformations. Since the theory 
of sequence space and geometric calculus is quite 
active and has extensive applications, we believe 
many researchers will use our newly acquired results 
for future works and applications in related fields. 
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