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Abstract: This work addresses the controllability subspaces of a class of multi-agent linear systems that are in-
terconnected via communication channels. Multiagent systems have attracted much attention because they have
great applicability in multiple areas. Recently has taken an interest to analyze the control properties as consensus
controllability of multi-agent dynamical systems motivated by the fact that the architecture of communication net-
work in engineering multi-agent systems is usually adjustable. In this paper, the concept of invariant subspaces and
controllability subspaces is reviewed and generalized to multi-agent systems. Finally, the consensus controllability
subspaces are analyzed in the case of multiagent linear systems having all agents the same dynamics described as
ẋi = Aix

i +Biu
i, i = 0, 1, . . . , k.
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1 Introduction

Controllability is a basic concept of control system
theory. It is particularly important for practical imple-
mentations ([1], [5], [6], [7], [10]). Roughly speaking
the controllability character can be defined as follows:
If we want to do whatever with the given dynamic sys-
tem under control input, necessarily the system must
be controllable.

From a geometric point of view, many problems
in the control theory of time-invariant linear systems
can be played by controlled invariant subspaces and
controllability subspaces. Controlled invariant sub-
spaces are a generalization of invariant subspaces un-
der a linear map, ([2], [3], [13]). The importance of
the study of controllability subspaces of the system
ẋ = Ax + Bu derives from the fact that the restric-
tion of the system ẋ = (A + BF )x + Bu obtained
by means of state feedback F to the original system,
to an (A + BF )-invariant controllable subspace can
be assigned an arbitrary spectrum by suitable choice
of F , ([17]).

In recent years has grown the interest in the study
of control multi-agent systems, as well as the increas-
ing interest in distributed control and coordination of
networks consisting of multiple autonomous agents. It
is due to that they appear in different areas, and there
are an amount of bibliography as [11], [12], [14], [16].

In this work the controllability subspaces of mul-
tiagent systems consisting of k agents having linear

dynamic modes, with dynamics

ẋi = Aix
i +Biu

i
}

i = 1, . . . , k (1)

with Ai ∈ Mni(R) and Bi ∈ Mni×mi(R), xi ∈ Rni ,
and ui ∈ Rmi , are analyzed under geometrical point
of view.

2 Preliminaries
We are interested in multi-agent linear systems that
they are interconnected via communication channels,
then we need to know the communication topology
among agents of the system. The topology is defined
by means an indirect graph. It should be noted that
graph models are commonly used in network repre-
sentations.

In this particular setup, we consider a graph
G = (V, E) of order k with the set of vertices V =
{1, . . . , k} and the set of edges E = {(i, j) | i, j ∈
V} ⊂ V × V .

Given an edge (i, j) i is called the parent node and
j is called the child node and j is in the neighbor of i,
concretely we define the neighbor of i and we denote
it by Ni to the set Ni = {j ∈ V | (i, j) ∈ E}.

The graph is called undirected if verifies that
(i, j) ∈ E if and only if (j, i) ∈ E . The graph is called
connected if there exists a path between any two ver-
tices, otherwise is called disconnected.

Associated to the graph it can be consider the
Laplacian matrix of the graph defined in the follow-
ing manner
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L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni
0 otherwise

(2)

Remark 1. The following properties are verified.

i) If the graph is undirected then the matrix L is
symmetric, then there exist an orthogonal matrix
P such that PLP t = D.

ii) If the graph is undirected then 0 is an eigenvalue
of L and (1, . . . , 1)t is the associated eigenvec-
tor.

iii) If the graph is undirected and connected the
eigenvalue 0 is simple.

For more information on graph theory, see [15].
About matrices, we need to remember Kronecker

product of matrices because it will be useful in our
study.

Given a couple o matrices A = (aij) ∈
Mn×m(C) and B = (bij) ∈ Mp×q(C), remember
that the Kronecker product is defined as follows.

Definition 2. Let A = (aij) ∈ Mn×m(C) and B ∈
Mp×q(C) be two matrices, the Kronecker product of
A and B, write A⊗B, is the matrix

A⊗B = (aijB) ∈Mnp×mq(C)

Kronecker product verifies the following proper-
ties

1) (A+B)⊗ C = (A⊗ C) + (B ⊗ C)

2) A⊗ (B + C) = (A⊗B) + (A⊗ C)

3) (A⊗B)⊗ C = A⊗ (B ⊗ C)

4) (A⊗B)t = At ⊗Bt

5) If A ∈ Gl(n;C) and B ∈ Gl(p;C)), then A ⊗
B ∈ Gl(np;C)) and (A⊗B)−1 = A−1 ⊗B−1

6) If the products AC and BD are possible, then
(A⊗B)(C ⊗D) = (AC)⊗ (BD)

Corollary 3. The vector 1k⊗v is an eigenvector cor-
responding to the zero eignevalue of L ⊗ In.

Proof.

(L ⊗ In)(1k ⊗ v) = L1k ⊗ v = 0⊗ v = 0

Consequently, if {e1, . . . , en} is a basis for Cn,
then 1k ⊗ ei is a basis for the nullspace of L ⊗ In.

Associated to the Kronecker product, can be de-
fined the vectorizing operator that transforms any ma-
trix A into a column vector, by placing the columns in
the matrix one after another,

Definition 4. LetX = (xij) ∈Mn×m(C) be a matrix,
and we denote xi = (x1i , . . . , x

n
i )
t for 1 ≤ i ≤ m the

i-th column of the matrixX . We define the vectorizing
operator vec, as

vec :Mn×m(C) −→Mnm×1(C)
X −→

(
xt1 xt2 . . . xtm

)t
Obviously, vec is an isomorphism.

See [8] for more information and properties.

Example 1. Let X =

(
1 2 1
2 4 3

)
, Then

vec(X) =

((
1
2

)t (
2
4

)t (
1
3

)t)t
=



1
2
2
4
1
3


3 Control Properties
The character of controllability is one of the most im-
portant properties of dynamical systems. A system is
controllable if we can drive the state variables from an
initial to any desired values within a finite period with
properly selected inputs, more concretely:

Definition 5. The dynamical system ẋ = Ax + Bu
is said to be controllable if for every initial condition
x(0) and every vector x1 ∈ Rn, there exist a finite
time t1 and control u(t) ∈ Rm, t ∈ [0, t1], such that
x(t1) = x1.

This definition requires only that any initial state
x(0) can be steered to any final state x1 at time t1.
However, the trajectory of the dynamical system be-
tween 0 and t1 is not specified. Furthermore, there is
no constraints posed on the control vector u(t) and the
state vector x(t).

For simplicity and if confusion is not possible, we
will write (A,B) for dynamical system ẋ = Ax+Bu.

To formulate easily computable algebraic control-
lability criteria we use the so-called controllability
matrix C, which is well-known as Kalman matrix and
defined in the following manner:
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C =
(
B AB A2B . . . An−1B

)
. (3)

We want to emphasize that the controllability ma-
trix C is a n × nm-dimensional constant matrix and
depends only on the parameters of the system.

and we have the following result:

Theorem 6. The dynamical system ẋ = Ax + Bu is
controllable if and only if rank C = n.

Corollary 7. The dynamical system ẋ = Ax+Bu is
controllable if and only if the n-dimensional symmet-
ric matrix CCt is nonsingular.

As we says, controllability of the dynamical sys-
tem ẋ = Ax + Bu implies that each initial state can
be steered to 0 on a finite time-interval. If only is re-
quired that this to happen asymptotically for t → ∞,
we have the following concept.

Definition 8. The system ẋ = Ax+Bu is called stabi-
lizable if for each initial state x(0) ∈ Rn there exists a
(piece-wise continuous) control input u : [0,∞) −→
Rm such that the state-response with x(0) verifies

lim
t→∞

x(t) = 0.

Remark 9. i) All controllable systems are stabiliz-
able but the converse is false.

ii) If the matrix A in the system ẋ = Ax + Bu is
Hurwitz then, the system is stabilizable.

It is important the following result

Theorem 10. The system ẋ = Ax+Bu is stabilizable
if and only if there exists some feedback F such that
ẋ = (A−BF )x is asymptotically stable.

The controllability and stabilizable characters are
preserved under feedback

Definition 11. Two systems (A1, B1) and (A2, B2)
are feedback equivalent, if and only if, there exist
P ∈ Gl(n,R), Q ∈ Gl(m,R) and F ∈ Mm×n(R)
such that

(A2, B2) = (P−1A1P + P−1B1F, P
−1B1Q)

Proposition 12. Let (A1, B1) and (A2, B2) feedback
equivalent systems, then

i) (A1, B1) is controllable if and only if (A2, B2) is

i) (A1, B1) is stabilizable if and only if (A2, B2) is

4 Controled invariant (A,B)-
subspaces

In this section we remember the definition of invariant
subspace under (A,B)-map.

Definition 13. A subspace G ⊂ Cn is controled in-
variant or invariant under (A,B) if and only if

AG ⊂ G+ ImB (4)

Notice that if B = 0, this definition coincides
with the definition of A-invariant subspace.

We can construct invariant subspaces in the fol-
lowing manner. LetH ⊂ Cn be a subspace, we define

Gk+1 = H∩{x ∈ Cn | Ax ∈ Gk+ ImB}, G0 = H,

limit of recursion exists and we will denote by G(H).
This subspace is the supremal (A,B)-invariant sub-
space contained in H . Taking H = Cn, we will write
it as G∗.

Example 2. Let (A,B) be the pair A =
(

0
1
1 1

)
,

B =
(

1
0
0

)
and H = {(x, y, z) | z = 0},

Computation of G1:(
0
1
1 1

)(
x
y
z

)
=
(

0
y
y+z

)
=
(
µ
ν
0

)
+
(
λ
0
0

)
[(x, y,−y)] ∩H = [(x, 0, 0)] = G1.

Computation of G2:(
0
1
1 1

)(
x
y
z

)
=
( µ

0
0

)
+
(
λ
0
0

)
[(x, 0, 0)] ∩ H = [(1, 0, 0)] = G2 = G1. Then G =
G1.

Obviously AG ⊂ G+ ImB.

Proposition 14. Let (A,B) be a pair of matrices. A
subspace G ⊂ Cn is invariant under (A,B) if and
only if is invariant under (A+BF,B) for all feedback
F ∈Mm×n(C).

Proof. Suppose that AG ⊂ G + ImB, then for all
x ∈ G, there exists y ∈ G, v = Bw ∈ ImB such that
Ax = y +Bw so, for any F ∈Mm×n(C), we have

Ax+BFx−BFx = y +Bw
(A+BF )x = y +B(Fx+ w).

Consequently, for all x ∈ G, (A+BF )G ⊂ G+
ImB.

Reciprocally, suppose that (A + BF )G ⊂ G +
ImB, then for all x ∈ G, there exists y ∈ G, v =
Bw ∈ ImB such that (A + BF )x = y + Bw so,
Ax = y − BFxBw and Ax = y + B(−Fx + w).
Then, for all x ∈ G we have AG ⊂ G+ ImB.
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Proposition 15. Let (A1, B1) and (A2, B2) be two
equivalent pairs under equivalence defined in 11.
Then G ⊂ Cn is an invariant subspace under
(A1, B1) if and only if P−1G is invariant under
(A2, B2).

Proof. Suppose that A1G ⊂ G + ImB. Then
A2P

−1G = (P−1A1P + P−1B1F )P
−1G =

P−1(A1G + B1FP
−1G) ⊂ P−1(G + ImB1) =

P−1G + ImPB2Q
−1) = P−1G + P ImB2Q

−1) =
P−1G+ ImB2R

−1) ⊂ (P−1G+ ImB2

5 Controllability subspaces

In this section we are going to study a particular case
of invariant subspaces. First of all we observe the fol-
lowing result.

Proposition 16. Let (A,B) be a pair of matrices.
Then

G = [B,AB, . . . , An−1B]

is a (A,B)-invariant subspace.

Proof.

AG = A[B,AB, . . . , An−1B]
= [AB,A2B, . . . , AnB]

Now, it suffices to apply the Cayley-Hamilton theo-
rem that states states that every square matrix A over
a commutative ring (such as the real or complex field)
satisfies its own characteristic equation.

Then, AnB =
∑n−1

i=0 aiA
iB, and

[AB,A2B, . . . , AnB] =

[AB,A2B, . . . ,
∑n−1

i=0 aiA
iB] =

[AB,A2B, . . . , An−1B] ⊂
[B,AB, . . . , An−1B].

Now, we consider the following sequence of ma-
trices called r-controllability matrices

C1 = (B) ∈Mn×m

C2 =

(
I B
A 0 B

)
∈Mn·2×n·1+m·2

Cr =


I B
A I B

. . . . . . . . .
I B
A B


∈Mnr×(n(r−1)+mr)(C)

Theorem 17. Let Cr be the r-controllability matrix.
Suppose r being the least such that rankCr < (n(r−
1) +mr), and let

(
vt1 . . . vtr−1 wt1 . . . wtr

)t ∈
KerCr (vi are vectors in Cn and wi vectors in Cm).
Then G = [v1, . . . , vr−1] is a (A,B)-invariant sub-
space.

Proof. Taking into account that(
vt1 . . . vtr−1 wt1 . . . wtr

)t ∈ KerCr we
have that


I B
A I B

. . . . . . . . .
I B
A B





v1
v2
...

vr−1
w1
...
wr


=


v1 +Bw1

Av1 + v2 +Bw2
...

Avr−2 + vr−1 +Bwr−1
Avr−1 +Bwr

 = 0

Now we consider v = λ1v1 + λ2v2 + . . . +
λr−2vr−2 + λr−1vr−1 a vector in [v1, . . . , vr−1]. So,

Av = λ1Av1 + λ2Av2 + . . . + λr−2Avr−2 +
λr−1Avr−1 = λ1(−v2 −Bw2) + λ2(−v3 −Bw3) +
. . .+λr−2(−vr−1−Bwr−1)−λr−1Bwr+ = (λ1v2−
λ2v3 − . . . − λr−1vr) + B(−λ1w2 − λ2w3 − . . . −
λr−2wr−1−λr−1wr) ∈ G+ImB. Then, the subspace
[v1, . . . , vr−1] is (A,B)-invariant.

Definition 18. The space sum of all spaces G in
theorem before is a invariant subspace that we will
call controllability subspace and we will denote it by
C(A,B).

Notice that C(A,B) is the set of states in which
the system is controllable.

Corollary 19. Let (A,B) be a pair of matrices.
In this case the invariant subspace G obtained in
the above theorem, coincides with the controllability
(A,B)-invariant subspaces [B,AB, . . . , Ar−1B].

Proof. Making block-row elemental transformations
to the matrix Cr we obtain the equivalent matrix

C̃r = P ·Cr =


I B
0 I −AB B

. . . . . . . . .
I (−1)r−2Ar−2B −AB B

0 (−1)r−1Ar−1B −AB B

 .
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with P ∈ Gl(n · r;C). Then(
vt1 . . . vtr−1 wt1 . . . wtr

)t ∈ KerCr if and
only if

(
vt1 . . . vtr−1 wt1 . . . wtr

)t ∈ Ker C̃r.
So, v1 = −Bw1 ∈ [B], v2 = ABw1 − Bw2 ∈
[BAB], . . ., and vr−1 = (−1)rAr−2w1 + . . . −
Bwr−1 ∈ [BAB . . . Ar−2B].

5.1 Controllability subspaces of multiagent
systems

Writing

X (t) =

x
1(t)
...

xk(t)

 , Ẋ (t) =

ẋ
1(t)
...

ẋk(t)

 ,

U(t) =

u
1(t)
...

uk(t)

 ,

A =

A1

. . .
Ak

 , B =

B1

. . .
Bk

 ,

Following this notation we can describe the mul-
tisystem as a system:

Ẋ (t) = AX (t) + BU(t) (5)

Clearly, we have the following result

Proposition 20. The system 5 is controllable if and
only if each subsystem is controllable, and, in this
case, there exist a feedback in which we obtain the
desired solution.

We consider the vector space Rn1× k. . .×Rnk and
a subspaceH = H1 × . . .×Hk a subspace.

(Observe that the decomposition of H in product
of subspaces Hi in each factor Rni is unique).

With these notations we have

AH =

A1H1

. . .
AkHk


and

H+ ImB =

H1 + ImB1

. . .
Hk + ImBk


So, we have the following proposition.

Proposition 21. The subspaceH is (A,B)-invariant,
if and only if each Hi is (Ai, Bi)-invariant.

In the particular case where A1 = . . . = Ak,
we generate subspaces (A,B)- invariants by making
the product of k subspaces (A,B)-invariants, equal or
not.

Consider now, the feedback matrices in the form

F =

F1

. . .
Fk

 ,

with Fi ∈Mni×mi(C),

Corollary 22. Let H a (A,B)-invariant subspace.
Then, for all feedback F , H is a (A + BF ,B)-
invariant subspace.

6 Consensus
We are interested in take the output of the system to a
reference value and keep it there, we can ensure that
if the system is controllable.

Roughly speaking, we can define the consensus as
a collection of processes such that each process starts
with an initial value, where each one is supposed to
output the same value and there is a validity condi-
tion that relates outputs to inputs. More concretely,
the consensus problem is a canonical problem that ap-
pears in the coordination of multi-agent systems. The
objective is that Given initial values (scalar or vector)
of agents, establish conditions under which through
local interactions and computations, agents asymptot-
ically agree upon a common value, that is to say: to
reach a consensus.

Definition 23. Consider the system 1 having all sys-
tems identical linear dynamic mode. We say that the
consensus is achieved using local information if there
is a state feedback ui = K

∑
j∈Ni

(xi − xj) such that

lim
t→∞
‖xi − xj‖ = 0, 1 ≤ i, j ≤ k.

The closed-loop system obtained under this feed-
back is as follows

Ẋ = AX + BKZ
where X , Ẋ , A, B are as before and

K =

 K
. . .

K

 , Z =


∑

j∈N1
x1 − xj
...∑

j∈Nk
xk − xj

 .
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Following this notation we can conclude the fol-
lowing.

Proposition 24. The closed-loop system can be de-
scribed as

Ẋ = ((Ik ⊗A) + (Ik ⊗BK)(L ⊗ In))X (6)

Calling A1 = ((Ik ⊗A) + (Ik ⊗BK)(L ⊗ In))
the system is written as Ẋ = A1X .

AssumingX (0) = 0, the equation 6 can be solved
as

X (t) =∫ t
0 e

((Ik⊗A)+(Ik⊗BK)(L⊗In))(t−s)X (s)dsds. (7)

In our particular setup, we have that there ex-
ists an orthogonal matrix P ∈ Gl(k,R) such that
PLP t = D = diag (λ1, . . . , λk), (λ1 ≥ . . . ≥ λk).

Corollary 25. The closed-loop system can be de-
scribed in terms of the matrices A, B, the feedback
K, the output injection W and the eigenvalues of L.

Proof. Following properties of Kronecker product we
have that

(P ⊗ In)(Ik ⊗A)(P t ⊗ In) = (Ik ⊗A)
(P ⊗ In)(Ik ⊗BK)(P t ⊗ In) =
(Ik ⊗BK)
(P ⊗ In)(L ⊗ In)(P t ⊗ In) = (D ⊗ In)

and calling X̂ = (P ⊗ In)X , we have

˙̂X =((Ik ⊗A) + (Ik ⊗BK)(D ⊗ In))X̂ .

Equivalently,

˙̂X =

 A+ λ1BK
. . .

A+ λkBK

X̂. (8)

Calling A2 the matrix A+ λ1BK
. . .

A+ λkBK

,
the system is written as

˙̂X = A2X̂ .

Now let H be a A1-invariant subspace, i.e.
A1H ⊂ H, we have the following proposition.

Proposition 26. The subspace H is A1-invariant if
and only if (P ⊗ In)H is A2 invariant.

Proof. A1H = ((Ik⊗A)+(Ik⊗BK)(L⊗In))H ⊂
H.

Equivalently (P ⊗In((Ik⊗A)+(Ik⊗BK)(L⊗
In))(P

t ⊗ In)(P ⊗ In)H ⊂ (P ⊗ In)H
That is to say A2(P ⊗ In)H ⊂ (P ⊗ In)H.

Other properties.

Corollary 27. The system 1 is consensus stabilizable
if and only if the systems A + λiBK are stable by
means the same K.

For more information about consensus stability
see [4].

7 Conclusion
In this paper, a review of the concept of invariant sub-
spaces and controllability subspaces is made. These
concepts have been generalized to multi-agent sys-
tems and finally we have analyzed the consensus con-
trollability subspaces in the case of multiagent linear
systems having all agents the same dynamics.
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