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Abstract: This paper deals with the problems of finite-time stochastic stability and stabilization for discrete-time 
stochastic systems with parametric uncertainties and time-varying delay. Using the Lyapunov-Krasovskii functional 
method, some sufficient conditions of finite-time stochastic stability for a class of discrete-time stochastic uncertain 
systems  are established in term of matrix inequalities. Then, a new criterion is proposed to ensure the closed-loop 
system is finite-time stochastically stable.  The controller gain is designed. Finally, two numerical examples are given 
to illustrate the effectiveness of the proposed results. 
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1. Introduction 

Classical concepts of stability, such as Lyapunov 
stability or BIBO stability, mainly deal with systems 
running in infinite time intervals. The value of the 
boundary is generally not specified. But in many 
practical applications, the state of the system is 
expected to not exceed a certain domain in a finite 
time interval. So, along with the classical Lyapunov 
stability, one is also concerned about the finite-time 
transient performance.  A system is finite-time stable 
if, once we fix a time interval and give a bound on the 
initial condition, the system state does not exceed a 
certain domain during this time interval. Recently, 
finite-time stability has gradually become a hot topic 
and has been applied to many systems, such as 
continuous systems [1-3], discrete systems [4-6], 
stochastic systems [7, 8 ], and switched systems [9-
11]. 

The phenomenon of time-delay is very common in 
practical engineering systems, such as chemical 
systems, biological systems, mechanical systems, 
and networked control systems. The existence of 
time-delay is the root cause of the instability and poor 
performance of the control system. In most cases, the 
time-delay is not constant but time-varying. Many 
researchers were engaged in the study of time-delay 
systems (see e.g. [4, 9, 12-14] and references therein). 
Stojanovic [12] dealt with the problem of robust 

finite-time stability for discrete time delay systems 
with nonlinear perturbations. In [13], finite-time 
stability of linear discrete-time systems with time-
varying delay was considered. In [15], Arunkumar et 
al. studied robust stability criteria for discrete-time 
switched neural networks. Zuo et al. [16] considered 
the finite-time stochastic stability and stabilization 
for linear discrete-time Markovian jump systems. In 
[17], finite-time stability and stabilization results for 
switched impulsive dynamical systems on time scales 
were proposed. Li et al. [18] dealt with the problem 
of finite-time stability for time-varying time-delay 
systems.  Moradi [19] looked at the problem of finite-
time stability for time-varying time-delay systems. 
To the best of our knowledge, the problems of finite-
time stability and finite-time stabilization for 
discrete-time stochastic systems are important and 
have not been fully discussed, which leads to the 
main purpose of our research 

In this paper, we consider finite-time stochastic 
stability and finite-time stochastic stabilization for 
discrete-time uncertain stochastic systems with time-
varying delay. First, we develop sufficient conditions 
of finite-time stochastic stability for the open-loop 
discrete-time stochastic systems. Then we present 
sufficient condition such that the resulting closed-
loop system is finite-time stochastically stable for all 
admissible uncertainties. We design a state feedback 
controller. We provide two numerical examples to 
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demonstrate the validity of the proposed approach. 
The rest of this paper is organized as follows. 

Some preliminaries and the problem statement are 
described in Section 2. In Section 3, the sufficient 
conditions of the finite-time stochastic stability and 
stabilization for uncertain discrete time-varying 
delay stochastic systems are established. Two 
numerical examples are presented in Section 4. Some 
conclusions are drawn in Section 5. 

Notations. The superscript " "T  denotes the 
transpose; ( )M M0 0   denotes the matrix M  is a 
negative definite (positive definite) symmetric matrix; 
E  stands for mathematical expectation operator 

with respect to the given probability measure P ; 
max (.)λ  and min (.)λ  denotes the maximum eigenvalue 

and minimum eigenvalue of a matrix respectively; 
denotes the non-negative integer set. The asterisk   
in a matrix is used to denote term that is induced by 
symmetry. 

2. Problem Formulation 

Consider the following uncertain discrete-time 
stochastic system with time-varying delay 

1

1

2

( 1) ( ) ( ) ( ) ( ( )),
( ) ( ) ( ) ( ) ( )
( ) ( ( )) ( ),

( ) ( ), [ , 1, ,0],

d

M M

x k A k x k A k x k d k

B k u k C k x k ω k

C k x k d k ω k

x θ φ θ θ d d

   


 


 
      

    (1)  

where ( ) nx k R  is the n -dimensional state vector; 
( ) pu k R  is the control input; ( )d k  is the positive 

integer representing the time-varying with 
 ( ) . m Md d k d  

 ( )
k

ω k  is a sequence of one-dimensional 
independent white noise processes defined on the 
complete filtered probability space with  

   2( ) 0, ( ) 1.E ω k E ω k    

( )φ k  is the initial condition. The matrices ( )1A k , 
( ),dA k ( ),B k 1( )C k and 2 ( )C k  are time-varying 

matrices, which are assumed to be of the form: 
1 1 1

1 1 1

2 2 2

( ) ( ), ( ) ( ),
( ) ( ), ( ) ( ),
( ) ( ).

d d d

A k A ΔA k B k B ΔB k

A k A ΔA k C k C ΔC k

C k C ΔC k

   

   

 

    (2) 

1 1 2, , , ,dA A B C C  are known real constant matrices.
Δ ( ),1A k  Δ ( )dA k ,, Δ ( ),B k  1Δ ( )C k and 2Δ ( )C k  are 
unknown matrices representing time-varying 
parameter uncertainties  and are assumed to be of the 
following form: 

 

 
1 1 2

1 2 3 4

Δ ( ) Δ ( ) Δ ( ) Δ ( )

( ) ,
Δ ( ) ( ) ,

d

b

A k A k C k C k

MF k N N N N

B k MF k N





       (3) 

where M  and , ( 1,2,3,4)b iN N i   are known real 
constant matrices and ( )F k  is the unknown time-
varying matrix-valued function subject to the 
following condition : 

( ) ( ) , .  TF k F k I k              (4) 
Before presenting the main results, some useful 
definition and lemmas are given. 
Definition 1. Given positive constants ,1 2c c and N 
with  ,1 2c c  system (1) with ( ) 0u k  is said to be 
finite-time stochastically stable with respect to 
( , , )1 2c c N , if 

 

   

1
, 1, 0

2

sup ( ) ( )

( ) ( ) , 1,2, .
M M

T

k d d

T

φ k φ k c

E x k x k c k N

   



   

   (5)            

                                                                               
Lemma 1.  [20]   Let ,D S  and F  be real matrices of 
appropriate dimension with F  satisfying TF F I . 
Then, for any scalar 0,ε   

1( ) .T T TDFS DFS ε DD εS S            
    (6)

 
Lemma 2.  [15] Given constant matrices 1 2 3, ,Ω Ω Ω , 
where 1 1= > 0TΩ Ω   and 2 2= > 0,TΩ Ω  then 

1
1 3 2 3 0,TΩ Ω Ω Ω   

if and only if  

1 3

3 2

0.
TΩ Ω

Ω Ω

 
 

                         
(7)

                       
 

The aim of this paper is to develop some sufficient 
conditions to ensure system (1) is finite-time 
stochastic stabilization.  

3.  Main Results 

In this section, we will first give the finite-time 
stochastic stability condition for discrete-time 
stochastic system. Further, we design the stabilizing 
controllers for the system (1). 

3.1.  Finite-time stochastic stability 

Theorem 1. System (1) with ( ) 0u k  is finite-time 
stochastically stable with respect to ( , , )1 2c c N , if 
there exist symmetric positive definite matrices ,P

,Q and scalars 1 21, 0, 0,γ ε ε    such that the 
following inequalities hold 
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max

max max min

[ ( ) ( )( ) /
( ) ( ) ] ( ),

N

M m M m

M

γ λ Q c d d d d

λ P c λ Q d c c λ P

  

  

1

1 1 2

1 2
      (8)              

1 1 1 1 2 3

2 1 2 2 4

1

1

2

2

0 0 0
0 0

0 0 0 0
0 0 0

0,
0 0 0

0 0
0

T T T T

T T T T

d

Λ A P C P ε N ε N

Q A P C P ε N ε N

P PM

P PM

ε I

ε I

ε I

ε I

 
 
  
   
 
    


     
 
      
 
      
 
         

     

                                                                     (9)

  

where ( ) .1   M mΛ d d Q γP  
 
Proof. Choose a Lyapunov-Krasovskii functional for 
system (1) as:                                                                                  

( ) ( ) ( ) ( ),V k V k V k V k  1 2 3                   (10)      
where 

1
1

2
( )

1

3

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).
m

M

T

k
T

i k d k

k d k
T

j k d i j

V k x k Px k

V k x i Qx i

V k x i Qx i



 

 

  









 

 

Let Δ ( ) ( ) ( )1 1   V k V k V k , then we have 

 



1

1 1

1

1

1 1

1 2

{Δ ( )} ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ))

( ( )) ( ) ( ) ( )

( ( )) ( ) ( ) ( ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ))

(

T T

T T

T T

d

T T

d

T T

d d

T T

T T

T

E V k E x k Px k x k Px k

E x k A k PA k x k

x k A k PA k x k d k

x k d k A k PA k x k

x k d k A k PA k x k d k

x k C k PC k x k

x k C k PC k x k d k

x k

   



 

 

  



 

 


2 1

2 2

( )) ( ) ( ) ( )

( ( )) ( ) ( ) ( ( )) ,

T

T T

d k C k PC k x k

x k d k C k PC k x k d k  

                                                  

                                                                               (11) 

( )

( )

{Δ ( )} { ( ) ( )

( ) ( )}

{ ( ) ( )
( ( )) ( ( ))}

k
T

i k d k

k
T

i k d k

T

T

E V k E x i Qx i

x i Qx i

E x k Qx k

x k d k Qx k d k

2
1 1

1

   



 







  



  

1

1 ( ) 1

1

( ) 1

1

( ) ( ) ( ) ( )

( ) ( )}

{ ( ) ( ) ( ( )) ( ( ))

( ) ( )}

m

m

m

M

k dk
T T

i k d i k d k

k
T

i k d k

T T

k d
T

i k d

x i Qx i x i Qx i

x i Qx i

E x k Qx k x k d k Qx k d k

x i Qx i ,



     



  



  

 



   



 





     

(12) 

 
1

3
1

1

1

1

1 1 1

Δ ( ) { ( ) ( )

( ) ( )}

{ ( ) ( ) ( ) ( )}

m

M

m

M

m m

M M

k d k
T

j k d i j

k d k
T

j k d i j

k d k dk k
T T

k d i j j k d i j

E V k E x i Qx i

x i Qx i

E x i Qx i x i Qx i

 

   

 

   

  

       





 

 

 

   

 

1

1

1

{ ( ( ) ( ) ( ) ( ))}

{( ) ( ) ( ) ( ) ( )}

{( ) ( ) ( ) ( ) ( )}

m

M

m

M

m

M

k d
T T

j k d

k d
T T

M m

j k d

k d
T T

M m

j k d

E x k Qx k x j Qx j

E d d x k Qx k x j Qx j

E d d x k Qx k x j Qx j



  



  



  

 

  

  







 

(13) 
From (11)-(13), it follows that 

{Δ ( )} { ( ) ( )}TE V k E ξ k Ωξ k ,                (14) 
Where 

( ) [ ( ) ( ( ))] ,

,

( ) ( ) ( )

( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

T T T

T

M m

T

T T

d

T T

d d

ξ k x k x k d k

Ω Ω
Ω

Ω

Ω d d Q P A k PA k

C k PC k

Ω A k PA k C k PC k

Ω Q A k PA k C k PC k

 

 
  

 

    



 

   

11 12

22

11 1 1

1 1

12 1 1 2

22 2 2

1  

Let 
( )

,

γ P
Γ Ω

Γ Ω

Ω

11 12

22

1 0

0 0

 
   

 

 
  

 

                (15) 

where 
11 1 1

1 1

( ) ( ) ( 1)

( ) ( ).

T

M m

T

Γ A k PA k d d Q γP

C k PC k

    

   

Note that Γ  can be rewritten as: 
,Γ Γ Γ Γ  1 2 3                         (16) 

where 
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1

( )
,M md d Q γP

Γ
Q

   
  

 

1 0

0  

1 1 1
2

1

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )

T T

d

T T

d d d

A k PA k A k PA k
Γ

A k PA k A k PA k

 
  
 

 

1 1 1 2
3

2 1 2 2

( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( )

T T

T T

C k PC k C k PC k
Γ

C k PC k C k PC k

 
  
 

 

Note that  2 3,Γ Γ   can be rewritten as: 
 

 2

1

( )
( ) ( )

( )

,

T

dT

d

T

A k
Γ P A k A k

A k

Ψ PΨ

 
  
 



1
1

1

              (17)                                                

 1
3 1 2

2

2 2

( )
( ) ( )

( )

.

T

T

T

C k
Γ P C k C k

C k

Ψ PΨ

 
  
 



                 (18) 

  By (16), (17), (18) and Schur complement, 0Γ  
is equivalent to  

1 1

2

0 ( ) ( )
( ) ( )

0,
0

T T

T T

d

Λ A k P C k P

Q A k P C k P
Φ

P

P

 
 
   
   
 
     

    (19)                                                                                   

where ( ) .1   M mΛ d d Q γP  
Φ can be written as: 

,Φ Φ ΔΦ 
                                       

where 

1 1

2

1 1

2

1 1 1 1 2 2

2 2

( 1) 0

,
0

0 0 Δ Δ
0 Δ Δ

Δ
0 0

0

( ) ( ( ) ) ( )
( ( ) ) ,

T T

M m

T T

d

T T

T T

d

T

T

d d Q γP A P C P

Q A P C P
Φ

P

P

A P C P

A P C P
Φ

D F k S D F k S D F k S

D F k S

   
 

  
   
 

     

 
 
 
  
 
    

  



 

 

 

1

2

1 1 2

2 3 4

0 0 0 ,

0 0 0 ,

0 0 ,

0 0 .

T
T

T
T

D M P

D M P

S N N

S N N

   

   





 

From Lemma 1, we have 

1 1
1 1 1 1 1 1 2 2 2 2 2 2.

T T T TΔΦ ε D D ε S S ε D D ε S S         (21) 
From Lemma 1 and (9), it can be seen that ,0Φ

which implies that 
.Γ  0                                     (22) 

Then                                                                                  
{ ( ( ))} { ( ) ( )}

( 1) 0
{ ( )( ) ( )}

0 0

( 1) 0
{ ( ) ( )} { ( ) ( )}

0 0

( 1) 0
{ ( ) ( )}

0 0

{( 1) ( ) ( )}
{( 1) ( ( ))},

T

T

T T

T

T

E ΔV x k E ξ k Ωξ k

γ P
E ξ k Γ ξ k

γ P
E ξ k Γξ k E ξ k ξ k

γ P
E ξ k ξ k

E γ x k Px k

E γ V x k



 
   

 

 
   

 

 
  

 

 

 

 

which implies that 
{ ( )} { ( )}.E V k γE V k 1                    (23) 

From (23), we have 
{ ( )} { ( )}

( )
( ).

k

N

E V k γE V k

γ V

γ V

1

0

0

 







                     (24) 

From (10), we have 
1

(0)
1

1

max max

1

max

1 1

max 1 max 1 max 1

max

(0) (0) (0) ( ) ( )

( ) ( )

( ) (0) (0) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

m

M

M

m

M

m

M M

T T

i d

d
T

j d i j

T T

i d

j d
T

j d i j

d

i d j d i j

V x Px x i Qx i

x i Qx i

λ P x x λ Q x i x i

λ Q x i x i

λ P c λ Q c λ Q c

λ P c





 

 





 

 

 

  

 



 



  





 



 

  

1 max 1

max 1

( )
( ) ( 1)( ) / 2

M

M m M m

λ Q d c

λ Q c d d d d



   

 

                   (25) 

min

min

{ ( )} { ( )} { ( ) ( )}
{ ( ) ( ) ( )}

( ) { ( ) ( )}.

T

T

T

E V k E V k E x k Px k

E λ P x k x k

λ P E x k x k

 





1

            (26) 

        So, from (24)-(26), one get 
min max max

max

( ) { ( ) ( )} [ ( ) ( )
( ) ( )( ) / ]

T N

M

M m M m

λ P E x k x k γ λ P c λ Q d c

λ Q c d d d d

 

   

1 1

1 1 2      

(27) 
Using (8), we get that 

{ ( ) ( )} ,TE x k x k c 2  
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According to Definition 1, system (1) with ( ) 0u k  
is finite-time stochastically stable. This completes the 
proof. 

Remark 1. For this constant delay case, 
, m Md d d  the following corollary can be 

obtained. 

Corollary 1. System given by Eq. (1) with ( ) d k d  
and ( ) 0u k is finite-time stochastically stable with 
respect to ( , , ),1 2c c N  if there exist symmetric 
positive definite matrices ,P Q  and scalar 

, , ,1 21 0 0  γ ε ε  such that the following 
inequalities hold: 

1 max max 2 min[ ( ) ( ) ] ( ),Nγ c λ P λ Q d c λ P         (28) 

1 1 1 2 3

2 1 2 2 4

1

1

2

2

0 0 0
0 0

0 0 0 0
0 0 0

0.
0 0 0

0 0
0

T T T T

1

T T T T

d

Q γP A P C P ε N ε N

Q A P C P ε N ε N

P PM

P PM

ε I

ε I

ε I

ε I

 
 

  
   
 

    


     
 

      
 

      
 
         

(29)                 

Proof.  Let us select the following Lyapunov-
Krasovskii function  

1 2( ) ( ) ( ),V k V k V k                         (30) 
where  

1
1

2

( ) ( ) ( ),

( ) ( ) ( ).

T

k
T

i k d

V k x k Px k

V k x i Qx i


 



 
  

We have 
 



1

1 1

1

1

1 1

1 2

2 1

{Δ ( )} ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

T T

T T

T T

d

T T

d

T T

d d

T T

T T

T T

E V k E x k Px k x k Px k

E x k A k PA k x k

x k A k PA k x k d

x k d A k PA k x k

x k d A k PA k x k d

x k C k PC k x k

x k C k PC k x k d

x k d C k PC k x

   



 

 

  



 

 

2 2

( )

( ) ( ) ( ) ( ) ,T T

k

x k d C k PC k x k d  

 

 

 

Δ ( ) { ( ) ( ) ( ) ( )}

( ) ( ) ( ) ( ) .

k k
T T

i k d i k d

T T

E V k =E x i Qx i x i Qx i

E x k Qx k x k d Qx k d



    



   

 
1

2
1  

Then, it follows that 
{Δ ( )} { ( ) ( )},TE V k E ξ k Ωξ k            (31) 

where 

11 12

22

11 1 1 1 1

12 1 1 2

22 2 2

( ) [ ( ) ( )] ,

,

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

T T T

T T

T T

d

T T

d d

ξ k x k x k d

Ω Ω
Ω

Ω

Ω Q P A k PA k C k PC k

Ω A k PA k C k PC k

Ω Q A k PA k C k PC k

 

 
  

 

   

 

   

 

Just like the steps in Theorem 1, we have 
{ ( )} ( ).NE V k γ V 0  

From (30)，it follows that 

max max

max max

max max

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ,

T T

i d

T T

i d

i d

V x Px x i Qx i

λ P x x λ Q x i x i

λ P c λ Q c

λ P c λ Q dc

1

1

1

1 1

1 1

0 0 0

0 0











 

 

 

 







 

and 
min{ ( )} ( ) { ( ) ( )}.TE V k λ P E x k x k  

So,  we get 
min max max( ) { ( ) ( )} [ ( ) ( ) ].T Nλ P E x k x k γ λ P c λ Q dc 1 1  

Using (28), it follows that 
{ ( ) ( )} .TE x k x k c 2

 
By Definition 1, one know that system (1) is with 

( ) d k d  and ( ) 0u k is finite-time stochastically 

stable. This completes the proof. 

3.2. Finite-time stochastic stabilization                                                                     

Consider a state feedback control  
 ( ) ( ).u k Kx k                      (32) 

From (1) and (32), we have the following closed-
loop system 

1

1 2

( 1) ( ( ) ( ) ) ( ) ( ) ( ( ))
( ) ( ) ( ) ( ) ( ( )) ( )
( ), [ , 1, 0].

d

M M

x k A k B k K x k A k x k d k

C k x k ω k C k x k d k ω k

x φ k k d d

    

  
      

  

                                                                       (33) 
Definition 2. Given positive constants ,1 2c c  and N 

with ,1 2c c system (1) is said to be finite-time 

stochastically stabilizable with respect to , , ),1 2（c c N  
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if there exists a state feedback controller 
( ) ( )u k Kx k ,  such that the resulting closed-loop 

system (33) is finite-time stochastically stable with 
respect to ( , , ).1 2c c N   
Theorem 2.  System (1) is finite-time stochastically 
stabilizable with respect to ( , , )1 2c c N

 
via a state 

feedback ( ) ( ),u k Kx k  if there exists symmetric 

matrices 0X , ,0Q any matrix ,Y   scalars γ 1 ,  

1 20, 0,ε ε  , such that the following inequalities hold: 

( ) ( )1 1

2

1 0

0

    


 
   


   
    


   


   
    

T T T

M m

T T

d

d d Q γX A X BY XC

Q XA XC

X

X

 

      

( )

,

1 1 2 3

1 2 2 4

1

1

2

2

0 0

0 0

0 0 0

0 0 0
0

0 0 0

0 0

0












  


  

    

T T

b

T T

ε N X N Y ε XN

ε XN ε XN

M

M

ε I

ε I

ε I

ε I

    

(34)  
max

max max min

[ ( ) ( )( ) /
( ) ( ) ] ( ),

1

1 1 2

1 2  

  

N

M m M m

M

γ λ Q c d d d d

λ P c λ Q d c c λ P
        (35)            

where  
, .P X Q PQP 1   

Furthermore, the controller gain is given by
                                                                          

1K YX . 

Proof.  According to Definition 1 and Theorem 1, 
system (1) is finite-time stabilizable with respect to 
( , , )1 2c c N  via state feedback controller 

( ) ( )u k Kx k  if (35) and the following matrix 
inequality are admissible with respect to 

, , :γ P Q  1 0 0                                                                                                                                                                                                             

( ) ( )1 1

2

1 0

0

    


 
   


   
    


   


   

    

T T

M m

T T

d

d d Q γP A BK P C P

Q A P C P

P

P  

( )

.

T T

b

T T

ε N N K ε N

ε N ε N

PM

PM

ε I

ε I

ε I

ε I












  


  

    

1 1 2 3

1 2 2 4

1

1

2

2

0 0

0 0

0 0 0

0 0 0
0

0 0 0

0 0

0

 

(36)                                                                                  

 

Setting , , ,1  TX P Q XQX Y KX pre and post 

multiplying (36) by T diag , , , , , , ,X X X X I I I I , 
the (34) can be obtained. The proof is completed. 

4. Numerical example 

In this section, two numerical examples are  
presented to show the application of the developed 
theory. 
Example 1. Consider the uncertain stochastic system  
(1) with the following parameters: 

1

1 2

1 3

2 4

0.01 0.02 0.03 0.02
,

0.02 0.04 0.01 0.02

0.02 0.03 0.01 0.01
,

0.01 0.03 0.01 0.04

0.01 0.01 0.02 0.02
,

0.01 0.01 0.02 0.02

0.01 0.01
( ) 3 sin(

0.01 0.01

dA A

C = C

M N N

kπ
N N d k

   
    
   

   
   

   

   
     
   

 
    

 

，

,

,

, ) ,
2

 

Take 1 1 20.25, 10, 0.03, 0.04, 1.5.c N ε ε γ       
Solving (8) and (9) leads to feasible solutions 
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2

1.1699 0.0025 0.3898 0.0010
, ,

0.0025 1.1686 0.0010 0.3892
48.27.

P Q

c

    
    

    



According to Theorem 1, system (1) is finite-time 
stochastically stable with respect to (0.25,48.27,10).  
Fig. 1 shows the simulation for state trajectories of 
the system (1) in Example 1. 

 

Fig.1.  State response of the system in Example1 

Example 2. Consider the uncertain stochastic system  
(33) with the following parameters: 

1

1 2

0.05 0.01 0.1 0.01 0.01 0.01
0.01 0.04 0.01 0.01 0.02 0.01 ,
0.01 0.01 0.04 0.01 0.02 0.01

0.01 0.01 0.02 0.01 0.01 0.01
0.02 0.02 0.01 0.01 0.02 0.01 ,
0.01 0.02 0.01 0.01 0.01 0.01

dA A

C = C

B

   
   

 
   
      

   
   


   
      

，

，

1 2 3 4

0.02 0.01 0.01 0.01 0.01 0.01
0.01 0.02 0.02 , 0.01 0.01 0.01 ,
0.01 0.01 0.01 0.01 0.01 0.01

0.02 0.02 0.02
0.02 0.02 0.02 ,
0.02 0.02 0.02

0.03 0.03 0.03
( ) 3 sin( ) , 0.03 0.03 0.03

2
0

b

M

N N N N

kπ
d k N

   
   

 
   
      

 
 

   
 
  

   .
.03 0.03 0.03

 
 
 
  

 

Take 1 1 20.5, 10, 0.02, 0.03, 1.25.c N ε ε γ       
Solving (34) and (35) leads to feasible solutions 
 

1.0877 0.0032 0.0044
0.0032 1.0946 0.0021 ,
0.0044 0.0021 1.0956

0.2869 0.0011 0.0015
0.0011 0.2893 0.0007 ,
0.0015 0.0007 0.2897

0.9187 0.0025 0.0045
0.0025 0.9191 0.0039
0.0045 0.0

X

Q

Y

  
 

  
 
   

  
 

  
 
   

 

  

 

2

,
039 0.9179

17.23.c

 
 
 
  



, 

The controller gain is  
0.8447 0.0002 0.0007
0.0002 0.8397 0.0020
0.0007 0.0020 0.8377

K

 
 

 
 
   

. 

According to Theorem 2, system (1) is finite-time 
stochastically stabilizable with respect to 
(0.5,17.23,10).  Fig. 2 shows the simulation results 
of the state trajectory of the closed-loop system 
(33). 

 

 
Fig.2.  State response of the system (33)  

5. Conclusions 

In this paper, finite-time stochastically stability 
and stabilization problem has been investigated for a 
class of discrete time varying delay stochastic 
systems with uncertain. Sufficient conditions of 
finite-time stochastic stability have been given based 
on the Lyapunov-Krasovskii functional method. The 
criterion of finite-time stochastic stabilization for 
discrete-time stochastic system with time-varying 
delay is proposed. Finally, two numerical examples 
have been provided to show the applicability and less 
conservativeness of the presented results. 
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