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Abstract - Decentralized controller design using overlapping decompositions is considered for descriptor-type systems with
distributed time-delay. The approach is based on the principle of extension. In this approach, a given large-scale system is
decomposed overlappingly into a number of subsystems and expanded such that the overlapping parts appear as disjoint. A
decentralized controller is then designed for the expanded system. This controller is then contracted for implementation on the
original system. It is shown that if the decentralized controllers are designed to stabilize the expanded system and to achieve
certain performance, then the contracted controller, which would have an overlapping decentralized structure, will stabilize the
originalsystemandwillachievecorrespondingperformance.
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1. Introduction

Many practical systems may involve time-delays [1]. This
is especially true for large-scale systems [2]. Systems which
involve time-delays are usually named as time-delay systems
[3]. Time-delays in a time-delay system can be discrete
or distributed [4]. Systems with distributed time-delay may
appear in many applications such as logistics [5], traffic flow
[6], [7], [8], combustion [9], neural networks [10], [11], and
biology [12], [13]. Furthermore, some systems may involve
both discrete and distributed time-delays together [14]. Using
Dirac delta functions, however, discrete time-delays may be
represented as a distributed time-delay [15]. Thus, in this
sense, systems with distributed time-delay are more general
than systems involving only discrete time-delays.

Many time-delay systems can be modeled using delay-
differential equations [16]. Delay-differential equations
alone, however, may not be sufficient to model some time-
delay systems. In some cases, delay-differential equations
may need to be coupled with delay-algebraic equations.
Such systems are usually named as descriptor-type time-
delay systems [17]. Telerobotic systems [18] are one ex-
ample of descriptor-type time-delay systems. The response
of descriptor-type systems may be discontinuous and even
impulsive [17]. Thus, dealing with descriptor-type systems
is, in general, more challenging.

To analyze or design a controller for a large-scale system
may first require to decompose the system into smaller
subsystems [19]. However, many large-scale systems may
have an overlapping part through which subsystems are

interconnected [20]. Disjoint decompositions may not be
useful for such systems. It has been shown, however, that
the overlapping decompositions approach [21] may produce
useful decompositions for such systems (e.g., see [22]–
[30]). Overlapping decompositions approach is based on
the principle of inclusion [31]. A special case of inclusion,
which is especially useful in controller design is extension,
which was first introduced in [32] for finite-dimensional
systems. The principle of extension has first been extended to
descriptor-type systems with distributed time-delay in [33].
Controller design for such systems was then considered in
[34]. However, overlapping decompositions was considered
neither in [33] nor in [34].

In the present work, we consider decentralized controller
design using overlapping decompositions for linear time-
invariant (LTI) descriptor-type systems with distributed time-
delay. We give the necessary background in Sections 2 and
3, which summarize the results of [33] and [34], respectively.
Controller design using overlapping decompositions is then
presented in Section 4. Some concluding remarks are finally
given in Section 5.

Throughout the paper, R and R+ denote the sets of,
respectively, real numbers and non-negative real numbers.
For positive integers k and l, Rk and Rk×l denote the
spaces of, respectively, k-dimensional real vectors and k× l-
dimensional real matrices. For x ∈ Rk, ‖x‖ is the 2-
norm of x and, for X ∈ Rk×l, ‖X‖ is the induced 2-
norm (i.e., the maximum singular value) of X . Ik denotes
the k × k-dimensional identity matrix and 0 may denote a
zero matrix of appropriate dimensions or a matrix function
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which is identically zero. Finally, bdiag(· · ·) denotes a block
diagonal matrix with indicated blocks on the main diagonal
and rank(·) denotes the rank of the indicated matrix.

For M0 ∈ Rn×p and M(·) : [−τ, 0] → Rn×r, we say
that

[
M0 M(·)

]
has full row-rank, if for any ξ ∈ Rn,

there exist u0 ∈ Rp and ϕ : [−τ, 0] → Rr such that ξ =

M0u0 +
∫ 0

−τ M(θ)ϕ(θ)dθ.

2. Extension Pronciple

In this section, we summarize the results of [33], which
were also presented in [34]. Consider two LTI time-delay
systems with distributed time-delay, Σ:

E0ẋ(t) = A0x(t) +B0u(t) +

∫ 0

−τ
(A(θ)x(t+ θ)

+B(θ)u(t+ θ)) dθ (1)

y(t) = C0x(t) +

∫ 0

−τ
C(θ)x(t+ θ)dθ (2)

and Σ̂:

Ê0
˙̂x(t) = Â0x̂(t) + B̂0û(t) +

∫ 0

−τ

(
Â(θ)x̂(t+ θ)

+B̂(θ)û(t+ θ)
)
dθ (3)

ŷ(t) = Ĉ0x̂(t) +

∫ 0

−τ
Ĉ(θ)x̂(t+ θ)dθ (4)

where x(t) ∈ Rn and x̂(t) ∈ Rn̂ are the state, u(t) ∈ Rp

and û(t) ∈ Rp̂ are the input, and y(t) ∈ Rq and ŷ(t) ∈ Rq̂

are the output vectors of, respectively, Σ and Σ̂ at time t.
τ > 0 is the maximum time-delay in Σ and Σ̂. It is assumed
that the dimensions of the state, input, and output vectors of
Σ̂ are greater than or equal to those of Σ; i.e., n̂ ≥ n, p̂ ≥ p,
and q̂ ≥ q. It is also assumed that E0 ∈ Rn×n, A0 ∈ Rn×n,
B0 ∈ Rn×p, C0 ∈ Rq×n, Ê0 ∈ Rn̂×n̂, Â0 ∈ Rn̂×n̂, B̂0 ∈
Rn̂×p̂, and Ĉ0 ∈ Rq̂×n̂ are constant matrices and A(·) :
[−τ, 0] → Rn×n, B(·) : [−τ, 0] → Rn×p, C(·) : [−τ, 0] →
Rq×n, Â(·) : [−τ, 0]→ Rn̂×n̂, B̂(·) : [−τ, 0]→ Rn̂×p̂, and
Ĉ(·) : [−τ, 0] → Rq̂×n̂ are bounded matrix functions. It is
further assumed that rank(E0) = ne < n and rank(Ê0) =
n̂e < n̂, which make both systems Σ and Σ̂ descriptor-type
[17]. The following two assumptions are also made in order
to guarantee the existence and uniqueness of solutions:

Assumption 1: rank(UA0V) = n − ne, where the rows of
U (respectively, columns of V) span the left (respectively,
right) null space of E0.

Assumption 2: rank(ÛÂ0V̂) = n̂ − n̂e, where the rows of
Û (respectively, columns of V̂) span the left (respectively,
right) null space of Ê0.

Under suitable initial conditions, Assumptions 1 and 2
guarantee the existence and uniqueness of solutions to (1)
and (3), respectively [16]. The initial conditions for Σ and
Σ̂ are assumed to be given as:

x(θ) = φ(θ) and x̂(θ) = φ̂(θ) , θ ∈ [−τ, 0] , (5)

respectively, for some well-defined functions φ : [−τ, 0] →
Rn and φ̂ : [−τ, 0]→ Rn̂.

As also noted in [34], when Assumptions 1 and 2 hold, by
a suitable state transformation, the delay-free parts of (1) and
(3) can be decoupled into their differential and algebraic parts
[17] (there will still be coupling through delayed dynamics,
in general, however). That is, by using a state trasformation,
(1)–(4) can be put into a form where

E0 = bdiag(Ine
, 0) and A0 = bdiag(A1

0, In−ne
) (6)

and

Ê0 = bdiag(In̂e
, 0) and Â0 = bdiag(Â1

0, In̂−n̂e
) (7)

Although, in such a form, the equations may look appealing,
the states may lose their physical meaning. Furthermore,
some matrices/matrix functions may become ill-conditioned.
Therefore, except in the only if part of Theorem 1 below,
we assume that (6) and (7) may not hold in general.

The principle of extension was defined in [33] as follows:
Definition 1: Σ̂ is said to be an extension of Σ if there exist
full-rank matrices

T ∈ Rn̂×n , R ∈ Rp×p̂ , and S ∈ Rq̂×q (8)

such that for all φ(·) and for all û(·), the choice

φ̂(θ) = Tφ(θ) , θ ∈ [−τ, 0] (9)

and
u(t) = Rû(t) , t ≥ −τ (10)

implies
x̂(t) = Tx(t) , t ≥ −τ (11)

and
ŷ(t) = Sy(t) , t ≥ 0 . (12)

As also mentioned in [34], extension defined above is a
generalization of extension, which was first defined for finite-
dimensional systems in [32]. In the case of finite-dimensional
systems, the advantage of using extension rather than the
more general principle of inclusion is that, if extension is
used then any controller designed for the expanded system
can be contracted for implemetation on the original system
[35]. As it was shown in [34] (see Corollary 2 below), the
same is also true in the present case.

The necessary and sufficient conditions for Σ̂ to be an
extension of Σ are given by the following theorem, which
was first presented in [33].
Theorem 1: Σ̂ is an extension of Σ if there exist full-rank
matrices as in (8) such that

Ê0T = TE0 , (13)

Â0T = TA0 and Â(θ)T = TA(θ) , ∀θ ∈ [−τ, 0] , (14)

B̂0 = TB0R and B̂(θ) = TB(θ)R , ∀θ ∈ [−τ, 0] , (15)

and

Ĉ0T = SC0 and Ĉ(θ)T = SC(θ) , ∀θ ∈ [−τ, 0] . (16)
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Furthermore, the above conditions are also necessary if (1)–
(4) are written in a form such that (6) and (7) hold and that[
B2

0 A2(·) B2(·)
]

has full row-rank, where B2
0 , A2(·),

and B2(·) denote the last n−ne rows of B0, A(·), and B(·),
respectively.

Proof: See [33]. �

As it was also indicated in [33] and [34], without any loss
of generality, the matrices and the matrix functions of Σ and
Σ̂ can be related as follows:

Ê0 = TE0T̃ +M0
E , Â0 = TA0T̃ +M0

A , (17)

B̂0 = TB0R+M0
B , Ĉ0 = SC0T̃ +M0

C (18)

Â(θ) = TA(θ)T̃ +MA(θ) , θ ∈ [−τ, 0] , (19)

B̂(θ) = TB(θ)R+MB(θ) , θ ∈ [−τ, 0] , (20)

and

Ĉ(θ) = SC(θ)T̃ +MC(θ) , θ ∈ [−τ, 0] , (21)

where T , R, and S are the matrices introduced in (8)
and T̃ ∈ Rn×n̂ is a left-inverse of T , satisfying T̃ T =
In (such T̃ exists, since T is of full-rank and n̂ ≥ n).
Furthermore, M0

E ∈ Rn̂×n̂, M0
A ∈ Rn̂×n̂, M0

B ∈ Rn̂×p̂, and
M0
C ∈ Rq̂×n̂ are the so-called complementary matrices and

MA(·) : [−τ, 0] → Rn̂×n̂, MB(·) : [−τ, 0] → Rn̂×p̂, and
MC(·) : [−τ, 0] → Rq̂×n̂ are the so-called complementary
matrix functions, which are bounded matrix functions. As we
will see in Section 4, this representation facilitates defining
an expansion of an overlappingly decomposed system. The
necessary and sufficient conditions for Σ̂ to be an extension
of Σ can equivalently be stated in terms of these comple-
mentary matrices and matrix functions [33]:

Corollary 1: Σ̂ is an extension of Σ if

M0
ET = 0 , (22)

M0
AT = 0 and MA(θ)T = 0 , ∀θ ∈ [−τ, 0] , (23)

M0
B = 0 and MB(θ) = 0 , ∀θ ∈ [−τ, 0] , (24)

and

M0
CT = 0 and MC(θ)T = 0 , ∀θ ∈ [−τ, 0] . (25)

Furthermore, the above conditions are also necessary if (1)–
(4) are written in a form such that (6) and (7) hold and that[
B2

0 A2(·) B2(·)
]

has full row-rank.

Proof: See [33]. �

3. Contractibility of Controllers

As it will be shown in the next section, in the approach of
overlapping decompositions, a system is first overlappingly
decomposed and then expanded so that overlapping parts
appear as disjoint. A controller is then designed for this
expanded system and then contracted for implementation
on the original system. In order for the contracted con-
troller work on the original system, however, it must be
contractible. Contractibility of controllers for descriptor-type
systems with distributed time-delay was first considered in
[34]. Therefore, in this section we will summarize the results
of [34].

As mentioned in [34], a possibly descriptor-type LTI time-
delay system can be stabilized by a possibly descriptor-type
LTI (de)centralized time-delay controller if and only if it
can be stabilized by a LTI (de)centralized finite-dimensional
controller (see [36] for the retarded centralized case and [37]
for the most general case). Therefore, as in [34], in here, we
will consider only finite-dimensional controllers. Thus, for
Σ, we consider a controller, to be denoted by Γ, of the form

ż(t) = Fz(t) +Gw(t) (26)
v(t) = Hz(t) +Kw(t) (27)

and, for Σ̂, we consider a controller, to be denoted by Γ̂, of
the form

˙̂z(t) = F̂ ẑ(t) + Ĝŵ(t) (28)
v̂(t) = Ĥẑ(t) + K̂ŵ(t) (29)

Here, z(t) ∈ Rm and ẑ(t) ∈ Rm̂ are the state, w(t) ∈ Rq

and ŵ(t) ∈ Rq̂ are the input, and v(t) ∈ Rp and v̂(t) ∈
Rp̂ are the output vectors of, respectively, Γ and Γ̂ at time
t. Furthermore, F ∈ Rm×m, G ∈ Rm×q , H ∈ Rp×m,
K ∈ Rp×q , F̂ ∈ Rm̂×m̂, Ĝ ∈ Rm̂×q̂ , Ĥ ∈ Rp̂×m̂, and
K̂ ∈ Rp̂×q̂ are constant matrices. The initial conditions for
Γ and Γ̂ are assumed to be given as:

z(0) = ζ0 and ẑ(0) = ζ̂0 , (30)

for some ζ0 ∈ Rm and ζ̂0 ∈ Rm̂, respectively.
The controllers Γ and Γ̂ are to be applied to Σ and Σ̂,

respectively, by letting

w(t) = y(t)− r(t) and ŵ(t) = ŷ(t)− r̂(t) (31)

and

u(t) = v(t) + d(t) and û(t) = v̂(t) + d̂(t) (32)

for t ≥ 0, where r(t) ∈ Rq and d(t) ∈ Rp are some external
inputs (possibly a reference and a disturbance, respectively)
at time t, for Σc, where Σc denotes the closed-loop system
obtained by applying Γ to Σ, and r̂(t) ∈ Rq̂ and d̂(t) ∈ Rp̂

are some external inputs at time t, for Σ̂c, where Σ̂c denotes
the closed-loop system obtained by applying Γ̂ to Σ̂.

As it was noted in [34], although the maximum time-delay
in the closed-loop systems will be 2τ , due to the assumption
that the loops are closed at time t = 0, only x(t) for t ≥ −τ
will affect Γ and only z(t) for t ≥ 0 will affect Σ (similarly
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for Γ̂ and Σ̂). Thus, (5) and (30) will also define the initial
conditions of the closed-loop systems.

We can now present the definition of contractibility, which
was first presented in [34]:

Definition 2: Suppose that the connection in (31) is made
but the connection in (32) is not made. The controller Γ̂ for
Σ̂ is said to be contractible to the controller Γ for Σ if there
exist full-rank matrices as in (8) and a full row-rank matrix
P ∈ Rm×m̂ such that for all initial conditions φ(·) of Σ, for
all inputs û(·) of Σ̂, for all external inputs r(·) of Σc, and
for all initial conditions ζ̂0 of Γ̂, the choice (9), (10),

ζ0 = P ζ̂0 (33)

and
r̂(t) = Sr(t) , t ≥ 0 (34)

implies
z(t) = P ẑ(t) , t ≥ 0 (35)

and
v(t) = Rv̂(t) , t ≥ 0 . (36)

Note that, the existence of a full row-rank matrix P ∈
Rm×m̂, in particular requires m̂ ≥ m. However, as also
indicated in [34], this is natural, since Σ, in general, forms a
part of Σ̂, and hence, should not require a controller with a
larger dimensional state vector [8]. Contractibility is needed
so that the condition (10) is satisfied after the application
of the controllers. Although, however, (10) is required for
t ≥ −τ , (36) is required only for t ≥ 0, since the controllers
are to be applied starting at time t = 0.

The conditions for Γ̂ to be contractible to Γ are given by
the following theorem, which was first presented in [34]:

Theorem 2: Suppose that Σ̂ is an extension of Σ. Then, the
controller Γ̂ for Σ̂ is contractible to the controller Γ for Σ if
there exists a full row-rank matrix P ∈ Rm×m̂ such that

FP = PF̂ , G = PĜS , (37)
HP = RĤ , and K = RK̂S , (38)

where R and S are as in (8).

Proof: See [34]. �

Since a controller Γ̂ is first to be designed for Σ̂ and then
to be contrated for implementation on Σ, it is important that
any controller Γ̂ for Σ̂ to be contractible to a controller Γ
for Σ. As it was shown in [34], this is in fact the case if Σ̂
is an extension of Σ:

Corollary 2: If Σ̂ is an extension of Σ, then any controller
Γ̂ of the form (28)–(29) for Σ̂ is contractible to a controller
Γ of the form (26)–(27) for Σ with

F = F̂ , G = ĜS , (39)
H = RĤ , and K = RK̂S , (40)

where R and S are as in (8).

Proof: See [34]. �

Now, suppose that Γ is applied to Σ and Γ̂ is applied
to Σ̂ by making the connections in (31) and (32) starting
at time t = 0. Let us denote the closed-loop system
obtained by applying Γ to Σ by Σc and the closed-loop
system obtained by applying Γ̂ to Σ̂ by Σ̂c. In [8], for
the case of retarded distributed-time-delay systems, it was
proved that when the expanded system is an extension of the
original system and the controller for the expanded system
is contractible to the controller for the original system, then
certain stability and performance relations between the two
closed-loop systems hold. For stability, we can use the usual
definition of asymptotic or exponential stability for time-
delay systems (e.g., see [38]). For performance, a specific
tracking requirement was used in [8], which is defined as
follows:

Definition 3: A closed-loop system, such as Σc, is said to
achieve good tracking for references r(·), with respect to a
tolerance function g : R+ → R+ and a disturbance bound
f : [−τ,∞)→ R+, if, assuming that the initial state is zero,
the output, y(·), satisfies ‖y(t) − r(t)‖ ≤ g(t), ∀t ≥ 0, for
all disturbances which satisfy ‖d(t)‖ ≤ f(t), ∀t ≥ −τ .

We note that the solution to the robust tracking controller
design problem for descriptor-type time-delay systems was
presented in [39].

The following theorems, the proofs of which follow the
same lines as the proofs of the corresponding theorems in
[8], were first presented in [34]:

Theorem 3: Suppose that Σ̂ is an extension of Σ, Γ̂ is
contractible to Γ, and Γ̂ stabilizes Σ̂. Then, Γ stabilizes Σ.

Theorem 4: Suppose that Σ̂ is an extension of Σ and Γ̂ is
contractible to Γ. Let R and S be as in Definition 1 and
R̃ and S̃ be such that RR̃ = Ip and S̃S = Iq .1 Suppose
that Σ̂c achieves good tracking for references r̂(t) = Sr(t),
t ≥ 0, for some r(·), with respect to ĝ : R+ → R+ and
f̂ : [−τ,∞) → R+. Then, Σc achieves good tracking for
references r(·), with respect to g(·) := ‖S̃‖ĝ(·) and f(·) :=
1
‖R̃‖ f̂(·).

4. Overlapping Decompositions and Controller
Design

The results of the previous section show that, when Σ̂ is an
extension of Σ, a controller can first be designed for the ex-
panded system to achieve stability and desired performance.
This controller can then be contracted and implemented on
the original system. The original closed-loop system will
then be stable and will have the desired performance. This
approach is particularly useful when the original system has
an overlapping structure. In such a case overlapping decom-
positions can be used to obtain the expanded system which is

1There exist such R̃ and S̃ since R and S are of full-rank and p̂ ≥
p and q̂ ≥ q. Note that it makes sense to choose these matrices as the
Moore-Penrose inverses [40] of R and S, respectively, so that they will have
minimum norm, which will, in turn, allow minimum tolerance function g
and maximum disturbance bound f .
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an extension of the original system. Decentralized controllers
can then be designed for this expanded system. It would be
easier to design these controllers for the expanded system,
rather than directly designing a controller for the original
system, since the subsystems of the expanded system would
appear as disjoint. The decentralized controllers designed for
the expanded system can then be contracted and implemented
on the original system.

Large-scale systems may have subsystems which may
overlap in many different ways [41]. For simplicity of pre-
sentation, here we will consider the case of two overlapping
subsystems. In this case, the state, the input, and the output
vectors of the system Σ can be decomposed as:

x =

 x1
xc
x2

 , u =

 u1
uc
u2

 , y =

 y1
yc
y2

 , (41)

where, for i = 1, 2, xi ∈ Rni , ui ∈ Rpi , and yi ∈ Rqi are,
respectively, the state, the input, and the output vectors of the
ith subsystem only, and xc ∈ Rnc , uc ∈ Rpc , and yc ∈ Rqc

are, respectively, the state, the input, and the output vectors
of the overlapping part. Let us also partition the matrices and
the matrix functions in (1)–(2) compatibly:

E0 =

 E11
0 E1c

0 E12
0

Ec10 Ecc0 Ec20
E21

0 E2c
0 E22

0

 ,
A0 =

 A11
0 A1c

0 A12
0

Ac10 Acc0 Ac20
A21

0 A2c
0 A22

0

 ,
B0 =

 B11
0 B1c

0 B12
0

Bc10 Bcc0 Bc20
B21

0 B2c
0 B22

0

 ,
C0 =

 C11
0 C1c

0 C12
0

Cc10 Ccc0 Cc20
C21

0 C2c
0 C22

0

 ,

A(·) =

 A11(·) A1c(·) A12(·)
Ac1(·) Acc(·) Ac2(·)
A21(·) A2c(·) A22(·)

 ,
B(·) =

 B11(·) B1c(·) B12(·)
Bc1(·) Bcc(·) Bc2(·)
B21(·) B2c(·) B22(·)

 ,
and

C(·) =

 C11(·) C1c(·) C12(·)
Cc1(·) Ccc(·) Cc2(·)
C21(·) C2c(·) C22(·)

 .

Then, to obtain an extension of Σ, the matrices in (8) can
be chosen as

T =


In1

0 0
0 Inc 0
0 Inc 0
0 0 In2

 , (42)

R =

 Ip1 0 0 0
0 Ipc Ipc 0
0 0 0 Ip2

 , (43)

and

S =


Iq1 0 0
0 Iqc 0
0 Iqc 0
0 0 Iq2

 . (44)

Furthermore, the matrix T̃ can be chosen as the Moore-
Penrose inverse [40] of T :

T̃ =

 In1
0 0 0

0 1
2Inc

1
2Inc

0
0 0 0 In2

 .

Then, an extension Σ̂ of Σ can be obtained as described
by (3)–(4), where the matrices and the matrix functions
in (3)–(4) are chosen as in (17)–(21), with the following
complementary matrices and matrix functions:

M0
E =


0 1

2E
1c
0 − 1

2E
1c
0 0

0 1
2E

cc
0 − 1

2E
cc
0 0

0 − 1
2E

cc
0

1
2E

cc
0 0

0 − 1
2E

2c
0

1
2E

2c
0 0

 ,

M0
A =


0 1

2A
1c
0 − 1

2A
1c
0 0

0 1
2A

cc
0 − 1

2A
cc
0 0

0 − 1
2A

cc
0

1
2A

cc
0 0

0 − 1
2A

2c
0

1
2A

2c
0 0

 ,

M0
B = 0,

M0
C =


0 1

2C
1c
0 − 1

2C
1c
0 0

0 1
2C

cc
0 − 1

2C
cc
0 0

0 − 1
2C

cc
0

1
2C

cc
0 0

0 − 1
2C

2c
0

1
2C

2c
0 0

 .

MA(·) =


0 1

2A
1c(·) − 1

2A
1c(·) 0

0 1
2A

cc(·) − 1
2A

cc(·) 0
0 − 1

2A
cc(·) 1

2A
cc(·) 0

0 − 1
2A

2c(·) 1
2A

2c(·) 0

 ,

MB(·) = 0, and

MC(·) =


0 1

2C
1c(·) − 1

2C
1c(·) 0

0 1
2C

cc(·) − 1
2C

cc(·) 0
0 − 1

2C
cc(·) 1

2C
cc(·) 0

0 − 1
2C

2c(·) 1
2C

2c(·) 0

 .

These matrices and matrix functions are chosen to minimize
the interactions between the expanded subsystems among all
complementary matrices and matrix functions which satisfy
(22)–(25). Since (22)–(25) are satisfied, by Corollary 1, Σ̂ is
an extension of Σ.

We can then decompose the state, the input, and the output
vectors of Σ̂ as:

x̂ =

[
x̂1
x̂2

]
, û =

[
û1
û2

]
, ŷ =

[
ŷ1
ŷ2

]
, (45)

where, for i = 1, 2, x̂i ∈ Rn̂i , n̂i := ni+nc, ûi ∈ Rp̂i , p̂i :=
pi+pc, and ŷi ∈ Rq̂i , q̂i := qi+qc. Then, Σ̂ is composed of
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two subsystems: Σ̂1 and Σ̂2, where x̂i, ûi, and ŷi respectively
form the state, the input, and the output vectors of Σ̂i, for
i = 1, 2. Then, for each Σ̂i (i = 1, 2), a local controller Γ̂i
of the form

˙̂zi(t) = F̂iẑi(t) + Ĝiŵi(t) (46)

v̂i(t) = Ĥiẑi(t) + K̂iŵi(t) (47)

can be designed, e.g., by the method of [42] or [43]. This
controller is to be applied to Σ̂i by letting

ŵi(t) = ŷi(t)− r̂i(t) and ûi(t) = v̂i(t) + d̂i(t) (48)

for t ≥ 0, where r̂i(t) ∈ Rq̂i and d̂i(t) ∈ Rp̂i are some
external inputs at time t for the ith local closed-loop system.

For i = 1, 2, let us make the following decompositions:

Ĝi =
[
G1
i G2

i

]
, Ĥi =

[
H1
i

H2
i

]
,

and
K̂i =

[
K11
i K12

i

K21
i K22

i

]
where G1

1 has q1 columns, G2
2 has q2 columns, H1

1 has p1
rows, H2

2 has p2 rows, K11
1 has p1 rows and q1 columns,

and K22
2 has p2 rows and q2 columns.

A decentralized controller Γ̂ for Σ̂ can then be obtained
as in (28)–(29), where

F̂ = bdiag(F̂1, F̂2) , Ĝ = bdiag(Ĝ1, Ĝ2) ,

Ĥ = bdiag(Ĥ1, Ĥ2) ,

and
K̂ = bdiag(K̂1, K̂2) .

This controller can then be contracted to a controller Γ,
described by (26)–(27), where the matrices are obtained
using (39)–(40) as follows:

F = bdiag(F̂1, F̂2) ,

G =

[
G1

1 G2
1 0

0 G1
2 G2

2

]
, H =

 H1
1 0

H2
1 H1

2

0 H2
2

 ,

and

K =

 K11
1 K12

1 0
K21

1 K22
1 +K11

2 K12
2

0 K21
2 K22

2

 .

The overlapping decentralized structure of the controller is
evident from these matrices. Assuming that Γ̂ stabilizes Σ̂, by
Theorem 3, the contracted controller Γ stabilizes the original
system Σ. Furthermore, if Σ̂c achieves good tracking for
references r̂(t) = Sr(t), t ≥ 0, for some r(·), with respect
to ĝ : R+ → R+ and f̂ : [−τ,∞)→ R+, then, by Theorem
4, Σc achieves good tracking for references r(·), with respect
to g(·) = ĝ(·) and f(·) = f̂(·).2

2As R̃ and S̃, we use the Moore-Penrose inverses of R and S in (43)
and (44) so that ‖R̃‖ = ‖S̃‖ = 1.

5. Conclusions

Decentralized controller design using overlapping decom-
positions has been considered for descriptor-type systems
with distributed time-delay. First, the principle of extension
and contractibility of controllers have been presented, as they
were first introduced in [33] and [34], respectively. Then,
controller design using overlapping decompositions has been
presented. Although the case of only two overlapping sub-
systems has been presented for simplicity, the results can
be extended to systems which may have more subsystems
which may overlap in different ways. Furthermore, although
only finite-dimensional controllers has been considered, the
results can be generalized to time-delay controllers.3

In the proposed approach, a given large-scale system is
first overlappingly decomposed into a number of subsystems.
This system is then expanded such that the expanded system
is an extension of the original system and the subsystems
of the expanded system appear as disjoint. Decentralized
controllers are then designed for this expanded system. It
would be easier to design these controllers for the expanded
system, rather than directly designing a controller for the
original system, since the subsystems of the expanded sys-
tem would appear as disjoint. Any decentralized controller
design method, such as [42] or [43], devised for descriptor-
type time-delay systems can be employed to design these
controllers. The decentralized controllers designed for the
expanded system are contracted and implemented on the
original system in the final phase. As it was shown in
Section 4, the controllers designed by this approach would
have an overlapping decentralized structure, which may be
desirable in many applications. Furthermore, by Theorems
3 and 4, the stability and desired performance for the
original system would be guaranteed, if the controllers for
the expanded system are designed to stabilize and achieve
desired performance.
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[30] A. İftar, “Decentralized robust control based on overlapping decom-
positions,” in Preprints of the 10th IFAC Symposium on Large Scale
Systems, (Osaka, Japan), pp. 605–609, July 2004.
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