
 

 

 
Abstract—Aiming at the problems of low accuracy and slow diagnosis speed in the existing fault diagnosis model of 
electrical machine bearing, this paper presents an electrical machine bearing fault diagnosis method based on Deep 
Gaussian Process of particle swarm optimization(DGP). A total of 10 characteristics of 9 damage states and no fault 
states of the bearing are determined, constructing a deep Gaussian process model for electrical machine bearing fault 
diagnosis based on expectation propagation and Monte Carlo method, and use the particle swarm optimization 
algorithm to perform parameter searching optimization for its induction point value. The experimental results show 
that the fault recognition rate of DGP on the CWRU data set reaches 95%, significantly better than other deep learning 
methods, integration methods and machine learning methods. DGP method can better diagnose electrical machine 
bearing faults, provide technical support for the safe operation of the electrical machine which are important for real 
industrial applications.  
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1. Introduction 
ith the deepening of machine learning research in the 
field of artificial intelligence, machine learning 

technology is increasingly used in the field of pattern 
recognition[1]. Traditional recognition tasks mainly apply 
machine learning models such as support vector machine 
(SVM), neural network, and random forest [2]. In recent years, 
deep learning has developed rapidly in academia and industry, 
significantly improve the accuracy of recognition on many 
traditional recognition tasks, demonstrates its superb ability to 
handle complex recognition tasks, attracted a large number of 
experts and scholars to conduct research on its theory and 
application [3-5]. 

Electricity fault diagnosis technology can find faults in 
electrical equipment at the early stage of fault diagnosis, 
therefore, timely targeted maintenance can be carried out, 
saving a lot of time and funds for repairing faults, while 
avoiding production stalls, it also improves economic 
efficiency. Also in the memory fault detection technology is also 
necessary, Eitan Yaakobi [6] et al. proposed a structure of single 
error correction WOM code with better WOM rate, this 
structure can effectively update and store the data in the 
memory. Liang Xi [7] et al. proposed a Multisource 
Neighborhood Immune Detector Adaptive Model for Anomaly 

Detection, solve various problems existing in the real-valued 
shape-space under dynamic environment mentioned and  

 
 
improve the overall detection performances, and got better 

stability. 
In today's production activities and daily life, the electrical 

machine is the most important motive power and drive unit, and 
it has been widely used in various fields of people's production 
and life. 

The fault detection of the electrical machine often needs to 
detect the fault in a very short time, so as to carry out the 
targeted maintenance in time, so it needs fast detection speed 
and flexible detection method. The Gaussian Process has the 
characteristics of low computational complexity and fast 
convergence speed in a small sample space. The Gaussian 
process is named after the German mathematician Carl 
Friedrich Gauss to commemorate his proposal of the concept of 
normal distribution, developed based on statistical learning 
theory and Bayesian theory. In the following decades, rich 
research results have been obtained. Ori Shental [8] et al. 
proposed a Gaussian Belief Propagation Solver for Systems, 
compared with the traditional method, this method has a faster 
convergence speed. D Bickson [9] and others proposed a 
Gaussian Belief Propagation Based Multiuser Detection 
algorithm, compared with the previous formula, the new 
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algorithm reduces memory requirements, calculation steps and 
the number of messages passed. The deep Gaussian process has 
certain theoretical advantages and is suitable for the research of 
electrical machine fault detection technology. The deep 
Gaussian process model is a deep model that superimposes 
multiple Gaussian processes, any number of Gaussian processes 
can be superimposed. The Gaussian process controls the 
mapping between layers and also has the advantages of the 
Gaussian process. Zhao [10] et al. proposed Computer 
Modeling of the Eddy Current Losses of Metal Fasteners in 
Rotor Slots of a Large Nuclear Steam Turbine Generator Based 
on Finite-Element Method and Deep Gaussian Process 
Regression, the analysis results show that compared with the 
independent finite-element analysis, this method reduces the 
design cycle time and improves the design efficiency for a 
large-capacity turbine generator. Guo [11] et al. proposed 
Predicting Temperature of Permanent Magnet Synchronous 
Motor(PMSM) Based on Deep Neural Network. This model 
can effectively predict the temperature change of stator 
winding, provide technical support to temperature early 
warning systems and ensure safe operation of PMSMs. Wang 
[12] et al. proposed Cuckoo Search Algorithm for 
Multi-Objective Optimization of Transient Starting 
Characteristics of a Self-Starting HVPMSM. Experiments show 
that the optimization speed of this method is significantly faster 
than other methods, and this method has a faster convergence 
speed while ensuring accuracy. 

Existing deep learning models have been able to diagnose 
electrical machine faults well, but there are still many problems 
such as insufficient accuracy and slow training speed. For 
example, the semi-supervised training method of deep belief 
network has the problem of slow training speed, the 
autoencoder network has problems such as limited expression 
features and difficulty in reconstruction, convolutional neural 
network training requires a lot of data, and the effect is not ideal 
when processing industrial signals, RNN has problems such as 
gradient disappearance [13]. Therefore, this paper uses the 
strong recovery ability of the deep Gaussian process to outliers 
and the strong non-linear problem processing ability to 
construct a deep Gaussian process classification model 
optimized by particle swarm optimization, and apply it to the 
fault diagnosis of electrical machine rolling bearings, and early 
warning of motor bearing faults based on abnormal changes in 
the signal before the fault occurs, so as to avoid electrical 
machine damage and reduce losses caused by this model. 
 

2. Deep Gaussian Process Classification 
Model 

2.1 Deep Gaussian process  
For a given N observed values, 1,...,( )T

Ny y y  and 
D-dimensional coordinates 1,...,( )T

NX X X , The output of 
each hidden layer of a DGP model with L layers can be 

expressed as 1
1{ }L

l lH 


. The number of columns in Hi is the 

number of nodes in layer L. It is also called the dimension of 
the layer and can be written as Di.,which can be expressed by 
equation (1). 

1,1 1,

,1 ,

l

l

l l
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l l

N N D

h h

H

h h

 
 

  
 
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                          (1) 

in: 
, 1

, ( )l l i l

n i nh f h                               (2) 

if  is given by Gaussian priors, usually for ease of 
understanding, latent variable dimensions are ignored and 

lH  is written as lh ,and , ( )l if   is written as ( )lf  . First, 
set a zero-mean Gaussian prior for ( | )l lp f   of each layer, 
for layers with multiple nodes, the prior function is an 
independent Gaussian function inside each layer. Assuming 
that the noise of i.i.d can be parameterized in the output of 
each layer, the prior and dependent variables of the deep 
Gaussian process can be regarded as equation (3) and 
equation (4): 

( | ) ( | 0, ), 1, ,l l l lp f GP f K l L                      (3) 

1 2 1 2 0

1

( | , , ) ( | ( ), ),
N

l l l l l

l n l n l n n

n

p h f h hN f h h x  



     (4) 

lK  represents the kernel matrix between a given input and 
layer L, where 1 1( , )l l lK k h h  , For the layer with 1L  , 
the input will no longer be a certain value, and the 
corresponding output will not obey the normal distribution. 
When 1L  , the model will become a shallow Gaussian 
process model . Finally, the conditional probability of a 
given target value in the output layer is shown in equation 
(5). 

1 2 1 2

1

( | , , ) ( | ( ), )
N

L L L

L n L n L

n

p y f f hNh y  



          (5) 

Figure 1 is an example of a two-layer model, where a hidden 
layer and an output layer are used for a two-dimensional 
problem. The number of nodes ( )LD  of the output layer will be 

equal to the dimension of the observation value 
ny  of the 

regression problem, or equal to the number of classes of the 
classification problem. Like the shallow Gaussian process 
model, adding appropriate sparse technology to the deep model 
can effectively reduce the computational complexity of the deep 
Gaussian process. 

By omitting the dimension in the symbol and adding a 
Gaussian prior to the induction point of each layer, the final 
Sparse Depth Gaussian Process Model can be written as 
equation (6)-equation (8). 
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Fig. 1 An example of a DGP 
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Fig. 2 Gauss process model with two-layer depth sparseness 
 
The sub-index of the covariance matrix k is their 

corresponding output, for example, 
u ,ul lK  represents the 

covariance matrix of the induced point uL. It takes position 
1 1

, (z ,z )
l l

l l

u uK k    as a parameter, the covariance matrix 

,hl lhK  of nodes in a layer, and uses the output of the previous 

layer 1 1
,h (h ,h )

l i

l l

hK k    to construct. We also define 
matrices A and Q as equation (9) and equation (10): 

1
,u u ,ul l l l

n

l

n h
A K K                                (9) 

' '
1 2

,u u ,u u ,l l l l
n n

l

n lh h
Q K K K                        (10) 

Figure 2 shows a 2-layer deep sparse Gaussian process 
model. The hidden layer depends not only on the output of the 
layer but also on the induced point variables. 

2.1 Reasoning technology of deep Gaussian process  

In the deep Gaussian process model, the output of inference 
induction points 1{u }L

l l
 and hidden layer 1{h }l

l L

  is performed 

by marginalizing latent variables, which can predict the 
posterior probability of the test set and calculate the slight 
possibility of hyperparameter adjustment. However, both 
variables are difficult to handle. When considering a deep 
Gaussian process model with L=2 layers, the joint distribution 
of the model is shown in equation (11). 

       
2

1 2 2 2 2 1 2 1 1 2
1 1 2 1

1

p ,h ,{u } |{ , } , | u ,h , h | u , , | ...(11)l l l l

l l l

l

y X p y p X p u     



 
 

To simplify the description, all model parameters are now 
grouped into equation (12). 

 1 2 2
0 1 1{z } ,{ , }l l

l l                         (12) 

The marginal possibility is obtained by the marginalization 
2

1{u }l l
 and the hidden variable lh  in equation (11) to obtain 

equation (13). 

   1 2 1 2 1
1y | , ,h ,{u } | ,l

lp X p y X du du dh     (13) 

However, some of the integrals in equation (13) are difficult 
to handle because they involve calculating the covariance 
function with respect to random variables [14]. Integration can 
be achieved by joint distribution in extension, as shown in 
equation (12). Starting from equation (10), a corresponding 
distribution of the output of layer  1 1h | hlp   is obtained, 

need to calculate a density-dependent nonlinear kernel 
function (Nonlinear kernel function of density) 1hl . 

Another thing that needs to be predicted is the posterior 
distribution on the induction point, which also requires the 
calculation of the integral (13) in the model evidence as shown 
in equation (14). 

 
 

 2 1 2 1
1 1

1{u } | , , ,h ,{u } | , ...(14)
| ,

l l

l lp X y p y X dh
p y X

 


  

  
This result can be generalized to the case of L 2 . For the 

sake of simplicity, the layer dependency will be removed from 
the symbol, and 1u {u }l L

l  and 1
1{h }l L

lh 

 will be 
abbreviated, for any number of layers, the following 
(generalized) induction point becomes  u | , ,p X y . In order 
to calculate the marginal likelihood and posterior, approximate 
reasoning techniques are needed. 

Some work in the literature related to the deep Gaussian 
process suggests the use of a general sampling algorithm [15] to 
evaluate the logarithmic probability, the main difference from 
the method explained in this section is that the sampling 
algorithm does not set any distribution on the output (assuming 
the induced output is fixed), so they are included as model 
parameters. In this way, some of the benefits of regularization 
are lost. They also proposed to train the model by maximum a 
posteriori estimation (MAP), but the author did not compare the 
method with any other state-of-the-art technology, and no 
improvement was observed when the number of layers was 
increased. 

Another method explained in [16] involves using a stochastic 
characterization vector     to approximate the kernel 

function  , xk x   of the Gaussian process. The core can be 
approximated as an inner product as shown in equation (15). 
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     , x T
k x x x                   (15) 

The results show that the deep Gaussian process model can 
be regarded as a Bayesian neural network, and the output of the 
layer is given by  g wx b ,  g   is the activation function, 

w  is the probability distribution  p w , and b  is Bayesian 
noise. 

2.3 Deep Gaussian process based on expectation 

propagation and Monte Carlo method 
The deep Gaussian process based on the expectation 

propagation and Monte Carlo method follows the method 
explained in [17], and uses the binding factor constrained 
expectation propagation algorithm to approach the posterior 
inducing point. As shown in Figure 3, the process of calculating 
ln nZ  at a single point in a 2-layer deep Gaussian process 

model. In the first level,  hlq  is given by a normal distribution 

(blue in the figure above) sampled from it. In the second layer, 
the true distribution of ln nZ  (blue) is no longer a Gaussian 
distribution, but is given by equation (16). The proposed 
method calculates and propagates the samples through the 
network (green) to make the model more flexible and able to 
approximate the heterogeneous distribution. 

The final form of 
nZ  approximated by s samples is given by 

the Gaussian mixture as shown in equation (16). 

 1

1

1 ˆ|
S

L

n s

s

Z q y h
S





                            (16) 

Where 1ˆL

sh   represents s th  samples from the 

corresponding distribution 1 2ˆ ˆ( | )L L

s sq h h  , which can be 
calculated by the above sampling technique. 

 

 
Fig. 3 The deep gauss process model is an example of 

network propagation 
 

Contrary to the method proposed in [14], this method can 
capture the complex dependencies between DGP layers. In the 
literature [18], this method is also suitable for stochastic 
gradient descent training, such as small batch training. The final 
form of marginal likelihood approximation is shown in equation 
(17). 

 
1 1

( ) [(1 ) ( ) ( ) ( )] ln ... 17
BL

l l l

q prior b

l n

N
F N N Z

B
   

 

       

  
Where α includes the model to be adjusted and the AEP 

parameters, |B| is the selected mini-batch size and 
bZ  can be 

calculated for each mini-batch using equation (16). 

3. Particle swarm optimization optimizes 
the deep Gaussian process classification 
electrical machine rolling bearing fault 
diagnosis model 

The deep Gaussian process electrical machine bearing fault 
diagnosis classification model constructed in this section uses 
expectation propagation and Monte Carlo methods to 
approximate the Gaussian posterior, and the particle swarm 
algorithm is used to search the number of induced points in the 
deep Gaussian process model in the range. The construction 
model adopts a 5-layer network structure, namely the input layer, 
the 3-layer hidden layer, and the output layer. The hidden layers 
all use the square exponential kernel as the kernel function of 
the Gaussian map, as shown in equation (18). 

2

2( , )
2SE

d
K x x

l

 
   

 
 

exp -                        (18) 

The overall model network structure is shown in Figure 4: 
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Fig. 4 Deep gauss process model network architecture 
 
The particle swarm optimization algorithm (PSO) is a kind of 

swarm intelligence algorithm, and its design is based on the 
simulation of bird predation behavior. Assuming that there is 
only one food in the target area (that is, the optimal solution in 
the optimization problem), the goal of the flock of birds is to 
find this food source. Throughout the entire search process, the 
birds communicate with each other to let other birds find their 
position, and through collaboration, they can judge whether 
they find the optimal solution, and at the same time, they can 
also obtain the information of the optimal solution. Passed to the 
entire flock of birds, and finally the entire flock of birds can 
gather around the food source, that is, we have found the 
optimal solution, that is, the problem converges [19]. 

The particle swarm optimization algorithm simulates the 
birds in a flock of birds by designing a massless particle. The 
particle has only two attributes: speed V and position X. Speed 
represents the speed of movement, and position represents the 
direction of movement. Each particle searches for the optimal 
solution individually in the search space, which is recorded as 
the current individual extreme Pbest, and the individual extreme 
value is shared with other particles in the entire particle swarm, 
find the optimal individual extreme value as the current global 
optimal solution Gbest of the entire particle swarm. All particles 
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in the particle swarm adjust their speed and position according 
to the current individual extremum Pbest found by themselves 
and the current global optimal solution Gbest shared by the entire 
particle swarm. The idea of particle swarm optimization 
algorithm is relatively simple, mainly divided into: 1. Initialize 
the particle swarm; 2. Evaluate the particles, that is, calculate 
the fitness value; 3. Find the individual extreme value; 4. Find 
the global optimal solution; 5. Modify the speed and position of 
the particles. The particle swarm optimization algorithm is used 
to search the induction point value of the deep Gaussian process 
model, and the optimal parameter setting of the model is 
determined to improve the accuracy of model classification. 
The specific process is shown in Figure 5. 

Start

Initialize population size, position and 
speed

Calculate the current individual extremum 
of particles at all levels and find the current 

global optimal solution of the whole 
particle swarm

Initialization depth Gaussian process model

Updates the speed and position of 
individual particles

Whether the termination 
conditions are met

Output optimal solution

End

N

Y

 
Fig. 5 Particle swarm optimization 

 

4. Results and discussion 

4.1 Sample Database 
The test data comes from Case Western Reserve University 

(CWRU) Rolling Bearing Data Center. The CWRU data set is a 
world-recognized standard data set for bearing fault diagnosis. 
At present, the bearing fault diagnosis algorithm is updated 
quickly. In order to evaluate the superiority of the algorithm 
proposed in this chapter, all experiments use CWRU bearing 
data. 

The CWRU bearing center data acquisition system is shown 
in Figure 6. The test object of this test is the drive end bearing in 
the picture. The model of the bearing to be diagnosed is the deep 
groove ball bearing SKF6205, which is manufactured by EDM 
under the load of 0HP, 1HP, 2HP, and 3HP. The sampling 
frequency of the system is 12kHz. There are a total of 3 types of 

defects in the diagnosed bearing, which are rolling element 
damage, outer ring damage and inner ring damage. The 
diameter of the damage is 0.007inch, 0.014inch and 0.021inch, 
and the specific information of 9 kinds of damage states is 
shown in the table. 4.1. In the experiment, 2048 data points are 
used for diagnosis each time. In order to facilitate the training of 
the deep Gaussian network, each segment of the signal is 
normalized, and the equation of the normalized processing is 
shown in (19). 

min

max min

x x
x

x x





                          (19) 

 
Fig.6 Data acquisition system of CWRU rolling bearing 

 
Select 10000 pieces of data under 0HP load as shown in 

Table 4.1. There are 1000 pieces of data for each type of fault, 
including 900 training samples and 100 test samples. The 
training sample adopts the data enhancement method as shown 
in Figure 7. The length of the training sample collected each 
time is 2048, the offset is 1, and there is no overlap between the 
test samples. 

 
Fig.7 Data enhancement 

 
Table 4.1 Test data set description 

 
*Damage diameter is 0.007 inch (inch), **Damage diameter is 

0.014 inch,***Damage diameter is 0.021 inch 

4.2 Experimental conditions and evaluation 
indicators 
The CPU used in the simulation experiment in this section is 

Intel i7-7130U, the memory is 4GB RAM, the programming 
language used is Python, and the framework used is Tensorflow, 
Keras and sklearn. Using 10,000 signals under zero load in the 
CWRU data set as samples, they are divided into 9 types of 
faulty bearings and 1 type of non-faulty bearings, totaling 10 
categories. Each type of fault contains 1000 pieces of data, 90% 
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of which are taken as the training set, and the remaining 10% as 
the test set. The accuracy, precision, recall and F1-Score under 
macro-average are used as the evaluation indicators of the 
model. The specific formula is as follows. 

In the classification problem, to analyze the effect of data and 
classifiers, evaluation indexes can be used for auxiliary analysis. 
In this paper, the following evaluation indexes are used to 
comprehensively analyze and discuss the experimental results. 

Accuracy is the most primitive evaluation index in 
classification problems. The definition of accuracy is the 
percentage of correct results in the total sample. The equation is 
shown in (20): 

TP TN
Accuracy

TP TN FP FN




  
                  (20) 

in: 
 True Positive (TP): Positive samples predicted to be 

positive by the model; 
 False Positive (FP): Negative samples predicted to be 

positive by the model; 
 False Negative (FN): Positive samples predicted to be 

negative by the model; 
 True Negative (TN): Negative samples predicted to be 

negative by the model. 
Precision rate is the probability of the actual positive samples 

among all the predicted positive samples, which can be 
expressed by equation (21). 

TP
Precision

TP FP



                              (21) 

Recall rate is the probability of being predicted to be a 
positive sample in a sample that is actually positive, which can 
be expressed by equation (22). 

FNTP

TP
call


Re                              (22) 

F1-score is a weighted average of the precision and recall of 
the model. The closer F1-score is to 1, the better the empirical 
effect is. The evaluation index f1-Score can be expressed by 
equation (23). 

1 2

Pr Re2
Pr Re
ecision call

F
ecision call


 

 
                    (23) 

The specific parameters of the deep Gaussian process 
electrical machine rolling bearing fault diagnosis model are set 
as follows: the maximum iteration times is 500, the minimum 
batch_size is 100, the learning rate is 0.01, and each node 
contains The number of samples is 15, and the noise level is set 
to 1e-5. On this basis, the particle swarm optimization algorithm 
is used to search for the number of induced points in the range of 
[10,100]. The parameters of the particle swarm optimization 
algorithm are set as follows: population size is set to 100, the 
maximum number of iterations is 150, and the inertia factor is 
set to 2, and the weight factor is set to 0.5. 

4.3 Experimental results and discussion 
Under 10,000 data sets of electrical machine rolling bearings 

under 0HP, the deep Gaussian process model based on particle 
swarm optimization algorithm is used to classify faults. When 
the induction point is 50 and the number of iterations is 40 

times, the fault diagnosis classification accuracy reaches the 
highest 0.95. Under the same experimental conditions, the 
results of comparison with deep learning models such as Deep 
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Fig.8  The accuracy of deep gauss process classification 

model compared with other deep learning models 
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Fig.9  Comparison of accuracy between deep gauss 

process classification model and other machine learning 
algorithms 
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Fig.10  The accuracy of the depth gauss process 

classification model was compared with other ensemble 
learning models 
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Neural Network DNN, Recurrent Neural Network RNN, and 
long short-term memory network (LSTM) are as follows: 
Shown in Figure 8. 

It can be seen from Figure 8 that the accuracy of the deep 
Gaussian process for bearing fault diagnosis under the samples 
used in this chapter is up to 0.95, while LSTM and RNN also 
maintain high accuracy rates of 0.93 and 0.88 respectively, the 
accuracy of deep neural network is 0.74, and the accuracy of 
deep Gaussian process model is higher than that of the above 
deep learning model. 

In the same experimental environment, machine learning 
algorithms such as stochastic gradient descent (SGD), k-nearest 
neighbor (KNN), decision tree (DT), support vector machine 
(SVC), Gaussian NB and logistic regression (LR) are 
compared. 

The experimental results are shown in Figure 9. The 
classification accuracy of the deep Gaussian process fault 
diagnosis model is much higher than other commonly used 
machine learning algorithms. 

Compared with ensemble learning algorithms such as 
RandomForest (RF), AdaBoost, Bagging, ExtraTree (ET) and 
GradientBoosting(GB) in the same experimental environment, 
the experimental results are shown in Figure 10. The 
classification accuracy of the deep Gaussian process model for 
bearing faults is higher than that of the above ensemble learning 
algorithm, which is more suitable for the fault diagnosis of 
electrical machine bearings under large samples. 

5. Conclusion 
A fault diagnosis classification model of deep Gaussian 

process electrical machine rolling bearing based on particle 
swarm optimization is proposed. The basic components and 
structural parameters of the deep Gaussian process model are 
introduced. The parameter propagation formula based on 
expected propagation and Monte Carlo method is derived. The 
proposed model is trained and tested on the CWRU rolling 
bearing data set. The fault recognition rate of the trained model 
on the test set can reach 95 %, which is higher than that of other 
machine learning, ensemble learning and deep learning 
algorithms. It can better diagnose the electrical machine bearing 
fault and provide technical support for the safe operation of the 
motor. 
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