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Abstract: - This study deals with the relevant and important area of many fields of mathematics and physics - 
chaotic systems. Three modified systems of Chua differential equations were considered, and the chaotic 
structure of their solutions was compared with the structure of solutions of classical Lorentz and Rössler 
chaotic systems. The following methods were used to achieve the set goal: the Runge-Kutta method, building a 
phase portrait, determining Lyapunov exponents and noise level, and comparative analysis. A detailed analysis 
of the structure of chaotic solutions of various differential equations was carried out. It was established that the 
chaotic solution's structure depends on the differential equation's properties and the initial conditions. 
According to the obtained results, one of the modifications of the Chua system is significantly superior to 
classical chaotic systems and can be used as a chaos generator. Prospects for further research involve 
expanding the scope of the study and the generalization of the obtained results for a wider class of systems of 
differential equations. 
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1  Introduction 
Analysis of the structure of chaotic solutions of 
various differential equations is one of the key 
topics of modern Mathematics and Physics. This 
research is relevant as it is important for 
understanding various complex systems that are the 
subject of study in many sciences, such as Physics, 
Chemistry, Biology, Economics, and others. 

Chaos is the non-deterministic behaviour of 
systems that have a complex structures. These 
systems usually consist of many interacting 
elements that can produce unpredictable results. 
Differential equations are a key instrument for 
studying complex systems. These equations describe 
the change of physical quantities over time. 
Analysis of the structure of chaotic solutions of 
differential equations enables obtaining new 
knowledge about the behaviour of systems that 
usually cannot be described by simple rules. 

So, studying the structure of chaotic solutions of 
various differential equations is a relevant and 
important area of modern Mathematics and Physics. 
It can be applied in various fields of science and 
technology: weather and climate forecasting, control 
of chaotic systems, cryptography, forecasting the 

development of pandemics and epidemics, creation 
of artificial neural networks, etc.  

The aim of the research: a study of the structure 
of chaos in the system of Chua's equations and its 
modifications, identification of factors affecting the 
formation of chaotic solutions and their features. 

Research objectives: 

- Select a set of differential equations of different 
complexity and perform their simulation; 
- Study and compare the structure of chaotic 
solutions for different parameters and initial 
conditions; 
- Assess the impact of internal and external factors 
on the structure of chaotic solutions and their 
behaviour. 

 
 

2  Literature Review 
Henri Poincaré was the first researcher of chaos. In 
the 1880s, he studied the behaviour of a system with 
three gravitationally interacting bodies and found 
that there could be non-periodic orbits that are 
constantly neither moving away from nor 
approaching a particular point. Later, many world 
scientists made a great contribution to the study of 
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chaotic structures, [1]. Many researchers focus on 
this issue in their studies, given the wide range of 
applications of chaotic systems. For example, the 
work, [2], considered the nonlinear Schrödinger 
equation with the Kerr Law Nonlinearity and 
demonstrated the existence of various traveling 
wave reactions. They also described the parametric 
criteria for all these traveling solutions based on 
physical factors. In, [3] the researchers also consider 
the dynamic features of the dispersive extended 
nonlinear Schrödinger equation (NLSE), where a 
new method of expanding the F6−model is applied 
to study solitary waves of the considered model. In, 
[4] the authors obtained and studied a diverse range 
of traveling wave structures in the perturbed Fokas–
Lenells model (p-FLM) using the extended (G/G2)-
expansion approach. In the paper, [5], studied the 
dynamic characteristics of a meminductor and a 
memcapacitor through the fractal-factional Caputo–
Fabrizio operator. The chaos scheme is modeled for 
highly nonlinear and non-fractional meminductor 
and meminductor governing differential equations 
for studying chaos, hyperchaos, and coexisting 
attractors. The use of Bernstein and Euler wavelets 
was considered for solving a nonlinear fractional 
biological model of two species predator–prey 
model, [6]. This resulted in new chaotic models of 
the population of predators and prey. Anees and 
Iqtadar conducted an analysis based on the chaotic 
sequences of the Lorentz system and the logistic 
chaotic map, [7]. They found a serious problem of 
hacking in symmetric security systems of chaotic 
communications. In, [8] the authors derived 
nonlinear governing equations for developing a 
nonlinear dynamic model for nonlinear frequency 
and chaotic responses of a doubly curved composite 
panel reinforced with graphene nanoplates using 
Hamilton’s principle and nonlinear von Kármán 
theory. In the study, [9], the researchers carry out 
simulations of several chaotic systems such as 
multi-spin attractors, self-excited and hidden 
attractors, period-doubling to chaos, periodic and 
chaotic explosive oscillations, and various multiple 
coexisting attractors using a new Atangana–Baleanu 
time-fractional derivative. In work, [10], proposed a 
self-hyperchaotic system-based perturbed 
pseudorandom sequence generator to overcome this 
problem. This hyperchaotic system is designed to 
achieve complex dynamic behaviour. In work, [11], 
also proposed a random number generator using a 
fractional order Chua chaotic system. 

Despite the existing research in this field, the 
problem remains relevant due to the many unsolved 
questions and the need for a more detailed 
understanding of chaoticity. In this work, we try to 

fill this gap by analyzing the structure of chaotic 
solutions of differential equations, particularly the 
system of Chua's equations and their modifications. 

 
 

3  Methods 
The following systems of differential equations are 
considered in this work: the Lorentz equation, the 
Rössler equation, and modifications of the Chua 
equation. 

1. Lorentz equation is a system of 
inhomogeneous differential equations that describe 
the dynamics of a system capable of transiting from 
one state to another, where each state corresponds to 
some parameters in this system. The Lorentz 
equations were developed by Edward Lorentz in 
1963 to describe turbulent fluid flow. These 
equations were introduced to understand the 
behaviour of atmospheric processes. 

The Lorentz equation consists of three coupled 
first-order differential equations: 

  
 
             (1) 
 

where x(t) — convective movement intensity; 
y(t) — the temperature difference of the ascending 
and descending liquid flows; z(t) — deviation of the 
vertical temperature distribution from the linear 
regime; σ — the Prandtl number, a parameter that 
affects the stretching of the system in the x 
direction, where y is greater than x; α — a parameter 
that affects the clustering or stretching of the system 
in the z direction when the value of z is less than or 
greater than a certain threshold (2); β — a parameter 
that affects the interaction between x and z by 
decreasing the value of z when x and y are greater 
than a certain threshold (3). 

 (2) 

 (3) 

where g — gravity acceleration; a — coefficient 
of thermal expansion; H — the height of the liquid 
layer; ΔT — the temperature difference between the 
upper and lower levels; ν - kinematic viscosity of 
the liquid; k — thermal conductivity of the liquid. 

It is known that under condition (4) unstable 
limit cycles assemble into stationary points, and 
stationary points lose their stability, forming a 
Lorentz attractor, which will be considered in this 
study. 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2023.22.10

Maryna Belova, Volodymyr Denysenko, 
 Svitlana Kartashova, Valerij Kotlyar, 

Stanislav Mikhailenko

E-ISSN: 2224-266X 76 Volume 22, 2023



1
)3(































)( cxzb
dt

dz

ayx
dt

dy

zy
dt

dx

;

;

;

;

;

;

;

;

|);1||1)(|(
2
1)(

2

1

2

2
2

1

2

1

0

101

EG

i
x

E

c
y

E

c
x

C

tG

LG

C

C

C

G

G
m

G

G
m

xxmmxmxh

L

b

a

















































y
dt

dz

zyx
dt

dy

xhxy
dt

dx



 ))(( 



















cby
dt

dz

zyx
dt

dy

xhxya
dt

dx

/

))((



































;1,

;1,)1(

;1,)1(

)(

xifdx

xifexd

xifexd

xh

 (4) 

 
2. Rössler attractor is an attractor found in the 

Rössler system of differential equations (5) 
discovered in 1976, which describes the dynamics 
of chemical reactions occurring in some stirred 
mixture. 

  
 
 

(5) 
 

where a, b, and c – are parameters that 
determine the system behaviour. The classic 

Rössler attractor occurs with the following values of 
the parameters: a=0.2; b=0.2; c=5.7. 
 

3. Chua circuit proposed in 1983 is the simplest 
electrical circuit that demonstrates modes of chaotic 
oscillations. The circuit (Figure 1) consists of two 
capacitors, one inductor, a linear resistor, and a 
nonlinear resistor with negative resistance — a 
Chua diode. 

 

 
Fig. 1: Chua circuit 

 
The system of differential equations describing the 
processes of this circuit looks as follows: 

where 

 

 
(7) 

 
(8) 

 
(9) 

 
(10) 

 
(11) 

(12) 

 

(13) 
 

(14) 
 

(15) 
 

where h(x) — a nonlinear function involving 
feedback through a resistor, a capacitor, and a Chua 
diode; Ga і Gb – resistors; G — an active element 
implemented through an operational amplifier, 
transistor, or other element; C1 and C2 – containers; 
L – inductance; iL – the current flowing through the 
inductor; v, c1, c2 – the initial values of the voltage 
on the capacitors C1, C2 and voltages on the Chua 
diode; t – time; E – electromotive force.  

 
This study covers three modifications of Chua 

equation systems: 
3.1. Chua system of equations (16) with an 

unsteady motion function h(x) (17) and additional 
parameters: 

  

(16) 

  

(17) 

3.2. Chua system of equations (18) with a non-
constant function h(x) (19) and additional 
parameters: 

  

 

(6) 
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(18) 

  

 

(19) 

3.3. Chua system of equations (20) containing an 
additional equation that describes the current control 
element  

where A —is the current-controlling element and 
c — is the system parameter. 

 
A comparative analysis of the chaoticity of 

modified Chua systems with classical systems of 
Lorentz and Rössler differential equations (1, 5) was 
carried out by creating a phase portrait and 
calculating Lyapunov exponents (indicators) (21). 
Various methods of analyzing chaotic systems, such 
as fractal geometry and spectral analysis, were 
proposed in the reviewed literature sources. In this 
work, the analysis of phase portraits and the 
Lyapunov exponent were chosen, since these 
methods allow for a more detailed study of the 
structure of chaotic solutions and to determine their 
characteristics, such as the degree of chaos and 
sensitivity to initial conditions. This approach 
makes it possible to make a comparative analysis 
with other chaotic systems and to determine the 
peculiarities of the system of Chua's equations. For 
this purpose, they were solved using the Runge-
Kutta fourth-order method. 

where |dxF
t| shows the distance between these 

two trajectories in the state space of the system. 

The values of the Lyapunov exponents indicate 
the rate of increase or decrease of the distance 
between two close trajectories over time, which is a 
measure of the stability or chaos of the system. 
When the system has all negative Lyapunov 
exponents, all trajectories converge to a fixed point 
and are stable. When at least one of the exponents is 
positive, the system is unstable and has chaotic 
behaviour. 

A phase portrait is a geometric image of the 
solutions of a dynamic system in the phase space, 
which consists of the system coordinates, where 
each coordinate corresponds to the state of the 
system, and the geometric image reflects the nature 
of changes in the system states over time. 

The phase portrait in stable systems is usually a 
set of nodes, foci, and centers. A node represents a 
steady fixed state of a system, and a focus represents 
periodic solutions. The center displays periodic 
solutions that do not coincide but coincide in time 
on average. As a rule, phase trajectories in stable 
systems converge to fixed points or cycles, and 
there are characteristic areas of convergence around 
these points. This means the system has certain 
regions of convergence, where the phase trajectories 
deviate from these stable solutions and reflect 
chaotic dynamics. In our study, we analyze these 
convergence regions in detail and study the structure 
of chaotic solutions of the system of Chua 
equations. 

The phase portrait in chaotic systems has a more 
complex structure, reflecting system states' high-
frequency change. The difference between phase 
portraits in chaotic systems is the curves that look 
like randomly mixed bands, so-called Poincaré 
bands. These bands show that phase trajectories can 
be very sensitive to initial conditions. In other 
words, small changes in initial conditions can result 
in very different trajectories. This is called the 
“butterfly effect”, where small changes in the initial 
conditions can significantly affect the system's 
behaviour in the future. 

The effectiveness of the studied systems as 
generators of chaos was compared through the noise 
level assessment. The coefficient of variation, the 
ratio of the root-mean-square deviation to the 
absolute mean value of the sample were used as an 
indicator for determining the noise level: 

Modelling of equations and analysis of their 
chaotic structure was carried out in the PyCharm 
environment by building models using Python. 

  

 

 

(20) 

  
(21) 

  
(22) 
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Various approaches to the analysis of phase 
portraits and the determination of Lyapunov 
exponents are considered. Using the methods of 
numerical modeling and differential geometry, a 
detailed analysis of the phase portraits of the system 
of Chua's equations was carried out. The calculation 
of Lyapunov exponents for different sets of initial 
conditions was performed, which made it possible to 
estimate the degree of chaos of the system. 

 
 

4  Results 
1. The system of Lorentz equations was analyzed 

according to its classical parameters: σ = 10, α = 28, 

β = 8/3. With two sets of initial conditions:  
 
1) x0=1, y0=1, z0=1  
2) x0=-1, y0=-1, z0=-1  

Consider the phase portraits of this system with 
different sets of initial conditions (Figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
Fig. 2: Lorentz attractor: a) under initial conditions x0=1, y0=1, z0=1; б) under initial conditions x0=-1, y0=-

1, z0=-1 

 
The Lorentz attractor, which occurs in the case 

of the parameters: σ = 10, α = 28, β = 8/3, is 
characterized by chaotic behaviour, which manifests 
itself as complex, non-periodic oscillations. Phase 
portraits of the Lorentz attractor (Figure 2) have a 
characteristic shape resembling two twisted scales 
that are unevenly stretched into space. Moreover, as 
Figure 2a and Figure 2b demonstrate, a “butterfly 
effect” — sensitivity to initial conditions — is 
observed for this equation system. 

 
The respective Lyapunov exponents for two sets 

of parameters are: 
1) λ1 = 0.9293; λ2 = -14.572; λ3 = -8.022; 

2) λ1 = -0.9293; λ2 = -14.572; λ3 = -8.022. 
It is worth noting that the negative sign of λ1 for 

the second initial conditions indicates that these 
conditions are an attractor particle that is symmetric 
with respect to the origin of coordinates. 

 
2. The system of Rössler’s equations was 

analyzed according to two sets of parameters:  
1) a = 0.2; b = 0.2; c = 5.7; 
2) a = 0.1; b = 0.1; c = 14, 
and initial conditions: x0 = 1, y0 = 0.2, z0 = 3. 
The phase portraits of these two experiments are 

shown in Figure 3. 
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Fig. 3: Rössler attractor: а) for the parameters a = 0.2; b = 0.2; c = 5.7; б) for the parameters a = 0.1; b = 0.1; 

c = 14 

 

Studying the phase portraits of the Rössler 
dynamic system, we also observe the occurrence of 
chaotic attractors. For the considered parameters, 
the Lyapunov exponents are as follows: 

 
1) λ1 = -1.09868411; λ2 = 0.4384828245735064; 

λ3 = -0.4384828245735064; 
2) λ1 = 0.11727913; λ2 = -1.57868094; λ3 = -

9.29501389. 
The equation λ2 is positive for the first set of 

parameters and the second λ1, confirming that the 
considered system is chaotic. 

The initial conditions were randomly generated 
in the range [-1;1] to study three modified Chua 
systems. A total of 1,000 experiments were 

conducted for each option of the system of 
equations. 

3. Chua system of equations (16) was studied 
with the following parameters: a = 1.1428, b = 
0.7142, c = 0.4285, d = -1, e = -0.7. Figure 4 shows 
phase portraits for two sets of initial conditions from 
the variety of results obtained. One positive 
Lyapunov exponent was obtained for one of them, 
in the second case all are negative (more details in 
Table 1). 

Sets of initial conditions for solving the system 
of Chua equations (16): 

1) x0 = 0.21; y0 = -0.54; z0 = 0.85; 
2) x0 = 0.74; y0 = -0.95; z0 = 0.73.

 

 
Fig. 4: Phase portraits of the Chua 1 system: a) under initial conditions: x0 = 0.21; y0 = -0.54; z0 = 0.85; b) 

under initial conditions: an x0 = 0.74; y0 = -0.95; z0 = 0.73 
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Both phase portraits shown in Figure 4 have a 
complex and non-periodic structure. We observe a 
high sensitivity to the initial conditions: the 
“butterfly effect”, which indicates that the 
hypothesis of the chaotic nature of the system under 
study is not rejected at this research stage. However, 
the values of the Lyapunov exponents listed in 
Table 1 should be considered. 

 
Table 1. The value of the Lyapunov exponent for 

the Chua 1 system 
Initial conditions Lyapunov exponents 
x0 y0 z0 λ1  λ2  λ3 
0.21 -0.54 0.85 0.0039 -2.05 -0.42 
0.74 -0.95 0.73 -1.47 -0.37 -0.14 
0.40 -0.33 0.35 -0.23 -1.11 -0.24 
0.76 -0.16 0.12 -0.38 -0.86 -1.08 
0.99 -0.94 0.99 -0.95 -0.39 -0.17 

 

According to Table 2, only one of the considered 
sets of initial conditions has a positive Lyapunov 
exponent. Therefore, it can be argued that the 
system shows high sensitivity to initial conditions 
and manifests chaotic properties. 

 
 
 

Table 1. The value of the Lyapunov exponent for 
the Chua 2 system 

Initial conditions Lyapunov exponents 

x0 y0 z0 λ1  λ2  λ3 

-0.27 0.18 -0.05 0.0511 0 -10.506 

0.48 -0.35 0.47 0.2723 -1.2711 -17.201 

-0.9 0.45 0.95 0.5434 -1.2303 -25.912 

-0.19 0.97 -0.65 1.5629 -2.0178 -29.977 

0.65 -0.81 -0.8 -0.4492 -0.4305 -27.765 
 
The analysis of the phase portraits and the 

Lyapunov exponents of the system of Chua 
equations (16) gives grounds to summarize: as the 
phase portrait shows chaotic properties, it can be 
stated that the system is chaotic, regardless of the 
sign of the Lyapunov exponent. It can also be noted 
that the studied system shows complex and 
unpredictable dynamics, which are inherent in 
chaotic systems. 

 
4. The studied modification of the Chua system 

of equations (18) considered the parameters: a = 
15.6, b = 28, c1 = -1, c2 = -0.7, r = 1.2, m0 = -8/7, m1 

= -5/7. For example, Figure 5 shows phase portraits 
for two sets of initial conditions: 

1) x0 = -0.272; y0 = 0.177; z0 = -0.05; 
2) x0 = -0.189; y0 = 0.969; z0 = -0.653. 

 

 

 
Fig. 5: Phase portraits of the Chua 2 system: a) under initial conditions: x0 = -0.272; y0 = 0.177; z0 = -0.05; b) 

under initial conditions: x0 = -0.189; y0 = 0.969; z0 = -0.653 
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As the phase portraits in Figure 5 show, 
trajectories of the system are non-repetitive and 
show unpredictable dynamics, being also 
significantly dependent on the initial conditions. 
The value of the Lyapunov exponent for some 
randomly selected sets of initial conditions listed in 
Table 2 was considered to confirm the hypothesis 
about the chaotic nature of the system. 

As Table 2 shows, the array of Lyapunov 
exponent for each experiment has one positive 
value. Therefore, the obtained results indicate the 
chaotic nature of the Chua system (18). 

3.3 The studied third modification of the Chua 
system of equations (18) with the current control 
equation is considered for the parameter values: α = 

15.6, β = 28, γ = -1, σ = 0.1. For example, Figure 6 
and Figure 7 demonstrate phase portraits and dot 
plots for two sets of initial conditions: 

1) x0 = 0.048; y0 = 0.0319; z0 = 0.6017; A0 = 

0.83374 
2) x0 = 0.1; y0 = 0.08; z0 = 1; A0 = 1.5. 

The phase portrait illustrated in Figure 6a shows 
more complex dynamics with many starting points, 
the boundaries on the phase portrait are more 
blurred. However, there are several shutters, which 
may indicate invariant areas or symmetries in the 
system.These images (Figure 6 and Figure 7) may 
indicate complex chaotic dynamics in the system. It 
should also be noted that there is a striking 
difference between the phase portraits in Figures 6 
and Figure 7 with a slight change in the initial 
conditions, which confirms the hypothesis of high 
chaotic system. This may indicate an invariant plane 
or other symmetry in the system. The image has 
sharp boundaries, indicating certain areas in the 
phase space with different dynamics. Table 3 shows 
the values of Lyapunov exponents for the studied 
system of equations with several sets of initial 
conditions. 

 
 

 

 
Fig. 6: a) Phase portrait of the Chua 3 system under initial conditions: x0 = 0.1; y0 = 0.08; z0 = 0.1; А0 = 1.5; b) 

Phase portrait in the form of a scatter plot. 
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Fig. 7: а) a shutter centered at the point (0,0) dividing the phase portrait into two symmetrical parts; b) a chaotic 

placement of points, without any patterns. 
 

Table 3. Values of Lyapunov exponents for the Chua 3 system 
Initial conditions Lyapunov exponents 

x0 y0 z0 A0 λ1  λ2  λ3  λ4 
0.048 0.0319 0.6017 0.8337 0.0537 -0.0675 -2.4923 -0.1005 
0.4 0.02 0.59 0.82 0.0492 -0.0621 -2.4929 -0.1092 
0.03 0.01 0.58 0.81 0.0455 -0.0569 -2.4935 -0.1167 
0.02 0.001 0.4 0.7 0.0035 -0.0044 -0.3063 -0.0049 
-0.01 -0.02 0.2 0.5 -0.0239 0.0301 -2.4944 -0.0671 
0.1 0.08 1 1.5 0.0645 -0.0826 -2.4915 -0.1367 

 

There is one positive exponent in each set, 
therefore, it can be concluded, based on the analysis 
of the phase portraits above that the system is 
chaotic. 

 

5  Discussion 
Table 4 compares the noise level (%) of the studied 
systems based on the Chua equation system with the 
classical Lorentz and Rössler chaotic systems. 

 
Table 2. The value of the coefficient of variation, % 

for the solutions of the considered systems 
System of 
equations x y z A 
 Lorentz 424,22 450,67 31,36   
 Rössler 2424,35 1638,74 578,50   
 Chua 1 264,50 1816,90 315,99   
 Chua 2 22,38 602,55 45,23   
 Chua 3 19437,73 15329,24 46345,01 690,42 

So, Chua systems of equations 1 and 2 have a 
noise level similar to the system of Lorenz equations 
and are inferior to the system of Rössler equations. 
Instead, the modified Chua 3 system of equations 
far surpasses the results of other systems and can be 
used as a chaos generator. 

Unfortunately, a recent study that considered a 
chaos generator based on the classical Chua 
equation, does not explain how they estimated the 
noise level, so a comparison cannot be made, [11]. 

Many authors studied chaos generators. For 
example, the paper, [12], studied a new system of 
chaotic generation: a circulating chaotic system. The 
researchers studied the dynamics of the system and 
showed that it has some important characteristics of 
chaotic systems, such as sensitivity to the initial 
conditions and randomness, and also showed that 
the system has many stable attractors and can have a 
wide variety of behaviours depending on the 
parameters of the system. In, [13] the authors 
proposed an electro-optical source of chaos based 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2023.22.10

Maryna Belova, Volodymyr Denysenko, 
 Svitlana Kartashova, Valerij Kotlyar, 

Stanislav Mikhailenko

E-ISSN: 2224-266X 83 Volume 22, 2023



on the theory of converting phase modulation into 
intensity modulation and an analog-digital hybrid 
time-delay feedback loop. 

However, the results presented in this work were 
obtained in a simpler way and can be practically 
implemented. 

 
 

6  Conclusions 
The growing importance of chaotic systems in 
various fields of science and technology tasks 
scientists to analyze the structure of chaotic 
solutions. The research carried out in this work is 
focused on the analysis of the structure of chaotic 
solutions of several differential equations. 

The results of the study give grounds to draw 
the following conclusions. All the studied 
differential equations have chaotic solutions with a 
highly complex structure. It was found that the 
structure of chaos in these solutions depends on the 
initial conditions and parameters of the equation. It 
was shown that analysing the structure of chaotic 
solutions is an important step in understanding the 
behaviour of chaotic systems. 

The significance of the research is that the 
analysis of chaotic solutions of differential 
equations allows a deeper understanding of the 
structure of complex systems and their behaviour in 
various conditions. This can find practical 
applications in various sciences and fields, from 
theoretical physics and mathematics to biology and 
engineering. 

Our main contribution is developing a modified 
Chua equation system that includes new parameters 
and current control equations. This modification 
revealed high chaoticity and complex dynamics, 
distinguishing it from the classical system of Chua 
and others. The modified system of Chua's 
equations can be applied to solve various applied 
problems, such as cryptography, pseudorandom 
number generation, steganography, and 
communication systems. Due to its chaos and 
complex dynamics properties, this modified system 
opens up new possibilities for creating reliable and 
efficient algorithms in these areas. 

An important direction of future research is 
extending our analysis to other classes of chaotic 
systems and determining their specific features. It is 
recommended to discuss the advantages and 
limitations of using our analysis, particularly in the 
context of various applied problems.  
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