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Abstract: - Further development of a generalized methodology for optimizing analog circuits is proposed. This 
methodology is based on the theory of optimal control. We have transformed the problem of minimizing the 
CPU time needed to optimize the circuit into the classical problem of minimizing the function in optimal 
control theory. In this case, we represent the process of optimizing the analog circuit as a controlled dynamic 
system. To analyze the properties of such a system, we propose to use the concept of the Lyapunov function of 
a dynamical system. The new special functions allow us to predict the CPU time for circuit optimization by 
analyzing the characteristics of the initial part of the process. It has been established that for any 
optimization strategy, there is a correlation between the behavior of these functions and the CPU time 
corresponding to these strategies. 
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1 Introduction 
The problem of reducing the processor time required 
to optimize electronic circuits is one of the most 
important problems associated with improving the 
quality of design. The design process begins with an 
initial guess, performed by analyzing the circuit at 
the starting point. The system parameters are then 
adjusted to obtain the performance characteristics 
included in the specification. The parameter tuning 
process may be based on an optimization procedure. 
Thus, we conduct design through analysis instead of 
solving a more complex problem - the synthesis of a 
complex system. Mathematically, we must 
minimize a special objective function that models 
the required properties of the designed circuit. Some 
methods reduce the time needed for circuit analysis. 
These include the well-known idea of using sparse 
matrix methods, [1], [2], and decomposition 
methods, [3], [4], [5]. Iterative methods, [6], employ 
decomposition at a nonlinear level. Optimization 
methods also have a very strong impact on the 
general properties of the circuit design process and 
CPU time. Methods for analog circuit optimization 
can be classified into two groups: deterministic 
optimization algorithms and stochastic search 
algorithms. Deterministic optimization methods 
have been developed for different applied problems. 
Advances in deterministic mathematical 

optimization methods, [7], [8], are creating 
promising directions for both unconstrained and 
constrained optimization. However, classical 
deterministic optimization algorithms may have 
several drawbacks: they may require that a good 
initial point be selected in the parameter space, and 
they may reach an unsatisfactory local minimum. 

To overcome these problems, new methods have 
been developed recently. For example, there is a 
method that determines the initial point of the 
optimization process by centering, [9], or there are 
geometric programming methods, [10], that 
guarantee convergence to the global minimum. 
However, these methods require a special 
formulation of the calculation equations, which 
creates additional difficulties. In recent years, some 
alternative stochastic search algorithms have been 
developed (primarily evolutionary computation 
algorithms). A simulated annealing algorithm has 
been used successfully for global optimization, [11], 
[12], [13]. Methods based on evolutionary 
algorithms, genetic algorithms, differential 
evaluation, and genetic programming, [14], [15], 
[16], [17], [18], [19], have been developed for 
different applications. Genetic algorithms have been 
employed as optimization routines for analog 
circuits due to their ability to find satisfactory 
solutions. An evolutionary algorithm known as the 
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particle swarm optimization technique competes 
well with genetic algorithms. This method has been 
successfully used to solve electromagnetic problems 
and optimize microwave systems, [20], [21]. The 
authors of stochastic circuit optimization methods 
state that their algorithms provide a considerable (by 
1–2 orders of magnitude) gain in time compared to 
traditional deterministic approaches. 

The deterministic and stochastic methods 
mentioned above are very different in their approach 
to the optimization procedure. However, all of these 
methods use Kirchhoff's laws to analyze circuits at 
each stage of the optimization procedure. They use 
the traditional approach, which is based on circuit 
analysis and parametric optimization, either in 
deterministic or stochastic form. Nevertheless, [22], 
[23], [24], propose another approach, which 
redefines the design problem by abandoning the 
idea of obeying Kirchhoff laws during optimization. 
This approach leads to a significant gain in 
processor time, [24]. The most general formulation 
of the circuit optimization problem was proposed in 
[25], [26]. There, the problem of analog circuit 
optimization is defined in terms of control theory. 
We believe that this approach allows us to 
significantly speed up deterministic optimization 
methods and compete with stochastic algorithms in 
terms of computational time. This approach 
provides us with a set of different optimization 
strategies, allowing us to search for one or more 
strategies with the shortest CPU time. It has been 
shown that the new approach allows us, in principle, 
to substantially reduce the CPU time for circuit 
optimization. This occurs due to the fact that the 
framework of the generalized methodology contains 
a practically unlimited number of strategies. This, in 
turn, allows us to control the optimization process 
by redistributing computer resources between circuit 
analysis and parametric optimization. The 
conventional optimization strategy (COS) performs 
circuit analysis at each step of the optimization 
procedure and is not optimal in terms of time. For 
the optimal strategy, the gain in CPU time 
(compared with the COS) rises when the size and 
complexity of the circuit increase, [25]. Developing 
an algorithm that will construct the best 
optimization strategy is the main task for the 
realization of the potential of this approach. In order 
to develop and obtain the best optimization 
strategies, we must identify their most significant 
properties. The study of qualitative and quantitative 
properties and characteristics of optimal (or quasi-
optimal) design is the first step toward determining 
the necessary structure of an optimal algorithm. 
 

2 Problem Formulation 
In accordance with the conventional approach, the 
process of electronic circuit optimization is defined 
as the problem of minimizing an objective function, 
 XC , NRX  , with constraints given by a 

system of the circuit´s equations based on 
Kirchhoff’s laws. We assume that, by minimizing 
 XC , we achieve all our design goals. A 

methodology that was proposed before, [25], 
generalizes the circuit optimization problem by 
introducing a special control vector 

 muuuU ,...,, 21  and a special generalized 

objective function  UXF , .  
The electronic circuit design process can be 

defined, in accordance with [26], as the problem of 
minimizing the generalized objective function 
 UXF ,  based on the vector equation (1) with 

the constraints (2). The mathematical model of the 
electronic circuit represents the main constraints of 
the optimization problem. 

 
       s

s

ss HtXX 1 ,    (1) 
  

           1 0 u g Xj j , j M12, ,..., ,   (2) 
 
where  XXX  , , KRX  , is the vector of 
independent variables, MRX   is the vector of 
dependent variables, М is the number of the circuit’s 
dependent variables, K is the number of independent 
variables, N is the total number of variables 
(N=K+M), and t s  is an iteration parameter. The 
equation (1) describes a two-step minimization 
procedure, and the function HH(X,U) determines 
the direction in which the generalized objective 
function  UXF ,  decreases. The functions  Xg j  
for all j define the equations of the circuit model. 
The components of control vector U are the set of 
control functions:  U u u um 1 2, ,..., , where 
u j ,   0 1; . The generalized objective 
function  UXF ,  can be defined, for example, as 
follows: 
 

          UXXCUXF ,,  ,  (3) 
 
where  XC  is a non-negative objective function 
and  UX ,  is a penalty function. The structure of 
the penalty function must potentially include all the 
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equations of the system (2) and can be defined, for 
example, as follows: 
 

     



M

j

jj XguUX
1

21,


 ,   (4)  

 
where   is an additional coefficient used to adapt 
the penalty function. In our context,   equals 1.  

Such a definition of the circuit optimization 
problem allows us to redistribute the computation 
time between problems (1) and (2). A control 
function u j  has the following meaning: if 0ju , 
the jth equation is present in the system (2) and the 
term  g Xj

2  is removed from the equation (4); 
and, conversely, if 1ju , the jth equation is 

removed from the system (2) and the term  g Xj

2  
is present in the equation (4). The vector U is this 
methodology’s main tool: it controls the dynamic 
process of minimizing the objective function  XC  
in the minimum time possible. This definition 
allows us to express the problem of searching for 
the optimal strategy as the typical problem of 
minimizing a function, where the function is the 
CPU time. When defining the optimization process 
as a dynamical system (in terms of optimal control 
theory), a standard approach is to use differential 
equations, in continuous form. We can rewrite the 
main system of the optimization procedure (1) in 
continuous form as the following system of 
differential equations: 
 

    
dx

dt
f X U

i

i , ,   Ni ,...,1 .    (5)  

 
 Together with equations (2), (3), and (4), this 
system specifies the continuous form of the 
optimization process. The structure of the functions 

 f X Ui ,  is defined by a concrete optimization 
method. For example, for the gradient method, it 
takes the following form: 
 

          UXF
x

UXf
i

i ,,



 , i K12, ,..., ,   (6) 

 

       
   

 
  Xx

dt

u

UXF
x

uUXf

ii
Ki

i

Kii


















'1

,,
,  (6´) 

i K K N  1 2, ,..., ,      

where the operator ix /  is defined as 

 
   













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X

x

x

xi i pp K

K M
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 
 




1

 and 

determines the application of the gradient method 
for a complex function that has both independent 
and dependent variables, x i

'  equals  x t dti  ; and 
 i X  is the implicit function (  x Xi i ) 

determined by the system (2). The components u j
 

of the control vector U play the role of control 
functions. In general, these functions depend on 
time. A control function u j

 has the following 
meaning: the jth equation is present in the system 
(2), and the term  g Xj

2  is removed from the 
equation (4) when u j =0; and, conversely, the jth 
equation is removed from the system (2) and the 
term  g Xj

2  is present in the equation (4) when 
u j =1. 

By using formulas (2) to (6), we formulate the 
circuit optimization process as a controllable 
process or a controllable dynamical system. The 
optimization process is now expressed as a typical 
problem for a controllable dynamical system. We 
must minimize the time of the optimization process, 
which means that we must minimize the transitional 
time of the dynamical system. The termination of 
the optimization process corresponds to a stationary 
state of the dynamical system after the transient 
process. Here, the control vector U is the main tool. 
If we formulate the problem in this way, the most 
complex task is the search for the behavior of the 
control functions u j  during the optimization 
process. Since the control functions u j  are 

piecewise continuous, the functions  f X Ui ,  are 
also piecewise continuous. To minimize the total 
CPU time, we must find the optimal behavior of the 
control functions u j  during the optimization 
process.  

In the paper, [27], the effect of the additional 
acceleration of the process of optimization is 
investigated. This effect is connected to the 
possibility of the emergence of the sliding mode of a 
dynamic system, which is similar to the mode 
described in, [28]. This effect can significantly 
reduce the computing time for circuit optimization. 

The problem for the system (5) with the non-
continuous or non-smooth functions (6) and (6') can 
be solved most correctly using Pontryagin’s 
maximum principle, [29]. Unfortunately, its 
application is limited to linear systems, and in the 
case of non-linear dynamical systems such as 
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designing processes, its application is limited to 
low-dimensional problems. We must propose an 
alternative to using the maximum principle. To do 
this, we must obtain correlations between the CPU 
time and the characteristics of the circuit 
optimization process. Then we can estimate the 
CPU time of the optimization process by examining 
some of the special functions defined for this 
process. 
 We believe that the Lyapunov function of a 
dynamical system, which is one of the main 
elements of the theory of dynamical systems, can 
also be used to analyze the circuit optimization 
process. Therefore, the use of an approach based on 
the concept of the Lyapunov function of a 
dynamical system looks promising. 
 When choosing the Lyapunov function, there is a 
certain degree of freedom because the function does 
not have a unique form. Let us express the 
Lyapunov function of the circuit optimization 
process as follows: 
       

               rUXFUXV ,,  ,    (7) 

       
 

 















i ix

UXF
UXV

2
,, ,   (8) 

 
where r is a positive parameter. It is well known that 
a Lyapunov function can be defined in various 
forms, and the formulas (7) and (8) are two possible 
ways of expressing this type of function. Under 
specific additional conditions, both of these 
formulas define a Lyapunov function that has 
standard properties. Indeed, let us denote the vector 

 NaaaA ,...,, 21  as the final (stationary) point of 
the optimization procedure (i.e. the result of the 
circuit optimization process). The point A is the 
solution to the circuit optimization problem. Let us 
define another vector, Y, as follows:  Y=X-A. The 
function V, as given by (7) or (8), is a piecewise 
continuous function whose first partial derivatives 
are also piecewise continuous. In addition, V 
satisfies the three main properties of the Lyapunov 
function: (1) V(Y)>0, (2) V(0)=0 and (3)   YV  
as Y . This means that we can study the 
stability of the equilibrium position (the point Y=0) 
using Lyapunov’s theorem. On the other hand, the 
solution to the problem (i.e. the 
point  NaaaA ,...,, 21 ) becomes known only at 
the end of the optimization process. Furthermore, it 
would be interesting to study the stability of the 
process during the optimization procedure. This is 
the reason why the formulas (7) and (8) do not 

explicitly depend on point A and can be 
conveniently used to analyze stability. Meanwhile, 
in these formulas, V also depends on the control 
vector U. Indeed, we can see that the value of the 
function  UXV ,  in (7) equals zero at the final point 
of the optimization process if the objective function 
of this process,  XC , equals zero at that point as 
well. Since the function  XC  is non-negative, the 
function given by equation (7) is a positive-definite 
function at all points distinct from the final point 

 NaaaA ,...,, 21 . The function  UXV ,  increases 
when the point X moves away from the final point 
A. The equation (8) also defines a Lyapunov 
function if ixF  / =0 at the final point A and 
V(A,U)=0. On the other hand, V(X,U)>0 for all X. 
Finally, the Lyapunov function is a function of the 
vector U because all the coordinates ix  depend on 
U. We cannot prove only the third property of 
Lyapunov functions X because the 
behavior of V(X,U) is unknown. However, practice 
has shown that V(X,U) is an increasing function in a 
sufficiently large neighborhood of the endpoint A of 
the optimization. 

According to the Lyapunov method, information 
about the stability of the trajectory is contained in 
the time derivative of the Lyapunov function. We 
believe that the stability of any optimization 
trajectory correlates with the derivative of the 
Lyapunov function of the strategy corresponding to 
this trajectory. By computing the time derivative of 

the Lyapunov function, dtdVV /


, we can 
estimate the stability of the dynamical system. The 
optimization process and its corresponding 
trajectory are steady if this derivative is negative. 
On the other hand, Lyapunov’s direct method only 
gives sufficient stability conditions, not necessary 
ones. This implies that, if the derivative is positive, 
the process can lose stability or remain stable. If the 

derivative 


V  is positive at separate points of a 
trajectory, it does not necessarily mean that the 

trajectory is unstable at those points. Only when 


V  
is positive on a positive measure can we be sure that 
the dynamical system is unstable. If this effect exists 
far from the final point, the optimization process is 
divergent and we cannot obtain the solution on this 
trajectory. If that is the case, we must change the 
strategy or the initial point of the optimization 
process. If by the end of the optimization process 

(i.e. near the endpoint), the derivative 


V becomes 
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positive, we can say that the optimization process 
slows down significantly. This strategy goes in the 
cycle and cannot provide the required accuracy. As 
a result, the CPU time grows substantially. The 
effect is well-known in practical optimization. Here, 
if we cannot obtain an acceptable degree of 
accuracy, we must change the optimization strategy 
or the initial point. 
 In this paper, the direct computation of 
Lyapunov function V is based on the formula (7), 
unlike in, [30], where the formula (8) is used. This 
means that we must select the value of the parameter 
r. A preliminary analysis shows that this value must 
be less than 1. To enable the study of the behavior 

of the Lyapunov function and its derivative 


V  in 
the best possible way, the dependencies of these 
functions must differ considerably for different 
optimization strategies. In our case, we obtain the 
best separation of the curves for the functions 

V(X,U) and 


V for different optimization strategies 
when r equals 0.5 (i.e.    UXFUXV ,,  ). 
Having carried out a detailed analysis of the 
behavior of the Lyapunov function and its derivative 
for different optimization strategies, we can choose 
promising strategies and discard unsuccessful ones. 
This kind of analysis also allows one to qualitatively 
determine how the processor time depends on the 
Lyapunov function and its derivative since both of 
these functions are important characteristics of the 
optimization process. 
 
 
3 Numerical Results and Discussion 
To demonstrate the strengths of the proposed 
approach, let's implement it in several examples. 
The circuit optimization process is implemented in 
the constant current mode. The static model of the 
Ebers-Moll transistor, [31], was used. The objective 
function is defined as the sum of the squared 
differences between the given and current voltages 
for some circuit nodes. Depending on the example, 
the final value of the objective function is defined as 
10-8–10-10. As a test method for circuit optimization, 
we use the gradient method. However, as shown in 
[25], we can include any optimization method in the 
presented methodology. 

The obtained numerical results depend on 
several factors: (1) the initial point of the 
optimization procedure in the parameter space, (2) 
the chosen “length” of the integration step (in the 
case where it is constant), and (3) the chosen 
method of the automatic adaptation of steps. Thus, 
not only can numerical results differ from 

optimization strategy to optimization strategy, but 
so can the ratio between them, [26]. For a given 
initial point of the optimization process, we can 
obtain one set of results for a collection of 
strategies; however, for a different initial point, we 
can obtain a different set of results for the same 
collection of strategies. We can draw the same 
conclusion with respect to changing the integration 
step. Nevertheless, among the many different 
optimization strategies, there are always strategies 
that carry out circuit optimization in significantly 
shorter CPU times than the traditional strategy. At 
the same time, there are strategies that are slower 
than the traditional ones. However, there is a certain 
invariant—the relation between the CPU time and 
the properties of the Lyapunov function—which can 
be used as a basis for the search for the structure of 
the best optimization algorithm for any initial point 
of the process and for any integration step. 

Below, we analyze the properties of different 
optimization strategies by analyzing the behavior of 
the Lyapunov function’s derivative during the 
optimization process. 

First of all, we wish to conceptually prove the 
relation between the CPU time and the properties of 
the Lyapunov function of the optimization process. 
In, [30], a hypothesis to the effect that there was a 
correlation between the CPU time and the properties 
of the Lyapunov function was proposed. We must 
demonstrate this link explicitly. 

If we compute the time derivative of the 

Lyapunov function, 


V , directly, we can see that this 
derivative is negative at the initial optimization 
stage for all trajectories (i.e. all possible strategies 
and their trajectories are stable at the beginning). At 
the same time, when the current point of a trajectory 
reaches somewhere in the neighborhood of the 
stationary point  NaaaA ,...,, 21 , the derivative 
of the Lyapunov function becomes positive and the 
current optimization strategy loses its stability.  
 The analysis provided in, [30], allows us to 
conclude that the behavior of the Lyapunov function 
of the optimization process and its derivative is a 
rather informative source during the determination 
of the optimization strategy that minimizes the CPU 
time. However, we would also like to obtain some 
quantitative characteristics for the behavior of the 
Lyapunov function and its derivative. 
 The electronic circuits are optimized on the basis 
of the continuous form of the circuit optimization 
process (2)–(5). The iteration parameter t s  is 
constant but selected separately for each strategy. 
On the one hand, we must minimize the number of 
integration steps; on the other hand, we must obtain 
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smooth dependencies for the Lyapunov function to 
adequately compute its derivative. This leads to a 
proportional increase in the number of integration 
steps and the CPU time for all the strategies. 
However, it allows us to obtain continuous and 
smooth dependences for the derivative of the 
Lyapunov function. We want to obtain an 
interrelation between relative CPU time and the 
behavior of the derivative of the corresponding 
Lyapunov function. 
 According to the theory of Lyapunov’s direct 
method, the CPU time and the information on the 
stability of a trajectory are related to the time 
derivative of the Lyapunov function. In terms of 
control theory, the problem of constructing an 
optimization algorithm that minimizes the CPU time 
can be formulated as the problem of searching for a 
transient process of a dynamical system that 
minimizes the transitional time. In this search, the 
main tool is the control vector U, which allows us to 
change the structure of the functions  UXf i ,  and, 
according to, [32], [33], to thereby modify the 
transitional time. To this end, we must ensure the 
maximum decrease rate of the Lyapunov function 
(i.e. the maximum absolute value of the derivative 


V ). 
 Let us define a more informative function, 
namely, the relative time derivative of the Lyapunov 

function VVW /


 . This function allows us to 
compare different strategies in terms of the behavior 
of the function W(t) and select the most promising 
ones from the point of view of the shortest CPU 
time. 
 The examples below show quantitative 
relationships that explain the correlation between 
processor time and the behavior of the W function. 
The optimization process presented below is 
implemented based on the continuous form given by 
equation (5). To present the behavior analysis of the 
functions V(t) and W(t), we use test cases of passive 
and active nonlinear circuits. This allows us to 
explain the main features of the behavior of the 
function W(t). 
 Figure 1 presents a three-node nonlinear passive 
circuit. 
 

 
Fig. 1: Three-node nonlinear passive circuit 

 Here the circuit model (2) consists of three 
equations (M=3), and the control vector U consists 
of three components as well:  321 ,, uuuU  . The 
structural basis consists of eight different 
optimization strategies. The nonlinear elements are 
given as follows:  2

21111 VVbay nnn   and 

 2
32222 VVbay nnn  . The vector X consists of 

seven components, which are set as follows: 1
2
1 yx  , 

2
2
2 yx  , 3

2
3 yx  , 4

2
4 yx  , 15 Vx  , 26 Vx   and 

37 Vx  . Having determined the components using 
the above formulas, we automatically obtain 
positive conductivity values. This removes the issue 
of positive definiteness for each resistance and 
conductance and allows optimization over the entire 
space of values of these variables without any 
restrictions.  
 The circuit is a voltage divider, and the objective 
function can be defined by the formula 
   2303 VVXC  , where V30 is the required value 

of the output voltage V3, which must be obtained 
during the optimization process. 
 Table 1 presents the analysis of the results of the 
optimization process for the eight strategies that 
form the complete structural basis. 
 
Table 1. Complete set of strategies of the structural 

basis for the three-node nonlinear circuit. 

 
 The first line of the table corresponds to the COS 
when  0,0,0U . For each strategy, we compute 
the CPU time that corresponds to the final point that 
minimizes the function V. 

Figure 2 displays the behavior of the functions V 
and W, which are the normalized versions of the 
functions V(t) and W(t). This normalization is 
carried out as follows: V=V(t)/Vmax and 
W=W(t)/Wmax, where Vmax and Wmax are the 
maximum values of the functions V(t) and W(t), 
respectively, in the entire structural basis. We do 
similar normalization for all examples. 

N Control Iterations Total

vector number processor

   time (sec)

1  (0 0 0) 518168      39.723

2  (0 0 1) 1250176      45.522

3  (0 1 0) 689354      22.855

4  (0 1 1) 220500        4.511

5  (1 0 0) 157426        5.720

6  (1 0 1) 401025      12.852

7  (1 1 0) 211908        6.091

8  (1 1 1) 444405        5.611
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Our main goal is to define a main criterion that 
would allow us to compare different strategies and 
choose the fastest one when optimizing without 
directly calculating CPU time. 
 

 
Fig. 2: Behaviour of the functions V and W for 
eight strategies during the optimization process, for 
a three-node nonlinear passive circuit 
 
 As can be seen from Figure 2, the functions V 
and W provide a comprehensive explanation of the 
characteristics of the optimization process. First of 
all, we can conclude that the Lyapunov function 
decreases in inverse proportion to processor time. 
The minimum value of the Lyapunov function 
corresponding to maximum accuracy is 
approximately the same for all strategies. Figure 2 
shows that the Lyapunov function increases slightly 
after reaching its minimum value. This small 
increase corresponds to a small positive value of the 
derivative of the Lyapunov function. Later, this 
derivative approaches zero and the Lyapunov 
function reaches a constant value. 

We can see the correlation between the total 
CPU time for a particular strategy and the behavior 
of the W function corresponding to that strategy. 
The greater the absolute value of the function W at 
the initial stage of the optimization process, the 
faster the Lyapunov function decreases. Let us recall 
that according to formulas (7) and (8), the Lyapunov 
function determines the distance to the endpoint of 
the optimization process. In this case, the total 
processor time will also be minimal.  

Three groups of structural framework strategies 
can be distinguished. The first group includes 
strategies 4, 5, 7, and 8, which have the largest 
absolute value of the W function at the initial stage 
of the optimization process. At the same time, these 
strategies have the shortest CPU time. The second 
group includes strategies 1 and 2, which have the 
minimum absolute value of the function W. It is 
these strategies that have the most CPU time. The 
third group contains strategies 3 and 6, whose CPU 

time is intermediate. For these strategies, the 
behavior of the function W is also intermediate. 
Therefore, we can state that there is a correlation 
between the CPU time and the behavior of the 
function W. 
 The second example corresponds to the 
optimization of the one-stage transistor amplifier in 
Figure 3. 
 

 
Fig. 3: One-stage transistor amplifier 
  
 The one-stage transistor amplifier has three 
independent variables, admittance 321 ,, yyy  (K=3), 
and three dependent variables, nodal voltages 

321 ,, VVV  (M=3). The vector X is defined as 

 654321 ,,,,, xxxxxxX  , where 1
2
1 yx  , 2

2
2 yx  , 

3
2
3 yx  , 14 Vx  , 25 Vx  , 36 Vx  . The objective 

function of the optimization procedure is determined 
by means of the formula 
     2

2
2

1 kVkVXC CBEB  , where VEB and VCB 
are the current values of voltages in transistor 
junctions and k1 and k2 are the before-defined values 
of voltages on transistor junctions. The structural 
basis of optimization strategies has eight different 
strategies. The control vector consists of three 
control functions:  321 ,, uuuU  .  
 Let us define the voltages on transistor junctions 
as k1= -0.35 V and k2=5.9 V. The start point of the 
optimization process includes values for three 
admittances and three nodal voltages. The initial 
point of the vector X is defined as 
X0=(0.05,0.1,0.1,1,1,2). The final point of the vector 
X is obtained after the process of optimization and it 
gives a real solution Xf=(0.0092, 0.0833, 0.0625, 
1.26, 0.91, 7.16), that corresponds to the 
admittances (resistances): y1=0.084710-3 
(R1=11.8103 ), y2=6.9410-3 (R2=144 ),  
y3=3.9110-3 (R3=256 ). This gives us an 
amplification coefficient of 60 or higher. 
 All strategies of the structural basis give the 
same final point of the vector X. Table 2 presents 
the results of the analysis for all the optimization 
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strategies of the structural basis for the one-stage 
amplifier. 
 
Table 2. Complete set of strategies of the structural 

basis for one-stage transistor amplifier. 

 
Figure 4 presents the behavior of the functions V 

and W for all the strategies of this basis. 
 

 
Fig. 4: Behaviour of the functions V and W for the 
complete structural basis during the optimization 
process, for a one-stage transistor amplifier 

 
We can state that the two best strategies (8 and 6) 

minimize the CPU time (0.08 sec and 0.25 sec, 
respectively). At the same time, these strategies 
have the largest absolute value of the function W in 
the initial part of the optimization process. 
Conversely, strategies 1, 3, and 7 have the longest 
CPU time and small values of the function W in the 
initial part of the optimization process, while the 
function V has large values for these strategies. 
Therefore, we can state that there is a correlation 
between the behavior of the function W and the 
CPU time. 
 Another example corresponds to the 
optimization of the two-stage transistor amplifier in 
Figure 5. 

 
Fig. 5: Two-stage transistor amplifier 
  
 This circuit is defined by five independent 
variables, admittance 54321 ,,,, yyyyy  (K=5), and 
five dependent variables, nodal voltages 

54321 ,,,, VVVVV  (M=5). The vector X is defined as 

 10987654321 ,,,,,,,,, xxxxxxxxxxX  , where 1
2
1 yx  , 

2
2
2 yx  , 3

2
3 yx  , 4

2
4 yx  , 5

2
5 yx  , 16 Vx  , 

27 Vx  ,  38 Vx  , 49 Vx  , 510 Vx  . The control 
vector includes five control functions: 
U=(u u u u u1 2 3 4 5, , , , ). The objective function of the 
optimization procedure is determined by means of 

the formula,       



2

1

2
2

2
1

i

iCBiiEBi kVkVXC , 

where VEBi and VCBi are the current values of 
transistor junctions’ voltages, k1i and k2i are the 
before-defined values of transistor junctions’ 
voltages. These parameters are defined as: k11= -0.3 
V, k21=5.5 V, k12= -0.35 V, and k22=6.2 V. The 
initial point of the vector X is defined as X0=(0.05, 
0.1, 0.1, 0.05, 0.1, 1, 1, 2, 1, 2). The final point of 
the vector X is obtained after optimization and it 
gives the solution: Xf=(0.0102, 0.0812, 0.0615, 
0.094, 0.086, 1.2, 0.9, 6.7, 6.35, 12.9). 

The structural basis for M=5 includes 32 
different strategies of optimization. Table 3 and 
Figure 6 depict the results of the analysis of the 
optimization process for the two-stage transistor 
amplifier. 
 
Table 3. Some strategies of structural basis for two-

stage transistor amplifier. 

N Control Iterations Total

vector number design

   time (sec)

1  (0 0 0) 7683758 518.22

2  (0 0 1) 45900 2.42

3  (0 1 0) 1151505 60.14

4  (0 1 1) 47464 2.53

5  (1 0 0) 109784 5.87

6  (1 0 1) 4753 0.25

7  (1 1 0) 303579 14.83

8  (1 1 1) 4940 0.08

N Control Iterations Total

vector number design

   time (sec)

1  (0 0 0 0 0) 165962   299.564

2  (0 0 0 0 1) 337487   737.551

3  (0 0 1 0 0) 44118     68.874

4  (0 0 1 0 1) 14941     19.061

5  (0 0 1 1 1) 21971     25.032

6  (0 1 1 0 1) 3106       3.572

7  (1 0 1 0 1) 5485     10.157

8  (1 0 1 1 1) 4544       4.560

9  (1 1 1 0 1) 2668       1.323

10  (1 1 1 1 1) 19330       1.669
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Fig. 6: Behaviour of the functions V and W for 
some strategies during the optimization process, for 
a two-stage transistor amplifier 
 
 Strategy 9 with a control vector (11101) is the 
best strategy among all of them. This strategy has a 
time gain of 227 times in comparison with the COS 
(strategy 1). Figure 6 shows the behavior of 
functions V and W for all optimization strategies 
from Table 3. As in the previous example, we 
observe a correlation between the CPU time and the 
behavior of the function W(t) at the initial part of 
the optimization process. We can identify three 
groups of strategies. The strategies in the first group 
have short CPU times. These are strategies 6, 7, 8 
and 9. They have large absolute values of the 
function W during a long time interval. 

Conversely, the strategies in the second group 
(strategies 1 and 2) have a high CPU time. On the 
other hand, these strategies have small absolute 
values of the function W in the initial part of the 
optimization process and over the full-time interval. 
The strategies in the third group (strategies 5 and 
10) have intermediate values of the function W 
compared to the first two groups and have 
intermediate CPU times. 

It can be stated that a large absolute value of the 
function W(t) at the initial stage of the optimization 
process leads to a reduction in computation time. 
On the other hand, the function W(t) is a normalized 
derivative. For this reason, it is very sensitive. 
There are some intersections between the curves 
corresponding to other strategies. To improve the 
quality of analysis, we propose to define an integral 
(9) of the function W(t) to obtain more pure 
correlations between the CPU time and the 
properties of the Lyapunov function. 

 

   
 
  

 

 

tV

V

tt

V

tV

V

dV
dt

Vdt

dV
dttWtS

000 0
ln1   (9) 

 

 The behavior of the normalized function S for all 
strategies of Table 3 is presented in Figure 7. It is 
evident that all the curves are very well regulated as 
in the CPU time and the absolute value of the 
function S. There is a strong correlation between the 
function S and the computing time. A strategy with 
less computation time has a larger value of the S 
function at any given time. This means that we can 
predict the computing time for any optimization 
strategy through control of the function V(t). We 
can analyze the functions V(t) for the initial time 
interval for the different strategies, and, on the basis 
of this analysis, we can predict the strategies that 
have a minimal total CPU time. 
 

 
Fig. 7: Behavior of the function S for different 
optimization strategies, for a two-stage amplifier  

 

 The next example corresponds to the 
optimization of the three-stage transistor amplifier 
in Figure 8.  

 

 
Fig. 8: Three-stage transistor amplifier 
 
 This circuit is defined by seven independent 
variables, admittances 7654321 ,,,,,, yyyyyyy  
(K=7), and seven dependent variables, nodal 
voltages 7654321 ,,,,,, VVVVVVV  (M=7). The 
vector X is defined as 

 1413121110987654321 ,,,,,,,,,,,,, xxxxxxxxxxxxxxX  , where 

1
2
1 yx  , 2

2
2 yx  , 3

2
3 yx  , 4

2
4 yx  , 5

2
5 yx  , 

6
2
6 yx  , 7

2
7 yx  , 18 Vx  , 29 Vx  , 310 Vx  , 411 Vx  , 
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512 Vx  , 613 Vx  , 714 Vx  . The total structural 
basis contains 128 different design strategies. The 
control vector includes seven control functions: 
U=  7654321 ,,,,,, uuuuuuu . The objective function 
of the optimization procedure was determined by 
means of the formula, 

      



3

1

2
2

2
1

i

iCBiiEBi kVkVXC , where VEBi 

and VCBi are the current values of transistor 
junctions’ voltages and k1i and k2i are the before-
defined values of transistor junctions’ voltages. 
These values were defined as: k11= -0.3V, k21=5.4V, 
k12= -0.3V, k22=6.5V, k13= -0.35V, k23=6.6 V. 

The initial point of the vector X is defined as 
X0=(0.05, 0.1, 0.1, 0.05, 0.1, 0.05, 0.1, 1, 1, 2, 1, 2, 
1, 2). The final point of the vector X is obtained after 
the process of optimization, and it gives the 
solution: Xf=(0.0102, 0.0812, 0.0615, 0.094, 0.086, 
0.234, 0.206, 1.1, 0.8, 6.5, 6.2, 13.0, 12.65, 19.6). It 
is clear that all possible strategies give the same 
final point of the vector X. The structural basis for 
M=7 includes 128 different strategies of 
optimization. The results of the analysis of some 
strategies of the structural basis are given in Table 4.  

 
Table 4. Some strategies of structural basis for three-

stage transistor amplifier. 

 
All presented strategies have less computer time 

than the COS. Strategy 10 is the best one among all 
of them. This strategy has a time gain of 88 times in 
comparison with the COS. 
 The corresponding dependences of the function 
S during the optimization process are presented in 
Figure 9. This example, as well as all the previous 
ones, shows an unambiguous correlation between 
the behavior of the function S and the total CPU 
time required to optimize the circuit. 

 
Fig. 9: Behavior of the function S for different 
optimization strategies, for a three-stage amplifier  
 

The last example corresponds to the optimization 
of the amplifier with feedback which is shown in 
Figure 10. 

 

 
 

Fig. 10: Amplifier with feedback 
 
 The circuit contains six nodes. There are nine 
independent variables 987654321 ,,,,,,,, yyyyyyyyy  
(K=9) and six dependent variables, 

654321 ,,,,, VVVVVV  (M=6). The control vector 
consists of eight components  654321 ,,,,, uuuuuuU  , 
and the structural basis includes 64 strategies. The 
vector X includes 15 components 

 151413121110987654321 ,,,,,,,,,,,,,, xxxxxxxxxxxxxxxX  , 

where 1
2
1 yx  , 2

2
2 yx  , 3

2
3 yx  , 4

2
4 yx  , 5

2
5 yx  , 

6
2
6 yx  , 7

2
7 yx  , 8

2
8 yx  , 9

2
9 yx  , 110 Vx  , 211 Vx  , 

312 Vx  , 413 Vx  , 514 Vx  , 615 Vx  . The objective 
function of the optimization procedure is determined 
by means of the formula                
         245

2
34

2
223

2
121 kVkVkVVkVVXC 

   2661
2

565 kVEkVV  , where k1, k2, k3, k4 , k5, 
and k6 are the before-defined values of GS and DS 
voltages for Q1, Q2, and Q3. These parameters were 
defined as: k1=-1.8 V, k2=6.8 V, k3=-2.0 V, k4=6.8 
V, k5=-1.5 V, k6=6.0 V. 

N Control Iterations Total

vector number design

   time (sec)

1 ( 0 0 0 0 0 0 0 ) 2354289     420.181

2 ( 0 0 1 0 1 0 1 ) 410889     217.150

3 ( 0 1 1 1 0 0 0 ) 375433     172.014

4 ( 1 0 1 0 1 0 1 ) 102510       43.211

5 ( 1 0 1 1 1 0 1 ) 147541       52.440

6 ( 1 0 1 1 1 1 1 ) 38751       12.753

7 ( 1 1 1 0 1 1 1 ) 43387       11.891

8 ( 1 1 1 1 1 0 0 ) 185085     140.624

9 ( 1 1 1 1 1 1 0 ) 147094       76.131

10 ( 1 1 1 1 1 1 1 ) 52651         4.782
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 The initial point of the vector X is defined as 
X0=(0.01, 0.01, 0.01, 0.05, 0.01, 0.01, 0.01, 0.05, 
0.01, 2, 1, 3, 2, 3, 2, 1). The final point of the vector 
X was obtained after the process of optimization 
Xf=(0.00816, 0.00447, 0.0224, 0.01, 0.0091, 
0.00447, 0.01, 0.0224, 0.00557, 5.8, 3.8, 10.6, 1.8, 
6.6, 5.1), which corresponds to the following values: 
y1=0.0665810-3 (R1=15.02103 ), y2=0.0210-3 
(R2=50103 ), y3=0.50210-3 (R3=1.99103 ), 
y4=0.110-3, (R3=10.0103 ), y5=0.08310-3 
(R5=12.05103 ), y6=0.0210-3 (R6=50103 ), 
y7=0.110-3 (R7=10103 ), y8=0.501210-3 
(R8=1.995103 ), y9=0.03110-3 (R9=32.26103 ). 
All presented strategies reach the same final point of 
the vector X.  

The results of the optimization process for some 
strategies of the structural basis are presented in 
Table 5. 

 
 Table 5. Some strategies of the structural basis for 

an amplifier with feedback. 

 
The best strategy 7 is 251 times faster than COS. 

The corresponding dependencies of the function S 
for these strategies are shown in Figure 11.  

 

 
Fig. 11: Behavior of the function S for some 
strategies of structural basis during the optimization 
process, for operational amplifier 
 

Like the preceding examples, this one 
demonstrates a strong correlation between the 
behavior of the function S and the processor time, 
which is necessary for circuit optimization. In 
addition, there is a good separation of the curves 
that correspond to the different functions S, and this 
fact significantly improves the verification. 

In, [30], a hypothesis was put forward to the 
effect that there was a correlation between the CPU 
time and the properties of the Lyapunov function. 
We have proved the existence of this correlation. 
Using the generalized approach for circuit 
optimization proposed in this paper, we see a 
difference in CPU time for different optimization 
strategies. The detailed analysis presented in this 
section makes it possible to understand the root 
cause of this. For each optimization strategy, the 
CPU time is determined by the behavior of the 
derivative of the Lyapunov function of the 
optimization process. This function also estimates 
the comparative performance time for each 
optimization strategy. 

Thus, it can be noted that there is a strong 
correlation between the processor time and the 
properties of the Lyapunov function. Summarizing 
the obtained results, we can conclude that by 
analyzing the behavior of the relative time 
derivative of the Lyapunov function of the 

optimization process VVW /


 , at the initial 
interval of the optimization process, it is possible to 
predict the total relative processor time for a given 
strategy. This means that we do not need to run the 
entire optimization process for each strategy in order 
to compare the total CPU optimization time for 
different strategies. To determine the strategy with 
the least processor time, it suffices to compare the 
behavior of the function W(t) or S(t) at the initial 
stage of the optimization process. Large absolute 
values of the W or S functions lead to a reduction in 
processor time. This property leads to the 
conclusion that the structure of the best circuit 
optimization algorithm should be based on the 
behavior of these functions.  

The results obtained make it possible to reveal 
the main criterion for constructing an optimal or 
quasi-optimal circuit optimization algorithm. This 
criterion is the value of the derivative of the 
Lyapunov function. By comparing different 
strategies by this criterion, we can choose the best 
strategies at the beginning of the optimization 
process. In future work, this criterion should be used 
as a basis for recommendations on the possible 
structure of an optimal or quasi-optimal algorithm. 

 

N Control Iterations Total

vector number design

   time (sec)

1  (0 0 0 0 0 0) 6995      83.435

2  (0 0 0 0 1 1) 250        2.117

3  (0 0 0 1 1 1) 892        4.592

4  (0 0 1 0 1 1) 210        1.388

5  (0 0 1 1 1 1) 403        1.144

6  (0 1 1 1 1 1) 158        0.332

7  (1 0 1 1 1 1) 305        0.813

8  (1 1 1 1 1 1) 527        0.991
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4 Conclusion 
Based on the analysis presented in this paper, we 
can conclude that the properties of one or another 
circuit optimization strategy depend on the behavior 
of the Lyapunov function of the optimization 
process. A special function, the relative time 
derivative of the Lyapunov function, is a fairly 
informative source for finding strategies that 
minimize the processor time. We found a strong 
correlation between the properties of the Lyapunov 
function and the corresponding CPU time. The least 
processor time is also shown by those strategies that 
have the largest absolute value of the relative time 
derivative of the Lyapunov function in the initial 
section of the optimization trajectory. This property 
can become the basis for developing a better circuit 
optimization algorithm. 
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