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Abstract: - The approach developed earlier, based on generalized optimization, was successfully applied to the 
problem of designing electronic circuits using deterministic optimization methods. In this paper, a similar 
approach is extended to the problem of optimizing electronic circuits using a genetic algorithm (GA) as the 
main optimization method. The fundamental element of generalized optimization is an artificially introduced 
control vector that generates many different strategies within the optimization process and determines the 
number of independent variables of the optimization problem, as well as the length and structure of 
chromosomes in the GA. In this case, the GA forms a set of populations defined by a fitness function specified 
in different ways depending on the strategy chosen within the framework of the idea of generalized 
optimization. The control vector allows you to generate different strategies, as well as build composite 
strategies that significantly increase the accuracy of the resulting solution. This, in turn, makes it possible to 
reduce the number of generations required during the operation of the GA and reduce the processor time by 3–5 
orders of magnitude when solving the circuit optimization problem compared to the traditional GA. An analysis 
of the optimization procedure for some electronic circuits showed the effectiveness of this approach. The 
obtained results prove that the applied modification of the GA makes it possible to overcome premature 
convergence and increase the minimization accuracy by 3-4 orders of magnitude. 
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1   Introduction 
An effective way to solve problems of design and 
synthesis of electronic systems is to use 
optimization procedures. These procedures are a set 
of iterative algorithms that make it possible to 
obtain the required characteristics of the designed 
system by minimizing some specially developed 
objective functions. 

Genetic algorithm (GA), which belongs to the 
family of stochastic algorithms and is based on a set 
of operators inspired by biological processes in 
nature (mutation, crossbreeding, and selection), has 
been actively used over the past two decades to find 
highly accurate algorithms for solving optimization 
problems. One area in which the genetic algorithm 
is widely used is the computer-aided design of 

electronic circuits, [1], [2], [3] , which allows one to 
analyze the principles, as well as the strengths and 
weaknesses of the GA when used to determine 
circuit parameters. The design of a bipolar 
transistor, CMOS op-amps, a CMOS op-converter, 
and a matching network are demonstrated here as 
examples. The use of GA for the automated design 
of analog circuits using the example of a half-wave 
rectifier and a bandpass filter is shown in [4]. Some 
interesting ideas are presented in [5] on the use of 
GA optimization in discrete element modeling. 
Modification of the topology of circuits aimed to 
avoid invalid circuits allowed to get improved GA 
efficiency, [6]. Optimization of the sizes of analog 
circuits was performed in [7], using GA and in [8], 
using evolutionary algorithms. The benefits of 
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combining GA and particle swarm optimization 
(PSO) in the design of analog ICs with practical 
user-defined specifications are demonstrated in [9], 
[10]. Rule-guided genetic algorithm with a special 
mutation mechanism for narrow solution region 
cases is offered in [11]. 

One of the known disadvantages of GAs is 
premature convergence. It lies in the fact that the 
GA offers, as the best solution over a sufficiently 
long sequence of generations, an individual that 
provides a certain local minimum of the objective 
function, without further movement to the global 
minimum. Various ways to solve this problem have 
been proposed. One of them is inherent in the very 
design of the algorithm: the ability to regulate the 
probability of mutation. A combination of a 
dynamic genetic clustering algorithm and an elitist 
method is considered in [12]. In [13], a hybrid 
crossover method was proposed that improves 
convergence and at the same time maintains high 
quality of retrieved documents in information 
retrieval systems. It is based on the use of single-
point crossing of ordered chromosomes; the result 
of this method is a daughter chromosome that 
combines the best genes of both parent 
chromosomes. The problem of premature 
convergence was analyzed in the framework of a 
Markov chain in [14], [15]. The authors prove that 
the degree of diversity of populations tends to zero 
with probability 1, causing a decrease in the 
searchability of the GA and, consequently, 
premature convergence. The relationship between 
premature convergence and GA parameters is 
shown. In [16], two mechanisms were proposed to 
avoid premature convergence of GAs: dynamic 
application of genetic operators based on average 
progress and partial re-initialization of the 
population. The authors of [17], propose a 
combination of the frequency crossover strategy 
with nine different mutation strategies to reduce the 
effect of premature convergence using the traveling 
salesman problem as an example. In [18], to 
overcome premature convergence, an improved 
adaptive GA is considered, containing dynamic 
adjustment of crossover and mutation operators 
during the evolution process, as well as a restart 
strategy. Other aspects of the problem of premature 
convergence in GA were discussed in papers, [19], 
[20]. 

One of the ways to eliminate premature 
convergence of GA is to use the generalized 
optimization methodology, [21]. This approach was 
created to improve the efficiency of deterministic 
optimization algorithms. Attempts to apply this 
methodology to GA have shown its effectiveness in 

overcoming premature convergence, [22]. Even a 
very limited set of strategies generated with this 
approach not only improved the processor time and 
the number of generations required to obtain the 
required high-precision results in achieving a given 
operating point of the circuit. In several cases, the 
use of a generalized methodology made it possible 
to achieve such high-quality results where the use of 
a separate GA did not provide the necessary 
convergence in principle. 

One of the most important aspects of the concept 
of this generalized methodology is that it generates a 
huge number of possible optimization strategies, 
which naturally involves selecting the best one. This 
article is devoted to the study of the structural basis 
of strategies and some categories of composite 
strategies within the framework of a generalized 
methodology in its synthesis with GA using 
examples of specific electronic circuits. 

The rest of the paper is organized as follows. 
Section 2 describes the principles for solving 
nonlinear programming problems using a general 
optimization methodology, taking into account their 
adaptation to GA as the main optimization method. 
In Sections 3 and 4, we consider solving electronic 
circuit optimization problems using various 
structural basis strategies and composite strategies. 
This is followed by an analysis and discussion of the 
results. 
 
 
2   Generalized Optimization with 

Genetic Algorithm 
We define optimization of an electronic circuit as 
the task of minimizing the objective function C(X), 
X Є RN. Constraints are formed using circuit model 
equations based on Kirchhoff’s laws: 

         MjXg j ,...,2,1,0)(  .    (1) 
 

We divide the components of vector X into two 
groups: X ' and X ", X ' ϵ RK, X " ϵ RM, X ' is the 
vector of independent variables, X " is the vector of 
dependent variables, K and M are corresponding 
numbers of independent and dependent variables, K 

+ M = N. The objective function is minimized using 
an optimization procedure, which has the following 
vector form: 

       ,...2,1),(1  sXX ss ,     (2) 
 
where s is the iteration number, Λ is the operator of 
transition from step s to step (s+1). This last 
operator depends on the objective function C(X). 

The classical approach to the constrained 
optimization problem involves solving system (1) at 
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each step of the iterative process. We can call this a 
traditional optimization strategy (TOS). There is no 
need to solve the system of Kirchhoff's law 
equations at each iteration step of the optimization 
procedure. The conditions imposed by system (1) 
must be satisfied at the end of the optimization 
procedure for the solution to satisfy the problem. 
This formulation frees us from the mandatory 
division of variables into independent and 
dependent when solving the problem (1) – (2). This 
idea underlies the generalized optimization 
methodology and is implemented through a 
generalized objective function, including a so-called 
penalty function. This structure of the objective 
function allows both to achieve minimization of the 
original objective function C(X) and to ensure the 
fulfillment of Kirchhoff’s laws at the final stage of 
the optimization procedure. This approach to circuit 
optimization can be called modified traditional 
optimization strategy (MTOS), and it corresponds to 
extracting all the equations from the circuit model. 
The term “generalized” means that the extraction of 
not all equations from the circuit model is 
considered, but only parts of them. When starting to 
implement the idea of generalized optimization, we 
declare all components of the vector X to be 
independent. However, to preserve the physical 
meaning of the problem and fulfill the 
corresponding constraints at the endpoint of the 
optimization process, it is necessary to introduce a 
new objective function into consideration: 

)()()( XXCXF              (3) 
 

Here φ(X) – the penalty function which goes to 
zero at the end of the optimization procedure which 
is equivalent to the fulfillment of (1) at this point. 
The form of the penalty function is: 

).()(
1

2 XgX
M

j

j


          (4) 

 

The upper limit in the sum is equal to M, which 
corresponds to MTOS. This limit does not have to 
be equal to M, it can be chosen as Z, 0 ≤ Z ≤ M. In 
this case, we move on to the generalized approach to 
the optimization process when the amount of 
dependent variables which are declared as 
independent is arbitrary from the interval [0, M]. 
Then we exclude not all equations from the circuit 
model (1) but only a part of them and the amount of 
excluded equations is Z. This change is described 
with an additional control vector U introduced. The 
value of this vector defines how the structure of the 
main system changes and, thus, how processor costs 
are redistributed between blocks of the circuit 

analysis and optimization. This redistribution is the 
ground for the reduction of the processor time in the 
optimization process. The introduction of the vector 
U=(u1, u2,…, uM) modifies the system (1) as 
follows: 

MjXgu jj ,...,2,1,0)()1(     (5) 
 

where uj components of U can take the value 0 or 1.  
The number of different strategies in this case forms 
the structural basis and is equal to 2M. Expressions 
(3) and (4) will look out as: 

    ),()(),( UXXCUXF         (6) 
 

  )(1),(
1

2 XguUX
M

j

jj





      (7) 

 
The tuning parameter σ may depend on the 

mathematical model of the analyzed circuit, and on 
the chosen optimization method, and in our 
examples it is equal to 1. The optimization process 
operator (2) also depends on the new objective 
function F(X, U), and therefore on the control vector 
U:  

    ,...2,1),,(1  sUXX ss ,     (8) 
 

The vector U controls the structure of the circuit 
model equations and the optimization procedure as 
follows: uj = 0 – the jth equation in (5) remains in 
the system, the correspondent element (X)g 2

j in the 
sum on the right side of (7) is removed, uj = 1 – the 
jth equation in (5) is excluded from the system, the 

(X)g 2

j in the right side of (7) remains there. If all 
components of U are equal to 0, then system (5) is 
identical to (1), and we obtain TOS when all circuit 
model equations must be solved at each step of the 
optimization process. In the case when all uj are 
equal to 1, system (5) disappears, and all 
information from it is transferred to the penalty 
function on the right side of (6). This is MTOS. 

The GA crossover is organized as follows. The 
genes that will participate in the upcoming 
crossover are determined by random selection. A 
two-point crossover is organized in each of them. 
Thus, about the entire chromosome, such a scheme 
is a multipoint crossover with a variable number of 
separation points. To a certain extent, this approach 
was caused by the “unequal” position of initially 
independent genes and “new” independent genes 
arising as a result of extracting equations from the 
circuit model. The first are constantly present in the 
chromosome, the presence of the latter varies 
depending on the strategy used at the current stage 
of the iterative process. Therefore, it seems 
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necessary to take special care in organizing a high-
quality crossover in the second, variable group of 
genes. Another factor that determined the choice of 
this option was the desire to increase the variability 
of the set of chromosome regions involved in 
crossover, both in their number and in their location 
relative to each other. 

 
 

3   Analysis and Discussion  
When analyzing examples, the chromosome length 
in the algorithm varied from 12 to 20 for each 
variable. The number of chromosomes in the 
population varied from 100 to 500. 
 
3.1  Example 1 

Minimize C(X)    
  

       1

2

2

2

1 xxxXC 232        (9) 
  
subject to: 
 

            023 
2

2

2

1 xx   (10) 
 

In this example, there is only one independent 
variable x1 (K=1), and parameter M=1 because there 
is only one constraint equation (10). Let's define 
variable x2 as dependent which can be calculated 
from equation (10). 
 There is an analytical solution to this problem. 
Indeed, the fulfillment of the necessary constraint 
(10) is ensured by the solution of this equation and 
is achieved at the point x1 = 3, x2 = 2. At this point, 
the goal function C(X) takes the minimum zero 
value. These values are the solution to the problem. 
Let us find, however, this solution by the developed 
approach.  

Based on the generalized approach, equation (10) 
is transformed into the following equation: 

            023 
2

2

2

1 xxu1   (11) 
 
where u is the component of the control vector U, in 
this case, the only one. 

Consider two main strategies: TOS which has a 
control vector U=(0) and MTOS which has a control 
vector U=(1). 

Here, we analyze the results of optimization 
using a GA for these strategies. However, it was 
shown that in the case of a deterministic 
optimization process, a combination of several 
strategies can reduce both the number of steps of the 
optimization process and the computation time. 

Table 1 shows the dynamics of changes in the 
number of generations and processor time (s) of the 

GA depending on the required precision δ of 
minimizing the objective function F for three 
strategies: TOS, MTOS, and composite strategy 
(0)(1) with an optimal switching point Sp from 
strategies (0) to strategy (1). The optimal switch 
point Sp improves the characteristics of the 
composite strategy, but in this paper it was obtained 
manually. 

The optimal value of the switching point Sp was 
obtained by additional analysis. This value, as can 
be seen from the table, depends on the required 
precision δ. It is clear that when using the TOS, the 
number of generations and CPU time is less than for 
MTOS up to a certain level of precision (10-4). 
 

Table 1. Dynamics of changes in the number of 
generations and processor time (s) of the GA 

depending on the required precision δ of function F 
for three strategies: TOS, MTOS, and composite 

strategy (0)(1) with the optimal switching point Sp 
 

   G (CPU time (s))  
   ᵟ         U=(0)          U=(1)       U=(0)(1)
 10-1        11 (0.048)       56 (0.125)    16 (0.044) Sp=10 
 10-2        18 (0.091)       69 (0.143)    24 (0.059) Sp=9 
 10-3        23 (0.073)       79 (0.162)    27 (0.066) Sp=10 
 10-4        37 (0.113)       91 (0.182)    42 (0.095) Sp=13
 10-5   32883 (100.2)       96 (0.191)    53 (0.113) Sp=9
 10-6             -     104 (0.206)    66 (0.146) Sp=14
 10-7             -     114 (0.261)    75 (0.176) Sp=6
 10-8             -     121 (0.271)    81 (0.179) Sp=14
 10-9             -     129 (0.275)  104 (0.226) Sp=15
 10-10             -     134 (0.278)  104 (0.227) Sp=15
5.1 10-12             -    1368 (2.906)  117 (0.254) Sp=10
 10-12             -               -  121 (0.266) Sp=10
2.6 10-14             -               -  989 (1.928) Sp=5  

 
The TOS allows finding a solution up to the error 

level of 10-5, but the number of generations 
increases dramatically. At the same time, this 
strategy cannot find a solution with higher accuracy. 
The MTOS with control vector (1) finds a solution 
with a much higher accuracy up to 5.1·10-12.  

At the same time a composite strategy consisting 
of two, (0) and (1) with an optimal switching point 
between them, gives a solution with an accuracy of 
2.6·10-14 and, importantly, with a smaller number of 
generations. 

Figure 1(a) and 1(b) show the dependence of the 
generalized objective function F under successive 
generational change for strategies (0), (1), and 
composite strategy (0)(1) for two scales; (a) - scale 
1, (b) – scale 2. 
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 The best strategy for minimizing the fitness 
function is the composite strategy (0)(1), which, in 
the case of the optimal switching point Sp, solves 
the problem in the best way compared to other 
strategies. 
 Variables x1 and x2 take the values 3 and 2, 
respectively, but with different degrees of accuracy 
for different strategies. 
 

 
(a) 

 
(b) 

Fig. 1: Dependence of the generalized objective 
function F under successive generational change for 
strategies (0), (1) and composite strategy (0)(1) for 
two scales; (a) - scale 1, (b) – scale 2 
 
3.2  Example 2 

Minimize C(X) 
   23 0.15xXC    (12) 

 
subject to: 

062 321  xxx   (13) 

082 21  xx    
 

In this case, M=2, that is, system (13) is 
determined by two dependent variables, and the 
third is an independent parameter. We define x1 as 
an independent parameter. In this case, x2 and x3 are 
dependent. 

 This test problem also has an analytical solution. 
It can be seen that the objective function, being non-
negatively defined, reaches the minimum, zero 

value at the point x3 = 0.15. In this case, to fulfill the 
restrictions (13), the variables x1 and x2 take the 
following values: х1=3.4, х2= - 2.3. Let us find a 
solution to the problem by the developed approach. 
Using the generalized optimization approach, 
system (13) is transformed into the following 
system: 

   0621 3211  xxxu  

      (14) 
         0821 212  xxu   

 
The control vector for this example has two 

components: U=(u1,u2). Table 2 shows the dynamics 
of changes in the number of generations and 
processor time (s) of the GA depending on the 
required precision δ of minimizing the objective 
function F for three strategies: TOS, MTOS, and 
composite strategy (00)(11) with optimal switching 
point Sp between strategies (00) and (11). 

 
Table 2. Dynamics of changes in the number of 

generations and processor time (s) of the GA 
depending on the required precision δ of function F 

for three strategies: TOS, MTOS, and composite 
strategy (00)(11) with optimal switching point Sp  
  G (CPU time (s))  

   ᵟ         U=(00)          U=(11)       U=(00)(11)

4. 10-2  29 (0.043)       22 (0.06)   14 (0.038) Sp=2 
2. 10-2  1017 (1.472)       25 (0.067)   16 (0.043) Sp=2 
 10-2  4118 (5.959)       25 (0.067)   18 (0.047) Sp=2
5. 10-3 165741 (240.53)       27 (0.07)   19 (0.05) Sp=2
 10-3              -       32 (0.085)   21 (0.063) Sp=2
 10-4              -       39 (0.107)   37 (0.105) Sp=2
5. 10-5              -       69 (0.186)   45 (0.124) Sp=5
 10-5              -               -   51 (0.142) Sp=16
 10-6              -               -   75 (0.207) Sp=27
 10-7              -               -   82 (0.226) Sp=27
3. 10-8              -               -  149 (0.416) Sp=27
2. 10-8              -               -                -  

 
The traditional strategy requires many more 

generations than modified or composite strategies 
while obtaining the same precision. 

Analyzing the results in the table, one can see 
that TOS can find a solution with a precision of 10-3 
and no higher. At the same time, the MTOS with the 
control vector (11) and the composite strategy with 
the control vector (00)(11) makes it possible to find 
a solution with a precision of 5·10-5 and 3·10-8, 
respectively.  
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It can be seen that MTOS with U = (11) and a 
combined strategy with U = (00)(11) find a solution 
for a smaller number of generations and a smaller 
processor time than TOS with U=(00).  

We see that MTOS and the composite strategy 
solve an optimization problem with two orders of 
magnitude fewer generations than TOS for 10-2 
precision and four orders of magnitude less for 5·10-

3 precision. 
TOS solves the optimization problem in 5.959 s 

with a precision of 10-2 and 240.53 s with a 
precision of 5·10-3. The composite strategy solves 
this problem in 0.047 s with an accuracy of 10-2 and 
0.05 s with an accuracy of 5·10-3. In this case, the 
CPU time gain is 126 times for 10-2 precision and 
4810 times for 5·10-3 precision. 

The dependence of the generalized objective 
function F is shown in Figure 2 under successive 
change of generations for strategies (00), (11), and 
composite strategy (00)(11). 

 

 
Fig. 2: Dependence of the function F under 
successive generational change for strategies (00), 
(11), and composite strategy (00)(11) 

 
It can be seen that for the three presented 

strategies, different behavior of the function F is 
observed. MTOS and the composite strategy 
provide a large gain in generation number and CPU 
time to ensure the desired precision. 

Variables х1, х2, and х3 take values of 3.4, -2.3, 
and 0.15, respectively, but with different degrees of 
accuracy for the three studied strategies. 
 
3.3  Example 3 
This example analyzes the process of optimizing a 
function for one of the reference problems - finding 
the global minimum of the modified Shekel 
function. This function is given by the next formula: 

      
    






















m

i

N

j

iijj ccax
1

0

1

1

2
XC  (15) 

 

where m is the number of possible minima of the 
function, N is the total number of variables, aij are 
the coordinates of possible minima, and сi are the 
coefficients that determine the values of possible 
minima. There is no coefficient c0 in the standard 
definition of the Shekel function. Such assignment 
of the Shekel function is typical for the problem of 
unconstrained optimization. Possible minima of 
function (15) are located in the negative area and the 
global minimum corresponds to the deepest dip. Let 
us define the following coefficients in formula (15): 
N = 2, m = 5. For this example, the Shekel function 
depends on two variables x1 and x2, and is defined 
by five possible minima given by the following 
coordinates: a11 = 1.10, a12 = 0.0316,  a21 = 2.0, a22 = 
1.0, a31 = 3.0, a32 = 2.828427, a41 = 3.5, a42 = 
3.952847, a51 = 4.0, a52 = 5.196. Each pair of 
coefficients determines the coordinates of the 
minima. The values of the minima correspond to the 
coefficients c1, c2, c3, c4, and c5, which are defined 
below. Since the optimization problem is being 
solved in the presence of constraints, we set 
constraints in the following form: 

           01
3

1  2
2xx ,  (16) 

 
х1 ≥ 0,  х2 ≥ 0.   (17) 

 
Equation (16) is a relationship equation between 

variables, being a model of some system and when 
an independent variable х1 is specified, the 
dependent variable х2 is uniquely determined.  

A feature of optimizing an electronic circuit and 
applying a generalized approach is that the objective 
function can be set to be non-negative and its global 
minimum, therefore, has a value of 0. In this case, 
some modification of the Shekel function is 
required, which consists of adding the coefficient c0 
in formula (15), which is equal to the absolute value 
of the global minimum. In this case, the entire 
function "rises" by the value of the global minimum 
and is non-negative. 

The presence of one independent variable and 
one dependent corresponds to K=1, M=1. Using a 
generalized approach to optimization, equation (16) 
is transformed into the following equation: 

         011
3

1  2
2xxu  (18) 

 
In this case, only two main strategies TOS and 

MTOS, and possible compound strategies can be 
defined. 

Numerical analysis of the Shekel function (15) 
for given coefficients and c0 = 0 made it possible to 
reveal the presence of four minima, one of which is 
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global, at the points corresponding to the first four 
pairs of coefficients aij.  

Let us consider three variants of the distribution 
of the minima of the Shekel function. 

 
3.3.1  Option 1 

The minima correspond to the following 
coefficients:  c1 = 0.1, c2 = 0.2, c3 = 0.3, c4 = 0.2, c5  
= 0.3. The values of the minima are as follows: Cmin1 

= -10.6454, Cmin2 = - 5.8458, Cmin3 = - 4.2235, and 
Cmin4 = -5.6889. The first minimum is global and 
corresponds to the coordinates: x1 = 1.1, x2 = 0.0316. 
The coefficient c0 in formula (15) is taken as equal 
to 10.6454. 

Function optimization results (15) under 
constraints (16)-(17) for TOS, MTOS, and 
composite strategies that include two main strategies 
with a control vector (0)(1) are given in Table 3, 
Figure 3 and Figure 4.   
 

Table 3. Dynamics of changes in the number of 
generations and processor time (s) of the GA 

depending on the required precision δ of function F 
for two strategies: MTOS and composite strategy 

(0)(1) with the optimal switching point Sp=3 
                     G (CPU time (s))
   ᵟ         U=(1)         U=(0)(1)
 10-1     22 (0.05)        24 (0.058)
 10-2     38 (0.086)        38 (0.087)
 10-3     45 (0.10)        42 (0.098)
 10-4     65 (0.144)        55 (0.128)
 10-5     79 (0.174)        56 (0.131)
 10-6     80 (0.18)        58 (0.136)
 10-7     91 (0.202)        79 (0.175)
 10-8   909 (2.014)      812 (1.802)
3. 10-9            -   37659 (83.573)
2. 10-9            -              -  

 
 The traditional TOS strategy comes to a local 
minimum with F=4.75 and coordinates x1 = 2.0, x2 = 
1.0. That is, we can state that this strategy does not 
find a solution to the problem. At the same time, the 
MTOS and composite strategy find a global 
minimum equal to zero with coordinates x1 = 1.10, 
x2 = 0.0316. The table shows the results of the 
optimization process for different accuracy δ of 
minimizing the objective function F for MTOS and 
a composite strategy with control vector (0)(1) and 
switching point Sp=3. 

A comparison of these strategies shows a slight 
advantage of the composite strategy while 
increasing the required accuracy of solving the 
problem. 

Figure 3 shows the trajectories of the 
optimization process, including two components х1 
and х2 of the vector X, calculated by the formula 
(12) for three strategies, TOS, MTOS, and a 
composite strategy with a control vector (0)(1). 

 

 
Fig. 3: Trajectories of the optimization process for 
three strategies (0), (1) and composite strategy 
(0)(1) 
 

Point S corresponds to the starting point of the 
optimization process, F1 is the final point of the 
optimization process, corresponding to MTOS and 
the composite strategy (0)(1) and is the global 
minimum point, F2 is the final point of the 
optimization process, corresponding to TOS and 
being one of the local minima. 

Sp is the switching point from strategy (0) to 
strategy (1). It is important to emphasize that the 
TOS corresponding to the control vector (0) has a 
"hard" trajectory in the sense that condition (16) 
must always be satisfied on this trajectory. At the 
same time, the other two strategies work under the 
conditions of two independent variables х1 and х2, 
and condition (16) may not be satisfied on the entire 
trajectory, except for the final point. In this sense, 
these two strategies are more stochastic, which 
ultimately leads to the possibility of "skipping past" 
local minima and finding a global one. 

The dependence of the generalized objective 
function F on the number of generations is shown in 
Figure 4 for three strategies TOS, MTOS, and a 
composite strategy with a control vector (0)(1) for 
an accuracy of δ=10-5. Sp is the switching point 
from one strategy to another. 

The function F for TOS decreases to 4.75 and 
then does not change, which corresponds to a local 
minimum. 
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Fig. 4: Dependence of the function F under 
successive generational change for strategies (0), 
(1), and composite strategy (0)(1) 

 
At the same time, for the other two strategies, the 

function F decreases to the values   10-8–10-9 giving 
a high accuracy of the optimization process 
implementation, since it corresponds to the global 
minimum. 
 
3.3.2  Option 2 

The minima correspond to the following 
coefficients:  c1 = 0.15, c2 = 0.1, c3 = 0.3, c4 = 0.2, c5  
= 0.3. The values of the minima are as follows: Cmin1 

= -7.3399, Cmin2 = - 10.8316, Cmin3 = - 4.2280, and 
Cmin4 = -5.6896. The second minimum is global and 
corresponds to the coordinates: x1=2.0, x2=1.0. The 
coefficient c0 in formula (15) was set equal to 
10.8316. 

Optimization results of function (15) under 
constraints (16)-(17) for strategies TOS, MTOS, and 
a composite one that includes two main strategies 
with a control vector (0)(1) are given in Table 4. 

 
Table 4. Dynamics of changes in the number of 

generations and processor time (s) of the GA 
depending on the required precision δ of function F 

for three strategies: TOS, MTOS, and composite 
strategy (0)(1) with optimal switching point Sp=1 

  G (CPU time (s))  
   ᵟ         U=(0)          U=(1)       U=(0)(1)
 10-2      26 (0.041)       32 (0.073)      43 (0.098)
 10-3      31 (0.048)       60 (0.137)      76 (0.174) 
 10-4      37 (0.058)       97 (0.222)      79 (0.181)
 10-5    350 (0.549)       99 (0.227)       85 (0.194)
 10-6    1212 (1.903)     949 (2.173)      201 (0.460)
3. 10-7             -    9179 (21.020)      666 (1.525)
 10-7             -             -    8998 (20.605)
2. 10-8             -             -   13457 (30.816)
 10-8             -             -             -  

All three strategies find the global minimum 
corresponding to the point with coordinates x1 = 2.0, 
and x2 = 1.0, however, the accuracy of finding this 
minimum is different for these strategies. TOS finds 
the minimum with a marginal accuracy of 10-6, 
MTOS with an accuracy of 3·10-7, and a compound 
strategy with an accuracy of 2·10-8. 

 
3.3.3  Option 3 

The minima correspond to the following 
coefficients:  c1 = 0.2, c2 = 0.1, c3 = 0.07, c4 = 0.15, 
c5  = 0.3. The values of the minima are as follows: 
Cmin1 = -5.6751, Cmin2 = -10.8296, Cmin3 = -15.1971 
and Cmin4 = -7.4365. The third minimum is global 
and corresponds to the coordinates: x1=3.0, 
x2=2.828. The coefficient c0 in formula (15) was set 
equal to 15.1971.  

The results of optimization of function (15) 
under constraints (16)-(17) for two strategies: 
MTOS and composite, including two main 
strategies of the structural basis with control vector 
(0)(1), are given in Table. 5. 
 

Table 5. Dynamics of changes in the number of 
generations and processor time (s) of the GA 
depending on the required precision δ for two 

strategies: MTOS and composite strategy (0)(1) 
with the optimal switching point Sp=1 

                      G (CPU time (s))
   ᵟ         U=(1)         U=(0)(1)
 10-1      33 (0.075)        32 (0.073)
 10-2      52 (0.119)        48 (0.110)
 10-3      61 (0.140)        61 (0.140)
 10-4      66 (0.151)        79 (0.181)
 10-5      73 (0.167)        79 (0.181)
5. 10-6  6655 (15.240)        81 (0.185)
4. 10-6 94449 (216.288)        82 (0.186)
 10-6            -      366 (0.838)
2. 10-7            -   29672 (67.949)
 10-7            -              -  

 
In this case, as well as in the first variant, the 

traditional strategy does not find a global minimum 
but stops in a local minimum with coordinates 
x1=2.0, x2=1.0. MTOS and the composite strategy 
find the global minimum corresponding to the point 
with coordinates x1= 3.0, x2 = 2.828. At the same 
time, the composite strategy finds a minimum with a 
maximum accuracy of 2·10-7, which is an order of 
magnitude better than the MTOS strategy. 

The analysis of this example allows us to 
understand the specifics of optimizing a multi-
extremal function in the presence of restrictions. In 
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this case, the use of the traditional strategy does not 
always allow one to find the global minimum, since 
the process can loop in local minima. At the same 
time, some strategies emerging from the generalized 
approach can overcome this problem and find the 
global minimum with a high degree of accuracy. 

 
3.4  Example 4 
Let us optimize the circuit of a four-node nonlinear 
voltage divider shown in Figure 5. The 
conductivities 

54321 y,y,y,y,y  are positive and 
represent a set of parameters for a given circuit 
(K=5) that are defined as independent. Voltages in 
circuit nodes 

4321 V,V,V,V  are dependent 
parameters (M=4). Circuit optimization aims to 
obtain the required values of all nodal voltages 

40302010 V,V,V,V  by selecting conductivities. 
 

 
Fig. 5: Four-node nonlinear passive circuit 
 
 

Given that the voltage at the input of the divider 
is 1 V, these constants in the normalized form have 
the following values: V10=0.7, V20=0.4, V30=0.2, 
V40=0.1. 

In mathematical terms, this problem can be 
represented as a problem of minimizing some 
objective function. Let us define the objective 
function of the optimization process using the 
following formula: 

      
    




M

1i

2

i0i VVXC   (19) 

 
The mathematical model of the circuit in this 

case acts as a set of restrictions. 
Let's define non-linear elements by the following 

expressions:  2
21n1n1n1 VVbay  ,  2

32n2n2n2 VVbay   
and  2

43n3n3n3 VVbay  , where 1aaa n3n2n1  , 
and 0.9bbb n2n2n1  . Vector X includes nine 
components  987654321 x,x,x,x,x,x,x,x,x , where: 

1yx2

1  , 
2

2

2 yx  , 
3

2

3 yx  , 
4

2

4 yx  , 
5

2

5 yx  , 16 Vx  , 

27 Vx  , 38 Vx   and 49 Vx  . These formulas for 
the components 54321 x,x,x,x,x  always make it 
possible to obtain positive conductivities. This 

removes the problem of the mandatory positive 
definiteness of each component of the vector X. The 
first five components of this vector can have both 
positive and negative values. In this case, the 
conductivities are always positive. 

Formula (19) is transformed into the following 
form: 

   
    



 
M

1i

2

i0iK VxXC   (20) 

 
 Taking into account the Kirchhoff laws, the 
mathematical model of the circuit can be 
represented by four equations of the nodal voltage 
method, and the functions (X)g j  are given using 
the following formulas: 

        0 76

2

76n1n16

2

2

2

1

2

11 xxxxbaxxxxXg  
 

     

    0



87

2

87n2n2

67

2

76n1n17

2

32

xxxxba

xxxxbaxxXg

        (21) 
     

    0



98

2

98n3n3

78

2

87n2n28

2

43

xxxxba

xxxxbaxxXg
 

 
      0 89

2

98n3n39

2

54 xxxxbaxxXg    
  
 Therefore, we must minimize the function C(X) 
given by expression (20) with additional conditions 
(21). The control vector U has four components: 

 4321 u,u,u,uU  . 
Applying formulas (6) and (7), gives the 

following formula for the generalized objective 
function F:  

      
     Xgu

σ

1
XCUX,F

4

1j

2

jj


 . (22) 

 
The number of structural basis strategies is quite 

large and equals 16. Of course, there are a large 
number of possible combinations of different 
strategies, but, as was shown in [21], when using 
deterministic optimization methods, the best results 
should be expected from a combination of TOS and 
MTOS strategies with the control vector (00...0) and 
(11...1).  

Table 6 shows the dynamics of changes in the 
number of generations and processor time (s) of the 
GA depending on the required precision δ for three 
strategies: TOS, MTOS, and composite strategy 
(0000)(1111) with the optimal switching point Sp=6 
between strategies (0000) and (1111). 
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Table 6. Dynamics of changes in the number of 
generations and processor time (s) of the GA 

depending on the required precision δ for three 
strategies: TOS, MTOS, and composite strategy 

(0000)(1111) with the optimal switching point Sp=6 
  G (CPU time (s))  

   ᵟ        U=(0000)         U=(1111)   U=(0000)(1111)

4. 10-3  77 (0.298)        72 (0.074)          68 (0.087)  
5. 10-4  80 (0.31)        77 (0.079)          69 (0.088) 
3.765 10-4 176809 (684.25)        81 (0.083)          70 (0.089)
3.76 10-4             -        81 (0.083)          70 (0.089)
3. 10-4             -        84 (0.086)          72 (0.091)
 10-4             -        93 (0.096)          75 (0.094)
 10-5             -        111 (0.114)          82 (0.101)
 10-6             -       126 (0.130)          84 (0.104)
2. 10-7             -       148 (0.152)          86 (0.106)
 10-7             -               -          88 (0.108)
4. 10-8             -               -         164 (0.186)
3.9 10-8             -               -                -  

 
It can be stated that the use of MTOS and the 

composite strategy makes it possible to obtain a 
significant gain compared to TOS both in terms of 
the number of generations and processor time to 
achieve an accuracy of 3.765·10-4. It should be 
noted that this is the ultimate accuracy that a 
traditional optimization strategy can achieve. 

MTOS with a control vector (1111) and a 
composite strategy with a control vector 
(0000)(1111) has an advantage over TOS of more 
than 2000 times in the number of generations and 
more than 8000 times in processor time. TOS does 
not find a solution if the required error is reduced to 
a value less than 3.765 10-4. In contrast, MTOS and 
the composite strategy find solutions up to a 
precision of 2·10-7 or 4·10-8 for the first and second 
strategies, respectively. The number of GA 
generations as a function of the position of the 
switching point Sp for the composite strategy 
(0000)(1111) for accuracy δ =10-5 is presented in 
Table 7.  

The optimal value of the switching point 
between strategies Sp = 6. That is, the strategy with 
the control vector (0000) works for the first five 
steps and the subsequent ones with the vector 
(1111). 

 
 
 
 

Table 7. Number of generations as a function of the 
switching point Sp of the composite strategy 

(0000)(1111) 
Switch point Sp 4 5 6 7 8 9 10 11

Number of generation G 98 85 82 84 89 112 109 119  
 
The dependences of the generalized objective 

function F on the successive change of generations 
for the strategies with the control vector (0000), 
(1111) and the composite strategy (0000)(1111) 
with a given error δ =2·10-7 are shown in Figure 6. 

Figure 6 shows the dependence of the 
generalized objective function F under successive 
generational change for strategies with the control 
vector (0000), (1111), and composite strategy 
(0000)(1111) for a given error δ =2·10-7. 
 

 
Fig. 6: Dependence of the generalized objective 
function F under successive generational change for 
strategies (0000), (1111), and composite strategy 
(0000)(1111) 
 
 It can be seen from the figure that TOS does not 
provide good accuracy of the solution, unlike 
MTOS and the composite strategy. Conversely, the 
MTOS and the composite strategy give a solution to 
the problem with high accuracy (2·10-7) in a 
relatively small number of generations. It is 
important to emphasize that TOS cannot solve the 
problem with such accuracy in a foreseeable period. 

A new population with different properties is 
formed for a composite strategy at the switching 
point Sp. At this point, the population structure 
changes drastically and the optimization process 
leaves the local minimum trap. For this reason, this 
strategy achieves the minimum of the objective 
function with greater precision than other strategies. 

 
3.5  Example 5 
The next example demonstrating the procedure for 
optimization considered is the two-cascade 
transistor amplifier shown in Figure 7. 
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Fig. 7: Two-cascade transistor amplifier 
 

We have five independent variables for this 
circuit: y1, y2, y3, y4 and y5 (K=5) and five dependent 
variables: V1, V2, V3, V4 and V5 (М=5). All the 
components of the vector X  are defined with the 
following formulas: 1yx2

1  , 
2

2

2 yx  , 
3

2

3 yx  , 

4

2

4 yx  , 
5

2

5 yx  , 
16 Vx  , 27 Vx  , 38 Vx   and 

49 Vx   and 
510 Vx  . The static Ebers – Moll model, 

[23], is chosen for the approximation of transistor 
characteristics. The objective function has the same 
form as in Example 4: 

        
    




M

1i

2

i0i VVXC     (23)     

                                                                                                         
 We set the required node voltages as (in volts): 
V10=1.75, V20=1.0, V30=3.2, V40=2.5, V50 =5.6. The 
control vector U is formed with five control 
functions: U = (u1, u2, u3, u4, u5). There are 32 
optimization strategies on the structural basis. The 
mathematical model of the circuit (24) consists of 
five equations: 

    02
10611  xExIXg B  

 

  02
2712  xxIXg E  

 

  02
4923  xxIXg E            (24) 

 

    02
511024  xExIXg C  

 

    02
318215  xExIIXg BC  

 
where IB1, IB2, IE1, IE2, IC1, IC2 – are the base, emitter, 
and collector currents of the first and the second 
transistor. According to the generalized approach 
considered the system is converted to the following 
one: 

            
1,2,3,4,5.01  j,(X))gu( jj        

(25)
 

(25)
 

1,2,3,4,5.j0,(X))gu(1 jj 
       25(15)                                                                                           

 
The function F(X) has the form: 

            
     Xgu

σ
XCUX,F

5

1j

2

jj



1        (26)                                                                                       

 

One can try algorithm schemes with different 
amounts of switching points between strategies to 
achieve better results of the algorithm efficiency. 
For this scheme, we choose a variant with two 
switching points. Table 8 shows the generation 
numbers and processor time when the function F(X) 
achieves the required accuracy δ for various 
strategies: TOS with control vector (00000), MTOS 
with control vector (11111), and composite strategy 
with control vector (11111)(00000)(11111) and two 
switching points Sp1=5 and Sp2 = 9 giving the best 
result for processor time. 

 
Table 8. Dependencies of the number of generations 

and processor time (s) on the required precision δ 
for TOS, MTOS, and the composite strategy 

(11111)(00000)(11111) with switching points 
Sp1=5 and Sp2 = 9 

  G (CPU time (s))  

   ᵟ       U=(00000)       U=(11111) U=(1...1)(0...0)(1...1)

5. 10-2  28563 (931.89)        52 (0.32)          38 (0.235)  
 10-2  389533 (12708)        56 (0.344)          43 (0.251) 
5. 10-3 1691364 (55181)        59 (0.364)          47 (0.268)
 10-3             -        65 (0.408)          52 (0.278)
 10-4             -        80 (0.492)          62 (0.309)
 10-5             -        88 (0.542)          66 (0.321)
 10-6             -        94 (0.578)          78 (0.358)
1.7 10-7             -      134 (0.824)          87 (0.385)
1.03 10-7             -               -        114 (0.469)
1.02 10-7             -               -                 -  

 
One can see that amounts of generations in 

which MTOS and the composite strategy need to 
achieve some definite accuracy is much less than 
those corresponding amounts for TOS. In addition, 
the best accuracy achieved by TOS over 15 hours of 
CPU time is not within the range of the desired 
accuracy levels of the optimization process. The 
time that TOC requires to achieve an accuracy 
above 5·10-3 is clearly beyond reasonable values. 
Accuracy which is achieved with MTOS and the 
composite strategy has the magnitude orders -11…  
-12. Results shown in Table 8 demonstrate that the 
composite strategy allows achieving the stationary 
mode with lesser processor time than MTOS. 

The result of the work of the algorithm is 
influenced by the position of switching points. Table 
9 shows how this influence manifests itself in 
dependencies of the number of generations and 
processor time on the second switching position Sp2 
when the first point Sp1=5. 
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Table 9. Number of generations and processor time 
as a function of the second switching point Sp2 for 

the composite strategy (11111)(00000)(11111),   
Sp1 = 5. The accuracy achieved is 10-6 

Switch point Sp2 6 7 8 9 10 11 12 13

Number of generation G 85 82 92 78 81 87 99 118  
 

It is clear that the switching point ultimately 
determines the number of generations needed for a 
given precision. The results show that the minimum 
number of generations is 78 and corresponds to the 
optimal second switching point Sp2 = 9. 

Dependencies of the objective function on the 
successive generation change for strategies (00000), 
(11111), and the composite strategy 
(11111)(00000)(11111) with Sp1 = 4, Sp2 = 8 are 
shown in the Figure 8. Sp2 = 8 is chosen as the best 
switching point value for the number of generations 
for achieving accuracy 10-5.  

Despite the truly huge number of generations of 
more than 106, TOC does not allow obtaining an 
accuracy of 10-3. MTOS and the composite strategy 
achieve an accuracy of 10-5 within the first hundred 
generations. For the accuracy 5·10-3 MTOS has a 
time gain of 151596 times compared to TOS. 

 

 
Fig. 8: Dependence of the generalized objective 
function F under successive generational change for 
strategies (00000), (11111) and composite strategy 
(11111)(00000)(11111) 
 

The combined strategy has a gain of 205899 
times compared to TOS. 

Using the generalized optimization approach 
within the genetic algorithm is a mechanism that 
contributes to changing the internal structure of the 
vector X, and at the same time, changing the 
structure of the principal function of the GA - the 
fitness function. This effect manifests itself within 
the optimization process since it depends on the 
structure of the control vector U, which can be 
changed at any step of the optimization process. In 
this case, the GA has the opportunity to get around 

local minima and continue the search for a global 
minimum. 

New strategies that appear within the idea of 
generalized optimization help to increase the 
accuracy of the solution and reduce the processor 
time. This can be seen from a comparison of the 
results obtained using TOS, MTOS, and a combined 
strategy. 

The results obtained in this section show that 
changing the mechanism for calculating the fitness 
function during the operation of the GA leads to the 
exit from local minima and overcoming premature 
convergence. In this case, the accuracy of the 
solution can be significantly increased, which can be 
transformed into both a reduction in the number of 
possible generations and a reduction in processor 
time. 
 
 
4  Conclusion 
Previously, based on control theory, a generalized 
approach to the problem of optimizing electronic 
circuits was developed using such deterministic 
methods as the gradient method, Newton's method, 
etc. This made it possible to determine many 
different optimization strategies by introducing a 
control vector and to formulate the problem of 
finding the optimal strategy by optimizing the 
structure of this vector. It was shown that this 
approach provides a significant acceleration of the 
optimization procedure through the use of various 
strategies and the formation of composite strategies. 

The application of a similar approach in the case 
of using a genetic algorithm as the basis of an 
optimization procedure leads to a change in the 
structure and main parameters of this algorithm. The 
results of the study demonstrate the possibility of 
introducing the idea of generalized optimization into 
the body of the genetic algorithm, which leads to a 
change in the structure of chromosomes and the 
fitness function during the operation of the 
algorithm and the formation of a set of different 
optimization strategies. In turn, the emergence of a 
set of strategies inside the GA makes it possible to 
use various strategies of this set, as well as to form 
their combinations, which can significantly improve 
the characteristics of the optimization process. The 
results obtained show that changing the main 
parameters of the GA makes it possible to bypass 
local minima and overcome premature convergence. 
An analysis of the optimization procedure for some 
electronic circuits showed the effectiveness of this 
approach. In this case, it becomes possible to 
increase the optimization accuracy by 3–4 orders of 
magnitude and reduce processor time by 3-5 orders 
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of magnitude compared to traditional GA. Thus, it 
can be emphasized that new optimization strategies 
that appear within the framework of the presented 
methodology have good prospects both for 
improving the process of solving a nonlinear 
programming problem in general, and especially for 
optimizing electronic systems. It can be assumed 
that such a methodology for solving the 
optimization problem, based on a generalized 
approach, can be extended to other stochastic 
optimization methods, which may be the subject of 
future research. In this case, an improvement in the 
performance of the optimization process is also 
expected. 
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