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Abstract: - This paper presents an experimental study of the high-frequency impedance behavior of four types 

of single-phase induction motors: Split-Phase Induction Motor (SPIM), Permanent Split Capacitor Induction 

Motor (PCIM), Capacitor Start Induction Motor (CSIM) and Single Phase Repulsion Motor (RIM). A 

differential-mode impedance and phase angle over a range of frequencies, including resonance and anti-

resonance points, are the focus of the present study. The obtained results show that every type of motor has 

distinctive impedance characteristics; the RIM always shows higher impedance than other motors, whereas the 

CSIM exhibits lower impedance in low frequencies. Those differences unveil the influence of the motor design 

on Electromagnetic Compatibility (EMC) performance, since high-impedance motors, such as the RIM, present 

lower Electromagnetic Interference (EMI) emissions and lower susceptibility to external electromagnetic 

interference, therefore better general EMC performance. Also, the frequencies of resonance and anti-resonance 

vary between the motors, which is also reflected in their different electrical and structural designs. The study 

provides helpful insights into the optimization of motor designs to achieve better EMC compliance and 

operational stability in various applications. 
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1  Introduction 
Electromagnetic interference, or EMI, is one of the 

important concerns in modern electrical 

engineering, especially due to the expansion use of 

Adjustable Speed Drives and electric motors in a 

wide range of industrial applications, as shown in 

[1], [2], [3], [4]. As those technologies have 

continued to increase in their complexities and 

deployment, the challenge of how to control EMI 

has intensified.  

This study focuses on an important part of the 

problem: Differential Mode (DM) behavior in motor 

systems. The presence of DM currents and voltages 

not only deteriorates system performance but also 

threatens the nearby electromagnetic environment, 

needing special measures to mitigate such 

interference, [5]. Since the international EMC 

standards are getting very severe today, [6], [7], [8], 

[9], [10], [11], [12], [13], [14], [15], [16], it 

becomes necessary to understand the mechanisms of 

the EMI process, especially in motor applications. It 

is also important to address the DM interference not 

just for satisfying the requirements of the EMC, but 

also to ensure the reliability and safety of the 
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electrical system operation. A detailed investigation 

of DM interference establishes the baseline for the 

development of efficient EMI mitigation strategies. 

Such solutions have also been found to be critical 

for ensuring long-term integrity and performance in 

electrical systems from various industrial settings, 

[17], [18], [19]. EMI management in motor systems 

effectively goes beyond simple compliance to 

ensure the general stability and efficiency of the 

electrical infrastructure, [20], [21], [22]. 
The significance of minimizing Electromagnetic 

Interference (EMI) in motor systems is repeated in 

numerous recent studies that have focused on 

energy efficiency and high-performance systems. 

For example, [23] discusses how low-power 

embedded systems necessitate special design 

standards to assure not only energy savings but also 

robust electromagnetic performance.  Besides, a 

detailed performance analysis of the multilayer 

drivers in case of EMI issues is carried out by [24] 

in high voltage applications.  

Furthermore, [25] prove that EMI control is 

critical to ensuring the continuity of smart 

production systems. The results of this work can be 

directly applied to single-phase induction motors, 

which are increasingly used in various industrial 

applications where EMI management is essential to 

maintaining performance and reliability. 
Thus, EMI management is critical not only in 

low-power and medium-voltage systems but also in 

modern industrial and motor-driven applications, 

[26], [27], [28], [29]. This underlines the need for a 

comprehensive EMI control methodology, with an 

emphasis on taking into account a wide range of 

applications and ensuring that electrical systems 

meet severe electromagnetic compatibility 

requirements. Engineers can build systems that can 

deal with current and future EMC issues, protect 

industrial processes, and ensure long-term 

performance in a range of applications by increasing 

their knowledge of DM EMI dynamics. 

Single-phase induction motors find their 

applications in a wide range of applications, 

including household appliances such as 

refrigerators, washing machines, and air 

conditioners, as well as power tools such as drills 

and saws and industrial machinery. Such motors are 

highest demand, especially for good reliability and 

usability efficiency. However, they might suffer 

great hurdles in terms of electromagnetic 

compatibility (EMC), where the electromagnetic 

environment hurts their performance and reliability, 

[30], [31]. 

One important type of EMC is differential mode 

electromagnetic interference (EMI), which occurs 

when noise is conducted through the phase and 

neutral conductors of an electrical system. 

Differential-mode EMI propagates along the power 

conductors rather than through the grounding 

conductor and has a major influence on the 

performance of electrical and electronic devices. 

As a consequence of this type of EMI, motor current 

and voltage waveforms may become distorted and 

lead to loss of efficiency, excess heat, and possibly 

winding damage. It can also cause electrical noise, 

increased vibration, and audible noise, which can 

cause mechanical wear and premature component 

failure, [32], [33]. Furthermore, EMI can interfere 

with motor control circuits, resulting in irregular 

operation and disturbing speed and start/stop 

functions, [34]. EMI also introduces harmonics into 

the power supply, which reduces motor performance 

while increasing energy consumption and running 

costs, [35]. 
A motor’s impedance, or resistance to current 

flow is essential in determining Differential Mode 

(DM) behavior in motor systems, directly impacting 

the motor's electromagnetic compatibility (EMC) 

performance. Motors with higher impedance often 

have lower EMI emissions, and vice versa, [36], 

[37].  

Despite the wide usage of single-phase 

induction motors, the issue of EMI in these motors 

has gotten far less attention than three-phase motors. 

This is most probable because three-phase motors 

are widely used in industrial applications where 

EMI is a major concern, [38], [39]. However, 

single-phase motors are increasingly being 

employed in locations where electromagnetic 

interference (EMI) is an issue. 
This lack of attention to EMC in single-phase 

motors has resulted in a gap in the knowledge base. 

There is a need for more research on the EMC of 

single-phase motors and methods for reducing EMI 

in these motors, [40], [41]. 
This paper conducts a comparative study on the 

differential-mode impedance of four different types 

of single-phase induction motors and their 

correlation with EMI emissions. Variations of the 

impedance within these motor types are analyzed in 

order to study how impedance is related to their 

EMI performance. These results can be useful for 

motor designers to design motors that exhibit a 

reduced possibility of EMI problems, [42], [43], 

[44]. 
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2 General Overview of Single-Phase 

 Induction Motors 
Single-phase induction motors work on the principle 

of electromagnetic induction to produce a rotating 

magnetic field, [45]. The stator consists of the 

primary winding and an auxiliary winding and is the 

stationary part of the motor. When an AC voltage is 

supplied to the main winding, it generates a 

magnetic field. The auxiliary winding, which is 

present in many motors, provides a phase shift to 

create the rotating magnetic field, [46]. 

Figure 1 shows the structure of single-phase 

induction motors. When the stator's rotating 

magnetic field passes through the squirrel cage bars 

in the rotor, it induces currents that form a magnetic 

field. This field interacts with the stator field, 

resulting in rotational movement, [47].  

 

 
Fig. 1: Single-Phase Induction Motors 

 

In this study, we investigate four specific types 

of induction motors: 

 

2.1 Split-phase Induction Motor (SPIM) 
In the Split-Phase Induction Motor (Figure 2), an 

additional winding is wound on the same stator 

core. This creates two windings: the auxiliary 

winding, which is highly resistive, and the main 

winding, which is highly inductive, [48]. The 

auxiliary winding is primarily used for starting, after 

which it is disconnected. 

 
Fig. 2: Split-phase Induction Motor (SPIM) 

 

2.2 Capacitor Start Induction Motor 

 (CSIM) 
A Capacitor-Start Induction Motor (Figure 3) is a 

type of single-phase induction motor with a 

capacitor primarily used to produce the machine's 

starting torque. Therefore, the capacitor-start single-

phase induction motor has a starting capacitor 

connected in series with its starting winding or 

auxiliary winding, [49].  

 
Fig. 3: Capacitor Start Induction Motor (CSIM) 

 

2.3 Permanent Capacitor Induction Motor 

 (PCIM) 
In contrast to the Capacitor Start Induction Motor 

(Figure 4), in the Permanent Capacitor Induction 

Motor, the capacitor is permanently connected to the 

circuit, both at start-up and during motor operation, 

[50].  

 
Fig. 4: Permanent Capacitor Induction Motor 

(PCIM) 

 

2.4 Repulsion Induction Motor (RIM) 
The Repulsion Induction Motor (Figure 5) consists 

of a stator carrying a single-phase exciting winding 

and a rotor with a closed-type armature winding 

with a commutator and brushes, [51]. 

 

 
Fig. 5: Repulsion Induction motor (RIM) 

 

The characterized parameters of the four motors 

are summarized in Table 1. 
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Table 1. Motors Parameters. 
Parameter CSIM PCIM SPIM RIM 

Nominal Voltage (V) 220 220 220 220 

Nominal Current (A) 2.2 1.3 2.2 2.7 

Nominal  

Frequency (Hz) 
50 50 50 50 

Nominal Power (W) 175 175 175 175 

Nominal 

 Speed (tr/min) 
1400 1440 1400 1350 

Mian Winding 

Resistance (Ω) 
9.8 23 9.8 9.8 

Mian Winding 

Inductance (H) 
0.226 0.252 0.226 0.2 

Auxiliary Winding 

Resistance (Ω) 
23.3 21.7 23.3 / 

Auxiliary Winding 

Inductance (H) 
0.137 0.281 0.137 / 

Capacitor (μF) 86 10 / / 

 

 

3 Experimental Methodology and 

 Measurements 
The fact that the four motors studied have different 

configurations and wiring diagrams means that each 

motor has a different EMC behavior. Since 

impedance plays a critical role in determining the 

electromagnetic compatibility (EMC) performance 

of a motor, this work aims to conduct a comparative 

study of the differential-mode impedance of these 

different types of electric induction motors. 

In this section, we detail the experimental 

approach used to investigate the differential-mode 

impedance of the four types of electric induction 

motors studied: Split-Phase Induction Motor, 

Permanent Capacitor Induction Motor, Capacitor 

Start Induction Motor, and Single-phase Repulsion 

Motor.  

 

3.1 Measurement Setup 
Our measurements were performed using a Wayne 

Kerr 6500B spectrum analyzer, which can detect 

impedance and phase angles up to 120 MHz. We 

selected this analyzer due to its high precision, 

especially in the EMC-relevant frequency range of 

150 kHz to 30 MHz. Before each cycle of tests, the 

analyzer was calibrated to ensure accuracy and 

reduce measurement drift. 
 Figure 6 illustrates our experimental setup for 

differential-mode impedance measurements. All 

motor types are tested using this arrangement to 

ensure accurate and consistent impedance 

measurements. 

 
Fig. 6: Experimental setup for differential-mode 

impedance measurements. 

 

3.2 Impedance Measurements Procedure 
Impedance measurements were conducted using a 

systematic approach to capture differential-mode 

EMC behaviors: 

1. Environmental Control: To ensure accurate 

measurements, a controlled environment free of 

electromagnetic interference was developed. 

2. Terminal Component Fixture (TCF): Each 

induction motor type was connected to the TCF. 

This fixture allows for stable connections and 

impedance matching, which are required for 

reliable impedance measurements. 

3. Calibration: The Wayne Kerr 6500B analyzer 

was recalibrated between tests to ensure 

measurement accuracy. Calibration data was 

stored and compared to verify consistency 

between tests. 

4. Frequency Sweep: A frequency sweep was 

performed using the Wayne Kerr 6500B 

analyzer, spanning frequencies from 150 kHz to 

30 MHz. This range aligns with EMC standards 

and facilitates a comprehensive analysis of 

impedance variations across relevant 

operational frequencies, [34]. 

5. Stability: At each frequency point, the system 

was allowed to stabilize before taking a 

measurement, ensuring that transient responses 

did not affect the results. In addition, multiple 

sweeps were performed on each motor to ensure 

repeatability. 

6. Data Collection: Impedance magnitude and 

phase angle were measured at discrete 

frequency points within the sweep range. 

7. Data Analysis: The impedance data obtained 

from each motor type were plotted to visualize 

their frequency-dependent characteristics. This 

visualization aimed to identify resonant 

frequencies, marked by impedance peaks, and 

critical impedance values, which potentially 

Spectrum analyzer 
Terminal Component Fixture 

Single-Phase Induction Motors 
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signify areas of concern for differential-mode 

EMC performance. By comparing impedance 

profiles across different motor types, insights 

were gained into how specific design variations 

impact EMC behavior. 

 

 

4  Results 
In this section, we present and analyze the results of 

our experimental measurements, focusing on the 

differential-mode impedance of the four types of 

electric induction motors studied: Split-Phase 

Induction Motor (SPIM), Permanent Split Capacitor 

Induction Motor (PCIM), Capacitor Start Induction 

Motor (CSIM), and Single-phase Repulsion Motor 

(RIM).  

The Figure 7, Figure 8, Figure 9 and Figure 10 

illustrate the impedance and phase angle profiles for 

each motor type. 

 
Fig. 7: Impedance and phase angle of CSIM 

 

 
Fig. 8: Impedance and phase angle of PCIM 

 

 
Fig. 9: Impedance and phase angle of SPIM 

 
Fig. 10: Impedance and phase angle of RIM 

 

The impedance and phase angles are plotted 

across the frequency range from 150 kHz to 30 

MHz. This comprehensive analysis exposes key 

similarities and differences in the behavior of the 

motors, highlighting critical values and frequencies 

that influence their performance. 

Examining the impedance characteristics of 

each motor, we can observe that the impedance of 

all four motor types: CSIM, PCIM, SPIM, and RIM 

increases with frequency up to the resonance 

frequency f1. At f1, each motor exhibited a peak in 

impedance, reflecting resonance. Specifically, the 

resonance frequencies f1 were 37.936 kHz for CSIM, 

24.822 kHz for both PCIM and SPIM, and 50.334 

kHz for RIM. The corresponding impedance values 

at f1 were 9.76 kΩ for CSIM, 14.61 kΩ for PCIM, 

14.66 kΩ for SPIM, and 34.88 kΩ for RIM. The 

phase angles at f1 varied: 4.10° for CSIM, -1.50° for 

PCIM, 3.74° for SPIM, and 10.87° for RIM.  

Table 2 summarizes the resonance and 

antiresonance characteristics for each motor type: 

 

f1 

f2 

f1 

f2 

f1 

f2 

f1 

f2 
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Table 2. Resonance and anti-resonance 

characteristics of various Single-Phase Induction 

Motors 
Characteristic CSIM PCIM SPIM RIM 

Resonance 

Frequency (f1) 

(kHz) 

37.936 24.822 24.822 50.334 

Impedance at 

f1 (Z(f1))(kΩ) 
9.76 14.61 14.66 34.88 

Phase Angle 

at f1 (φ(f1))(°) 
4.10 -1.50 3.74 10.87 

Antiresonance 

Frequency (f2) 

(MHz) 

10.846 9.416 10.846 19.094 

Impedance at 

f2 (Z(f2)) (Ω) 
17.10 18.87 19.26 16.83 

Phase Angle 

at f2 (φ(f2)) (°) 
-34.79 21.17 -24.94 13.86 

 

Beyond f1, the impedance decreases until 

reaching its minimum at the antiresonance 

frequency f2. The antiresonance frequencies f2 were 

10.846 MHz for CSIM, 9.416 MHz for PCIM, 

10.846 MHz for SPIM, and 19.094 MHz for RIM. 

The impedance values at f2 were 17.10 Ω for CSIM, 

18.87 Ω for PCIM, 19.26 Ω for SPIM, and 16.83 Ω 

for RIM. Despite the impedance being at its 

minimum, the phase angle at f2 remained non-zero: -

34.79° for CSIM, 21.17° for PCIM, -24.94° for 

SPIM, and 13.86° for RIM. 

To illustrate both the similarities and 

differences, Figure 11 and Figure 12 provide a 

global comparison of all motors (impedance and 

phase angle). 

 
Fig. 11: Impedances comparison of the four motors 

 
Fig. 12: Phases comparison of the four motors 

 

4.1 Similarities in Impedance and Phase 

 Profiles 
  From 100 Hz to f1, the impedance of all four 

motor types increases with frequency up to the 

resonance frequency f1. This behavior is typical 

in motors and is largely attributed to the 

inductive nature of the windings and magnetic 

components. As the frequency rises, the 

inductance of the motor becomes more 

pronounced, resulting in a gradual increase in 

impedance. The phase angle in this range is 

positive, indicating that the voltage leads the 

current, which is consistent with inductive 

behavior. 

  At the resonance frequency f1, all four motor 

types exhibit a peak in impedance, marking a 

resonance point where the impedance is at its 

maximum. For CSIM and SPIM, the phase 

angle is positive, indicating a leading nature 

where the voltage leads the current. The PCIM 

shows a slight negative phase angle, suggesting 

a slight lag at resonance, likely due to the 

influence of capacitors. The RIM demonstrates 

a significantly positive phase angle, reflecting a 

pronounced leading nature. 

  Beyond the resonance frequency f1, the 

impedance begins to decrease until it reaches 

its minimum value at the antiresonance 

frequency f2. During this range, the phase angle 

turns negative, indicating a lagging relationship 

between voltage and current, characteristic of 

capacitive behavior. 

  At the antiresonance frequency f2, the 

impedance reaches its minimum value, 
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highlighting a point where the motor system 

exhibits the least resistance to current flow. 

Despite the impedance being at its minimum, 

the phase angle is not zero, reflecting the 

ongoing influence of reactive components and 

practical considerations in motor systems. 

  After the antiresonance frequency f2, the 

impedance increases again, and the phase angle 

becomes positive, indicating a leading 

relationship between voltage and current. This 

behavior reflects the motor's response in the 

high-frequency range. 

 

4.2 Differences between Motors 
  The Single-phase Repulsion Motor (RIM) 

exhibits consistently higher impedance 

compared to the other motor types, likely due 

to its unique winding configuration or 

mechanical structure. 

  The Capacitor Start Induction Motor (CSIM) 

displays lower impedance at low frequencies, a 

feature linked to its design incorporating a start 

capacitor. 

  Beyond the first resonance frequency f1, the 

impedance characteristics diverge among the 

motor types. The impedance of the PCIM is 

generally the lowest, while the RIM retains its 

higher value.  

  The resonance frequency f1 depends on the type 

of motor, showing that SPIM has a lower value 

of f1 compared to the CSIM and RIM. 

However, the antiresonance frequency f2, is the 

lowest for PCIM, followed by CSIM and SPIM 

with similar values, whereas RIM shows 

the highest value. 

 

4.3 Discussion 
The impedance profiles of electric motors become 

important when it comes to determining their EMC 

performance. Higher impedance corresponds to a 

better EMC, such that the emission of EMI is small 

and the susceptibility to external sources of EMI is 

minimal. It means that competent engineers, who 

understand the influence of differential mode 

impedance on EMI performance, can design motors 

compatible with modern electrical engineering and 

electronic applications that put very severe 

electromagnetic compatibility requirements on 

electric vehicles, industrial automation, and smart 

power grid applications. 

In terms of the impedance, across the frequency 

range, the RIM always had a higher value and 

therefore turns out to be very suitable for EMC 

compliance. Increased impedance reduces the flow 

of currents caused by the influence of external 

electromagnetic fields, consequently making the 

motor less susceptible to EMI. With this feature, it 

will be qualified to work on power grids where 

operational stability and reliability are required. A 

motor like RIM in power distribution systems will 

reduce harmonic distortions and electromagnetic 

disturbances that interfere with critical electrical 

equipment like power transformers and inverters. 

Increased impedance contributes to an increased 

meeting of strict EMC requirements that have 

become very relevant in highly dense urban and 

industrial areas where electrical disturbances can 

cause considerable operational problems. 

On the other hand, the CSIM has lower 

impedance at lower frequencies, which renders them 

more susceptible to EMI. The low impedance may 

result in high EMI emission in those applications 

where high-accuracy signal transmission is used, 

which includes sensor networks, and might lead to 

possible errors in data transmission, communication 

failure, or discontinuation of network performance. 

Within the CSIM, by contrast, the start capacitor 

plays a useful role by managing phase angles during 

startup and does help mitigate some of the EMI 

issues. Either way, to further improve its 

performance regarding EMC, additional measures 

may include improved shielding or filtering 

techniques, especially where low-frequency EMI 

control is required by a system. In sensor networks, 

for instance, where signal integrity is critical, 

motors with higher impedance, like Single-phase 

Repulsion Motors, are usually preferred to reduce 

electromagnetic interference that may completely 

compromise the performance of the system. 

Having similar impedance characteristics up to 

the resonance frequency f1 would suggest similar 

PCIM and SPIM EMC performances in the case of 

lower-frequency operations. This kind of motor 

could be useful in various applications with low 

levels of EMI control, like consumer electronics, 

small industrial machinery, or any application where 

low-cost solutions with modest EMI control are 

employed. Above the resonance, impedance profiles 

of PCIM start to diverge from SPIM, with the PCIM 

impedance being lower. This behavior may need 

customized EMC mitigation solutions for HF 

activities, especially when these motors are used in 

sensitive applications such as automated 

manufacturing systems, wherein electromagnetic 

interference may interrupt complex automation 

processes. 

In the high-frequency domain, the impedance 

characteristics of the motors become much more 

important for their EMC performance. If systems 

were exposed to high levels of electromagnetic 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2024.23.26

Abdelkader Gourbi, Mohamed Miloudi, 
Houcine Miloudi, Mohammed Hamza Bermaki

E-ISSN: 2224-266X 267 Volume 23, 2024



radiation in the high-frequency environments of 

smart grids or sensor networks, the RIM would be at 

an advantage, thus having higher impedance at high 

frequencies and hence less susceptible to external 

electromagnetic interference. It means that the 

operation will be robust and reliable under 

conditions of continuous monitoring and control, for 

example, sensor-based industrial networking or 

distributed energy management. Motors with lower 

impedance at high frequencies, such as the CSIM, 

may require extra electromagnetic compatibility 

precautions to assure compliance with the industry 

requirements and operational reliability in such an 

environment. These results confirm, therefore, the 

recommendation of higher-impedance motors like 

RIM in such high-EMI environments for both EMC 

compliance and system stability. 

Achieving EMC compliance in motor design 

necessitates a thorough understanding of impedance 

characteristics across a wide frequency range. 

Motors that are basically designed for high 

impedance, like the RIM, will normally provide 

certain advantages in minimizing EMI emissions 

and susceptibility. It would be ideal to use them in 

areas like power grids and industrial automation. 

Motors with lower impedance, such as the CSIM, 

should be designed against additional components 

like capacitors, shielding, and filtering to enhance 

EMC performance in applications covering sensor 

networks or consumer electronics. The type of 

motor and related design questions must therefore 

be decided within the context of a particular 

application requirement and ambient environment in 

view of obtaining optimum EMC compliance and 

system performance. 

The stability of the obtained results was 

guaranteed by repeated tests through precision 

instruments such as the Wayne Kerr 6500B 

analyzer. Indeed, the consistent and reliable 

impedance profiles, extending over a number of 

tests and frequency ranges reflect the basic electrical 

characteristics of the motors accurately. It follows, 

then, that further studies into numerical modeling 

techniques to better optimize motor designs for the 

improvement of EMC are well founded. 

 

 

5  Conclusion 
In this paper, we have discussed the differential 

mode impedance characteristics of four types of 

single-phase induction motor: split-phase induction 

motor (SPIM), permanent split capacitor induction 

motor (PCIM), capacitor start induction motor 

(CSIM), and single-phase repulsion motor (RIM). 

The experiment carried out on the motors over a 

frequency range from 150 kHz to 30 MHz showed 

distinct impedance profiles and phase angle 

characteristics for each type. 

It is obvious that RIM had generally higher 

impedance, indicating an appropriate design in cases 

of required EMC compliance. This will make the 

RIM very suitable for application in industrial 

automation systems and power grids where EMI 

control is of prime importance to maintain stable 

and reliable operations. On the other hand, CSIM 

had a much lower impedance for low frequencies 

due to its start capacitor. While that start capacitor 

significantly improved its startup efficiency, it may 

also raise its susceptibility to EMI. Further EMI 

mitigation strategies are probably required for this 

topology because of this possibility, to perform well 

under conditions where low-frequency EMI control 

becomes significant, such as in sensor networks. 

Contrarily, PCIM has always shown lower 

impedance beyond the first resonance point, 

reflecting that it had unique design optimizations 

that perhaps call for higher frequency-specific EMC 

mitigation strategies. This kind of motor would 

serve well in applications with minimum EMI 

controls, which include consumer electronics and 

small industrial machinery. 

This convergence tendency of the impedance 

profiles of PCIM and SPIM at lower frequencies 

may indicate that both kinds of motors can provide 

interchangeable solutions that exhibit similar EMC 

behavior. The phase angles showed complex 

interactions internal to the motors that weighted 

significantly from zero at resonance and anti-

resonance frequencies, thus carrying important 

information on their electromagnetic behavior. 

This study has underlined how impedance 

characteristics play a vital role in determining the 

expected EMC performance in motors of different 

types. Concluding our work hence represents 

important input toward the optimization of motor 

design, with a view to both fulfilling the 

requirements as laid down in EMC regulations as 

well as improving the performance in practical 

applications. 

In future investigations, numerical methods, like 

simulations with MATLAB or other computational 

tools will be integrated in supplementing our 

experimental findings. This would allow us to 

simulate motor performance under different 

conditions and make more specific conclusions on 

how the parameters of the motor design impact its 

EMC performance.  
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