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1  Introduction 
The use of switched reluctance machines in 
different industrial applications, particularly electric 
vehicles (EVs) and hybrid electric vehicles (HEVs), 
is becoming very frequent due to their robust 
design, absence of permanent magnets, and torque-
speed characteristics, [1], [2], [3], [4], [5]. Their 
capability to ride through faults provides enhanced 
safety and reliability that renders them particularly 
good, for applications plagued by the high cost of 
rare-earth magnets, [6], [7], [8]. Despite the 
advantages, SRMs have significant control-related 
problems, because they feature a complex control 
system with nonlinear measures that prevented them 
from being operated in the open loop. Furthermore, 
there are some other issues, including torque ripples 
and acoustic noise, that complicate the control 
approach, [9], [10]. 

One of the prime problems is sensorless control 
which seeks to use Fewer measurements to reduce 
the use of physical sensors and has been studied 
through several approaches, such as sliding mode 
observers and the extended Kalman filter, [11], [12]. 

Existing sensorless control methods for SRM 
face notable limitations, particularly in maintaining 

accuracy across varying speed ranges and their 
sensitivity to model simplifications. It is 
demonstrated that the Luenberger observer performs 
well at medium to high speeds but struggles with 
starting hesitation and zero-speed observability, 
[13]. A high-gain Kalman-like observer is 
developed to enhance rotor position and speed 
reconstruction from electrical measurements. 
However, it faces constraints related to non-uniform 
observability and requires constant-speed inputs, 
[14].  An Extended Kalman Filter and Second Order 
Sliding Mode Observer were employed to estimate 
rotor position, velocity, and unknown load torque, 
demonstrating reliability in simulations but being 
limited to simulated environments, [12]. [15], 
addresses the challenge of state observation for 
sensorless control by deriving algebraic relations 
between unknown rotor flux and measured 
quantities, using adaptive nonlinear observers. Their 
approach addresses various mathematical models of 
SRM and demonstrates effectiveness through 
simulations with a finite element model. Despite 
these advancements, challenges related to 
observability, starting hesitation, and varying 
operational conditions continue to hinder the 
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development of universally applicable sensorless 
control methods. 

This paper introduces a novel technique that 
employs a nonlinear observer for the simultaneous 
estimation of states in SRM. Our key contribution 
lies in the diffeomorphism transformation of the 
SRM model into an observable form in the z-
coordinates, [16]. This transformation enables the 
application of a Kalman high-gain observer, [17], 
which is specifically designed to handle the unique 
characteristics of SRM. After applying the observer, 
we perform an inverse transformation to obtain the 
observer in the original x-coordinates. This method 
not only improves robustness and accuracy in 
sensorless control but also effectively addresses the 
challenges posed by the motor's commutation stages 
and the non-uniform observability conditions. Our 
approach overcomes the limitations of existing 
methods, particularly their applicability across 
varying speed ranges and sensitivity to model 
simplifications, offering a more reliable and 
efficient solution for SRM control. The 
effectiveness of the proposed scheme is confirmed 
through inclusive simulations. 

The remainder of this paper is organized as 
follows. In Section 2, we present the SRM model 
and its commutation processes, including four 
mathematical models. Section 3 relies on the 
nonlinear observer design for SRMs, detailing the 
observability analysis and the development of the 
proposed observer. Section 4 introduces the 
numerical simulations, providing results that 
validate the proposed method. Finally, Section 5 
exhibits some concluding remarks as well discusses 
future research directions. 

 
 

2  System Modeling 
SRMs are distinguished by their simple and robust 
design, lack of rotor windings or permanent 
magnets, and their ability to operate across a wide 
speed range. This section details the modeling of 
SRM, focusing on the fundamental principles and 
mathematical formulations that describe their 
behavior. 

In this section, we present the mathematical 
modeling of the SRM, including the fundamental 
equations governing its electrical and mechanical 
dynamics. The model encompasses the relationship 
between the phase inductances, currents, and the 
resultant electromagnetic torque. It also accounts for 
the non-linear characteristics inherent in SRM, such 
as the dependence of inductance on rotor position 
and current. 

𝑑𝒊

𝑑𝑡
=

1

𝑳(𝜃)
(−𝜔

𝑑𝑳(𝜃)

𝑑𝜃
𝒊 − 𝑹 𝒊 + 𝒖)                         (1a) 

𝑑𝜃

𝑑𝑡
= 𝜔                     (1b) 

𝑑𝜔

𝑑𝑡
=

1

2𝐽
𝒊 
𝑑𝐿(𝜃)

𝑑𝜃
𝒊𝑇 −

𝐹

𝐽
𝜔 −

𝑇𝐿

𝐽
                               (1c) 

𝑑𝑇𝐿

𝑑𝑡
= 𝑤(𝑡)                 (1d) 

 
where 𝜃 represent the rotor position, 𝜔 the angular 
velocity, 𝒊 the phases current, 𝑳(𝜃) the phases 
inductance, 𝑹 the phases resistance, 𝒖 the phase 
voltage, and 𝐽 the moment of inertia of the rotor.  

𝒊 = [𝑖1 𝑖2 𝑖3]
𝑻,𝑳(𝜃) = [

𝐿1(𝜃) 0 0

0 𝐿2(𝜃) 0

0 0 𝐿3(𝜃)
] , 

𝑹 = [

𝑅1 0 0
0 𝑅2 0
0 0 𝑅3

] , 𝒖 = [𝑢1 𝑢2 𝑢3]
𝑻   

 
In this study, unlike the approach taken in [18], 

we consider non-saturated winding inductances, 
which are characterized by: 

𝐿(𝜃) =

{
 
 

 
 

𝐿𝑢  
𝐿𝑢 +𝑀𝜃 
𝐿𝑎  

𝐿𝑢 −𝑀𝜃 
𝐿𝑢 

 

𝜃1 < 𝜃 < 𝜃2
𝜃2 < 𝜃 < 𝜃3
𝜃3 < 𝜃 < 𝜃4
𝜃4 < 𝜃 < 𝜃5
𝜃5 < 𝜃 < 𝜃6

 ;    𝑀 =
𝐿𝑎−𝐿𝑎

𝛼
 

𝛼, 𝐿𝑢 and 𝐿𝑎 is the pole arc of stator the minimum 
inductance and the maximum inductance 
respectively. 
 
Assumption 1. The parameters of the system (𝐽, 𝐹 
and R) are known, but the function 𝑤(𝑡)  is bounded 
ant is not known.  

 

2.1 State Space Representation 
As the SRM phases are excited independently, the 
analysis and design can be performed by 
considering each phase separately and identifying 
the active phase. adopting the following notations: 
 𝛽(𝜃) =

1

𝐿(𝜃)
  ; 𝛾(𝜃) = 𝑑𝐿(𝜃)

𝑑𝜃
 ; 𝑥 =[𝑥1 𝑥2 𝑥3 𝑥4 ]𝑇 =

[𝑖  𝜃  𝜔 𝑇𝐿  ]
𝑇 the space-state model given (1) is 

redefined as follows: 
𝑥1̇ = 𝛽(𝑥2)(−𝑥3𝛾(𝑥2)𝑥1 − 𝑅𝑥1 + 𝑢)                 (2a) 
𝑥2̇ = 𝑥3                                                                (2b) 
𝑥3̇ =

1

2𝐽
𝑥1
2𝛾(𝑥2) −

𝐹

𝐽
𝑥3 −

1

𝐽
 𝑥4                          (2c) 

𝑥4̇ = 𝑤(𝑡)                                                    (2d) 
 
Let take:  �̅� = −𝑅𝑥1 + 𝑢 
𝑥1̇ = 𝛽(𝑥2)(−𝑥3𝛾(𝑥2)𝑥1 + �̅�)               (3a) 
𝑥2̇ = 𝑥3                                                     (3b) 
𝑥3̇ =

1

2𝐽
𝑥1
2𝛾(𝑥2) −

𝐹

𝐽
𝑥3 −

1

𝐽
 𝑥4                          (3c) 

𝑥4̇ = 𝑤(𝑡)                                                            (3d) 
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𝑦(𝑡) = 𝑥3                 (3e) 
 

In the extended representation of the state space, 
the system model (3) is described as follows: 
�̇� = 𝑓(𝑥) + 𝑔(𝑥)�̅� + 𝐷𝑤(𝑡)                           (4a) 
𝑦 = ℎ(𝑥)                                                              (4b) 
 
f, g and h are expressed as follows: 

𝑓 =

[
 
 
 
 

−𝛽(𝑥2)𝛾(𝑥2)𝑥1𝑥3
𝑥3

𝑎𝑥1
2𝛾(𝑥2) −

𝐹

𝐽
𝑥3 − 𝑐 𝑥4

0 ]
 
 
 
 

                                      

(5) 
𝑔 = [𝛽(𝑥2)  0  0  0]

𝑇, 𝐷 = [0  0  0  1]𝑇     (6) 
ℎ(𝑥) = 𝑥3                                                       (7) 
 
 
3 SRM Nonlinear Observer Design  
 
3.1 Transformation of the SRM Nonlinear    

 Model in a Nonlinear Canonical 

 Observer    Form 
The nonlinearity and lack of a canonical form of the 
initial SRM model (4)-(5) make it unsuitable for 
observer design. Therefore, the first step involves 
turning it into a canonical observer form. This 
process is addressed in the following proposition: 
Proposition 1. A Lipschitzian diffeomorphism is 
presented: 

𝑇(𝑥): 𝑅4
 
→𝑅4, 𝑥

 
→ 𝑧 = [

𝑧1
𝑧2
𝑧3  
𝑧4

] = 𝑇(𝑥) =

[
 
 
 
 𝑇1(𝑥)

𝑇2(𝑥)

𝑇3(𝑥)

𝑇4(𝑥)]
 
 
 
 

(8) 
 

The system (4)–(5) is subsequently transformed 
to the following canonical form: 
𝑧(𝑡)̇ = 𝐴𝑧(𝑡) + 𝑔(𝑧(𝑡), �̅�) + 𝐵𝑤(𝑡)𝜑(𝑧)           (9a) 
𝑦(𝑡) = 𝐶𝑧(𝑡)                                        (9b) 
 

With:   𝐴 = [

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

],  𝐶 = [1 0  0 0]           

 𝑔(𝑧, 𝑢) =

[
 
 
 
𝑔1(𝑧1, 𝑢)

𝑔2(𝑧1, 𝑧2)

𝑔3(𝑧1, 𝑧2, 𝑧3)

𝑔4(𝑧 , 𝑢) ]
 
 
 

,   𝐵 = [0 0  0 1]   

 
where 𝑔1𝜖ℝ2, 𝑔2𝜖ℝ2, 𝑔3𝜖ℝ2and , 𝑔4𝜖ℝ2 
 

Proof of Proposition 1. In order to obtain the 
canonical form given in (9), we are applying the 

method developed in [19]. The degree of the system 
is 4 while the relative degree is 2, so we pose the 
transformation by derivation of the following lees: 
𝑧 = 𝑇(𝑥) = [ ∅(𝑥) 𝜇(𝑥) ℎ(𝑥)  𝐿𝑓ℎ(𝑥)]𝑇(10) 
 

We select ∅(x) in which T is a diffeomorphism, 
i.e.: 
𝜕∅(𝑥) 

𝜕𝑥
𝑔(𝑥) = 0                           (11a) 

[
𝜕∅(𝑥) 

𝜕𝑥1
 
𝜕∅(𝑥) 

𝜕𝑥2
   
𝜕∅(𝑥) 

𝜕𝑥3
 
𝜕∅(𝑥) 

𝜕𝑥4
 ] [

𝛽(𝑥2) 
0
0
0

]

 

= 0        (11b) 

𝜕∅(𝑥) 

𝜕𝑥1
 𝛽(𝑥2) = 0                          (11c)   

𝜕∅(𝑥) 

𝜕𝑥1
= 0                           (11d) 

 
Thus, if ∅(𝑥)  does not depend on 𝑥1  we can: 

 choose ∅(𝑥) = 𝑥2   (12) 
 

We choose 𝜇(𝑥)  such  that T is a diffeomorphism, 
meaning that: 
𝜕𝜇(𝑥) 

𝜕𝑥
𝑔(𝑥) = 0               (13a) 

 

[
𝜕𝜇(𝑥) 

𝜕𝑥1
 
𝜕𝜇(𝑥) 

𝜕𝑥2
   
𝜕𝜇(𝑥) 

𝜕𝑥3
 
𝜕𝜇(𝑥) 

𝜕𝑥4
 ] [

𝛽(𝑥2) 
0
0
0

]

 

= 0       (13b) 

𝜕𝜇(𝑥) 

𝜕𝑥1
 𝛽(𝑥2) = 0              (13c) 

𝜕𝜇(𝑥) 

𝜕𝑥1
= 0               (13d) 

 
Thus, if 𝜇(𝑥)  does not depend on 𝑥1  we can choose 
𝜇(𝑥) = 𝑥4 + 𝑥3                (14) 
 
Then we calculate   𝐿𝑓ℎ(𝑥) 

 𝐿𝑓ℎ(𝑥)  = [
𝜕ℎ(𝑥) 

𝜕𝑥1
  
𝜕ℎ(𝑥) 

𝜕𝑥2
  
𝜕ℎ(𝑥) 

𝜕𝑥3
  
𝜕ℎ(𝑥) 

𝜕𝑥4
  ] 𝑓(𝑥) 

                = 1

2𝐽
𝑥1
2𝛾(𝑥2) −

𝐹

𝐽
𝑥3 − 𝑐 𝑥4              (15) 

 
We obtain the following transformation: 
𝑧 = [𝑧1 𝑧2 𝑧3 𝑧4 ]

𝑇 = 𝑇(𝑥) 
    = [𝑥2 𝑥4 + 𝑥3 𝑥3  𝐿 𝑓ℎ(𝑥)]𝑇                   (16) 
𝑧1̇ = 𝑥2̇ = 𝑥3 = 𝑧2              (17a) 
𝑧2̇ = �̇�4 + �̇�3 = 𝑤(𝑡) + 𝑧3 
𝑧3̇ = 𝑥3̇ =

1

2𝐽
𝑥1
2𝛾(𝑥2) −

𝐹

𝐽
𝑥3 − 𝑐 𝑥4 = 𝑧4       (17b) 

𝑧4̇ =
1

𝐽
𝑥1�̇�1𝛾(𝑥2) +

1

2𝐽
𝑥1
2�̇�2

𝑑𝛾

𝑑𝑥2
−
𝐹

𝐽
𝑧3 − 𝑐 �̇�4 

     =
1

𝐽
𝑥1�̇�1𝛾(𝑥2) −

𝐹

𝐽
𝑧3  − 𝑐 𝑤(𝑡)                    (17c) 

 𝑧4̇ = −𝛽(𝑥2)𝛾(𝑥2)𝑥1𝑥3 (
1

2𝐽
𝑥1�̇�1𝛾(𝑥2))

𝐹

𝐽
𝑧3 
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           −
𝐹

𝐽
(
1

2𝐽
𝑥1
2𝛾(𝑥2) −

𝐹

𝐽
𝑥3 − 𝑐 𝑥4)                (17d)      

 
We have 𝑑𝛾

𝑑𝑥2
= 0, This gives us the following 

triangular model: 
𝑧1̇ = 𝑧2                                                   (18a) 
 
𝑧2̇ = 𝑤(𝑡) + 𝑧3              (18b) 
 
𝑧3̇ = 𝑧4                                                            (18c) 

𝑧4̇ = −𝛽(𝑥2)𝛾(𝑥2)𝑥1𝑥3 (
1

2𝐽
𝑥1�̇�1𝛾(𝑥2))

𝐹

𝐽
𝑧3   (18d) 

𝑦 = 𝑧2                (18e) 
 

It is clear that the model of the system described 
in equation (18) has a triangular structure, which 
represents a canonical form of observability. This 
model can be expressed in the following concise 
form: 
𝑧(𝑡)̇ = 𝐴𝑧(𝑡) + 𝑔(𝑧(𝑡), �̅�) + 𝐵𝑤(𝑡)𝜑(𝑧)         (19a) 
𝑦 = 𝐶𝑧 = 𝑧2               (19b) 

With: 𝐴 = [

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

], 𝐶 = [0  1  0 0]                         

𝑔(𝑧) = [

0
0
0
𝑣(𝑧)

] , 𝜑(𝑧) = [

0
1
0
0

] , 𝐵 = [

0
1
0
0

] 

𝑣(𝑧) = −𝛽(𝑥2)𝛾(𝑥2)𝑥1𝑥3 (
1

2𝐽
𝑥1�̇�1𝛾(𝑥2))

𝐹

𝐽
𝑧3  

(20) 
 
3.2 Observer Design of the SRM in the z-

 Coordinates 
We proceed by considering the following High-
Gain-Kalman Design, like in [20]. 
�̇̂� = 𝐴�̂� + 𝑔(�̂�, 𝑢) + Δ(𝐾)𝑃−1𝐶𝑇(𝑦 − 𝐶�̂�)        (21a) 
 
In (21) the observer matrix  Δ(Κ) and 𝑃 are defined 
as following:  

Δ(Κ) = [
Κ 0 0
0 Κ2 0
0 0 Κ3

]              (21b) 

 
 �̇� = 𝐾(−𝜆𝑃 − 𝐴𝑇𝑃 − 𝑃𝐴 + 𝐶𝑇𝐶)            (21c) 
The gain k and  𝜆 are selected based on the 
following assumptions: 
 

Assumption 2. for any positive definite matrix P0, 
there exist positive scalars K*, α1 and α2 such that 
for any K ≥ K∗, any λ ≥ 2Amax and any initial 
condition  z0 ∈ Rdz , the matrix differential equation 
initialized at P(0) = P0 has a unique solution which 

satisfies  𝑃(𝑡)𝑇 = 𝑃(𝑡) for all t and 𝛼1𝐼 < 𝑃(𝑡) <
 𝛼2𝐼  ∀ 𝑡 ≥

1

𝐿
 . 

 
3.3 The SRM Observer Design in the x-

 Coordinates 
In the previous subsection, the state observer for the 
system (4) was developed using z-coordinates. For 
practical implementation, however, it is required to 
express this observer in x-coordinates. The process 
of converting the dynamics of state variables in z-
coordinates and x-coordinates is facilitated through 
the relationships outlined in Eqs. (8) and (9). By 
applying the diffeomorphism transformation z =  
T(x), we can derive the derivative of the estimated 
state in x-coordinates as follows: 
𝑑�̂�

𝑑𝑡
=

𝑑𝑇(𝑥)

𝑑𝑥
 
𝑑𝑥

𝑑𝑡
= Γ

𝑑𝑥

𝑑𝑡
                            (22) 

 
�̇̂�(𝑡) = Γ  �̇�(𝑡)

 
⇒  �̇�(𝑡) =  Γ−1 �̇̂�(𝑡)              (23) 

 
�̇�(𝑡) = Γ−1[𝐴�̂� + 𝑔(�̂�, 𝑢) + Δ(𝐾)𝑃−1𝐶𝑇(𝑦 − 𝐶�̂�)] 
                 (24) 
 
�̇�(𝑡) = 𝑓(𝑥, 𝑢) + Δ(𝐾)𝑃−1Γ−1𝐶𝑇(𝑥 − 𝑥)]        (25) 
 
 
4  Numerical Simulations 
This section presents the results of numerical 
simulations conducted to assess the adaptive 
nonlinear observer’s performance developed for the 
SRM. The simulations were carried out using 
MATLAB/Simulink environments to demonstrate 
the robustness and efficiency of the observer under 
various operating conditions. 

The machine used in the simulations has the 
following characteristics in Table 1. 
 

Table 1. SRM parameters 
Parameter Symbol Value 

Rotational speed  𝜔𝑚 1500 RPM  

Stator resistance  𝑅𝑠 0.01Ω 

Stator poles number  𝑁𝑠 6 

Rotor poles number 𝑁𝑟 4 

Maximal inductance  𝐿𝑚𝑎𝑥  23.6 mH 

Minimal inductance  𝐿𝑚𝑖𝑛 0.67 mH 

Nominal power 𝑃 1,5 𝐾w 

Figure 1, Figure 2, and Figure 3 illustrate the 
observer's response to variations in rotor speed 
across three different states. Figure 1 shows the 
current and its estimate, it can be seen that 
the current is well tracked by the observer. Figure 1 
shows the current and its estimate; it can be seen 
that the current is well tracked by the observer.  
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Figure 2 shows the rotor position and its 
estimation, showing the high precision of the 
estimation. Figure 3 presents the rotor speed and its 
estimation; the rotor speed estimation error is very 
low even when there is large variation in the speed, 
proving the robustness and fast convergence of the 
observer. 

 
Fig. 1: Current  𝑖1 (dashed) and its estimate 𝑖 ̂1   
(solid) 
 

 
Fig. 2: Rotor position 𝜃  (dashed) and its estimate 𝜃 ̂   
(solid) 
 

 
Fig. 3: Rotational speed 𝜔 (dashed) and its estimate 
�̂�   (solid) 

 
Figure 4, Figure 5 and Figure 6 show the 

evolution of the measured rotor speed and its 
estimation as a function of time under varying load 
conditions. Figure 4 illustrates the effect of load 

variation on the performance of the proposed 
observer at time t=0.4s. Figure 5 shows the increase 
in current value with load and the convergence to 
zero of the estimation error. Figure 6 confirms that 
the estimation error of the rotor position remains 
minimal even with load variations, which highlights 
the robustness of the observer. Overall, these figures 
demonstrate that the designed observer provides 
accurate state estimation under varying load 
conditions. 

 

 
Fig. 4: Rotational speed 𝜔 (dashed) and its estimate 
�̂�   (solid) under variable load  
 

Fig. 5: Current  𝑖1 (dashed) and its estimate 𝑖 ̂1   
(solid) 
 

 
Fig. 6: Rotor position 𝜃  (dashed) and its estimate 𝜃 ̂   
(solid) 
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 The simulation results highlight the excellent 
performance of adaptive non-linear observation, 
under different operating conditions. This is 
illustrated by its low estimation error and its ability 
to adapt quickly to variations in load and speed. 
 

 

5  Conclusion 
In this work, an adaptive nonlinear observer has 
been proposed for an SRM to guarantee state 
estimation. Thanks to a detailed observability 
analysis and a diffeomorphism transformation into 
an observable form, we were able to implement the 
observer. Simulation results confirmed the 
developed observer's performance, which showed 
that SRM states were accurately reconstructed, thus 
improving machine control without the need for 
additional sensors. 
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