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Abstract: -A new word-length optimization method based on Monte Carlo simulation is proposed. The word-

length of the check node extrinsic message is also further optimized in this paper. In the proposed optimization 

method, and in the process of optimizing the word-length of the channel data, the statistical distribution results 

of variable node’s posterior probability data and check node’s extrinsic message are also obtained. The 

optimized word-length of variable node’s posterior probability data and check node’s extrinsic message is 

concluded by the statistical distribution result and the BER (Bit Error Rate) curves. Compared to the pure 

Monte Carlo simulation, the proposed method could reduce the amount of simulation work by more than 50%, 

and have the same word-length optimization results.  
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1 Introduction 
Low density parity check (LDPC) code was first 

proposed by Gallager in 1960 [1], and it was 

rediscovered by MacKay and Neal in 1996 [2]. Due 

to the excellent decoding performance, LDPC code 

has been widely used in many communication 

systems, such as wireless local area network 

(802.11n) [3], digital video broadcasting second 

generation (DVB-S2) [4] and world interoperability 

for microwave access (802.16e) [5-6]. Punctured 

LDPC codes used in coherent optical OFDM 

systems is also studied in [7]. 

Belief-propagation (BP), or called sum-product 

[2], is one of the best LDPC decoding algorithms, 

but it is not suitable for hardware implementation 

because of the exponent computation. Min-sum 

algorithm [8], which decodes LDPC only by 

comparisons and additions, simplifies the decoding 

process greatly with acceptable decoding 

performance loss. Modified min-sum algorithms 

were proposed in [9-11], normalized factor and 

offset factor are used to get a better performance in 

decoding. 

Layered decoding method was proposed in [12].  

Check node and variable node are both updated 

simultaneously in this method to reduce the 

decoding latency half without performance loss. In 

[13], a fast-convergence algorithm using layered 

decoding was proposed and about 1/6 iteration 

numbers decreased for LDPC codes used in DVB-

S2.  

The finite word-length (or the quantization 

scheme) of the data deeply affects the decoding 

performance and the total area of the LDPC decoder 

in hardware implementation. So the finite word-

length optimization method should be able to 

balance between the decoding performance and the 

complexity of the LDPC decoder. 

Monte Carlo simulation method is a widely used 

method in finite word-length optimization [14]. In 

LDPC decoding simulation, random numbers are 

used as the message bits of the code word in LDPC 

codes simulation. These random numbers, generated 

by a pseudo random number algorithm, are 

independent and equally likely to be 0 or 1. BER 

(Bit Error Rate) is used to measure the LDPC 

decoding performance over various finite word-

lengths.  

The expected BER is always below 10-6 in LDPC 

decoding, so it costs a long time to obtain the finite 

word-length of all the terms by using Monte Carlo 

simulation method. In this paper, we proposed a 

new finite word-length optimization method. In this 

method, the finite word-length of channel message 

is obtained by Monte Carlo simulation, and the 

finite word-length of other messages are obtained by 

the statistical distribution results in Monte Carlo 

simulation. The proposed method saves the 
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simulation work more than 50% to obtain the same 

results compared to the original Monte Carlo 

simulation method. 

The rest of this paper is organized as follows. 

Section 2 describes the LDPC decoding algorithm, 

normalized min-sum algorithm and off-set min-sum 

algorithm. Layered decoding scheme, word-length 

of fix-point data and Monte Carlo Simulation 

method are also discussed in this section. Section 3 

proposes a new word-length optimization method.  

Section 4 proposes the method to further optimize 

the word-length of the check node extrinsic message. 

Simulations results and discussions are given in 

section 5. Section 6 concludes the paper. 

 

 

2 Background 
 

2.1 Min-Sum Algorithm 
Min-sum algorithm is one of the most popular 

approaches of BP [9], and it reduces the hardware 

complexity greatly. Both normalized min-sum and 

offset min-sum algorithm are based on the min-sum 

algorithm. Min-sum algorithm is expressed as 

follows:  

'
'

'

'
\

\

min ji
Vi

Vi

jiij qar
ij

ij




                          (1) 






jiCj

ijjji rLLRq

\'

'                        (2) 






iCj

ijjj rLLRQ
'

'                         (3) 

)|1(

)|0(
log

yxP

yxP
LLR j




                      (4) 

In (1), ijr  is the check-to-variable message 

passed from check node i  to variable node j , 'jiq  

is the variable-to-check message passed from 

variable node j  to check node 'i , 'jia  is the sign of 

'jiq , ijV \  is the set of the variable nodes which 

connect to check node j  without node i , in (2), 

jiC \  is the set of the check nodes which connect to 

variable node i  without check node j , in (3), 
jQ  is 

the log likelihood ratio (LLR) for variable node j , 

iC  is the set of all the check nodes which connect to 

variable node i , in (4), x  is the transmitted bit and 

y  is the message received from channel. 

At the beginning of decoding, all variable node 

messages jiq  are installed by (4). In each iteration, 

(1), (2) and (3) are processed serially, and a guess of 

the codeword is obtained by the sign of 
jQ  (0 

for 0jQ , 1 for 0jQ ) in (3), if the codeword fits 

all the parity check or the iteration exceeds the 

predefined maximum iteration time, the decoding 

stops.  

 

2.2 Modified min-sum Decoding Algorithm 
Although it is easy to implement the min-sum 

algorithm, it results in degradation in decoding 

performance. Both normalized min-sum and offset 

min-sum are modified versions of the min-sum 

algorithm, the first one with a normalized factor and 

the second with an additive correction factor, and 

these algorithms achieve almost the same 

performance as that of the BP algorithm. 

In the normalized min-sum algorithm, check 

node updating operation uses normalization constant 

  smaller than 1, and (1) is changed to: 
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In offset min-sum algorithm, the check node 

updating operation is given as follows: 
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In (5) and (6), both correction factors are used to 

decrease the magnitude of ijr , and their 

performance is analyzed in [12]. Compared to offset 

min-sum, normalized min-sum algorithm has better 

decoding performance but the multiplication 

increases the implementation complexity. In this 

paper, normalized min-sum algorithm is used in the 

proposed LDPC decoder. 

 

2.3 Layered Decoding Scheme 
In layered decoding scheme, the parity check matrix 

can be viewed as horizontal layers, and each layer 

can represent a component code [13]. The code is 

composed of all layers and their intersections. In 

QC-LDPC code, the rows and columns are naturally 

blocked by the permutation matrix, so each block 

row can be indicated as a layer. As each layer starts 

decoding, the inputs of variable node contain 

channel inputs and the extrinsic messages of the 

check nodes from the previous layers. Iterations 

within a layer are called sub-iterations and the 

overall process is labelled as super-iterations. 
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In each sub-iteration, the variable-to-check 

message 'jiq  is firstly computed by: 

''' ijjji rQq                                  (7) 

Where 'ijr  is the check-to-variable message in 

the previous super-iteration of this layer, and 'jQ  is 

the LLR result of variable node j  from the previous 

sub iteration. The 'ijr  is computed by (1) or (5) or 

(6), and 
jQ  is computed by: 

ijjij rqQ  '                             (8) 

When super-iteration is finished, The codeword 

is obtained by the sign of 
jQ . 

In general, the decoding convergence speed of 

the layered decoding scheme is two times faster than 

that of the two-phase scheme, and in layered 

decoding, only 
jQ  and ijr  are stored in memories 

because the variable-to-check message jiq are 

computed by (7). 

 

2.4 Word-length of Fix-point Data 
 

The difference of fix-point data and floating-point 

data is that for fix-point data, the position of the 

decimal point is fixed. The word-length of integer 

part and the fraction part are constant. For fix-point 

data, we have: 

WL IWL FWL   

WL  is the word-length of the fix-point data, IWL  is 

the word-length of the integer part, FWL  is the 

word-length of the fraction part.  

A signed number is always expressed by two’s 

complement form, in this case, IWL  contains a sign 

bit: 0 for positive number, 1 for negative number, 

and in this case: 

1WL IWL FWL    

So the range of the signed fix-point data is 

[ 2 , 2 2 ]IWL IWL FWL  , the precision of the data is 

2 FWL
. 

In LDPC decoder hardware implementation, we 

use the notation ( : )WL FWL  to represent a 

quantization scheme. As introduced previously, WL  

bits are used for total bit size and FWL  bits are used 

for fractional values. 

 

2.5 Monte Carlo Simulation Method 
The quantization scheme of 

jLLR  significantly 

affects the decoding performance and the total 

decoder complexity, and the word-length of other 

terms in the decoding algorithm are also depended 

on it, so the quantization scheme of 
jLLR  should be 

determined firstly. Though large word-length has 

good decoding performance, it causes hardware 

overhead for the buffers and a large number of 

hardware for the iterative decoding computation. A 

small word length may result in very poor 

performance. Hence, the quantization scheme 

should balance the decoding performance and the 

hardware complexity. 

There are two steps in Monte Carlo simulation 

method. First, the quantization scheme of channel 

message is obtained. Second, in two-phase decoding 

scheme, the finite word-length of extrinsic message 

of check node and variable node are obtained. In 

layered decoding scheme, the finite word-lengths of 

variable node message and the extrinsic message of 

check node are obtained sequentially. In [15-17], the 

word-lengths of variable node message and the 

extrinsic message of check node are equal. 

 

 

3 An Improved Word-length Optimi-

zation Method 
In LDPC decoding, the expected BER is always 

below 10-6, and that means 108 message bits should 

be transmitted in Monte Carlo simulation. It will 

cost several days to obtain the quantization scheme 

of all the terms using Monte Carlo method. In the 

proposed method, days of time will be saved 

because of more than half Monte Carlo simulations 

are omitted. 

The proposed finite word-length optimization 

method is expressed as follows:  

Step 1, the quantization scheme of channel 

message is obtained using Monte Carlo simulation. 

Meanwhile, the statistical distribution result of 

variable node’s posterior probability message 
jQ  is 

also obtained.  

Step 2, by analyzing the statistical distribution 

result, the quantization scheme of 
jQ  is achieved.  

At last, the word-length of ijr  equals to the word-

length of 
jQ . 

This method could be used in any min-sum based 

decoding algorithm. 
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4 Further Word-length Optimization 

of the Check Node Extrinsic Message 
 

In layered decoding scheme, only ijr  is stored in the 

extrinsic memory. So the word-length of ijr  deeply 

affects the area of the decoder. In [15-17], the word-

lengths of ijr  and 
jQ  are equal. But in min-sum 

based LDPC decoding algorithm, as function (1) 

shows, the check node extrinsic message 
ijr  is the 

minimum value of the input messages 
'jiq . So there 

is a chance that the word-length of 
ijr  could be 

further optimized. In this section, we propose 

methods to further optimize the word-length of 

ijr both in Monte Carlo method and the proposed 

method. 

 

4.1 In Monte Carlo Method 

Let 
jLLR  and 

jQ  use the quantization scheme 

obtained in Monte Carlo simulation method as 

introduced in section 2.5. The appropriate word-

length of 
ijr is obtained by analyzing BER curves of 

ijr  with various word-length. 

More Monte Carlo simulations are needed in the 

word-length optimization process of 
ijr , and that 

means more time is needed in Monte Carlo 

simulation method to obtain the quantization 

scheme of all the terms. 

 

4.2 In the Improved Optimization Method 
In the improved method, the process of optimizing 

the word-length of 
ijr  is similar as the process of 

jQ . The statistical distribution result of 
ijr  is 

obtained in step 1, and the result is used to choose 

the appropriate word-length of 
ijr . 

In the proposed method, the process of 

optimizing the word-length of ijr  doesn’t bring in 

any extra Monte Carlo simulation, so the time of 

optimizing the word-length of all the terms is nearly 

the same as in section 3. 

 

 

5 Simulations and Discussions 
 

5.1 Monte Carlo Method 
In this section, we use layered offset min-sum 

algorithm as the decoding algorithm, all the BER 

curves are obtained by transmitted 100,000 code 

words, the max iteration number is 50, the 

modulation method is BPSK and the channel  

module is AWGN. BER results over Monte Carlo 

Simulation are used to compare the different 

performance of various quantization scheme of 

jLLR , 
jQ  and ijr .  

The performances of the (1944, 972) LDPC code 

in IEEE 802.11n with floating point, (7:4), (6:3) and 

(5:2) quantization schemes of 
jLLR  are shown in 

Fig. 1. It shows that (7:4) quantization scheme has 

the best performance of the three fix-point 

quantization schemes, and the difference of 

decoding performance between (7:4) and (6:3) 

quantization scheme is less than 0.05dB. The (5:2) 

quantization scheme has the worst decoding 

performance. Thus it turns out that using the (6:3) 

scheme of 
jLLR  seems to be the optimal tradeoff 

between hardware complexity and decoding 

performance. This quantization scheme has a 

precision of 32 0.125   with a maximum value of 
2 32 2 3.875   and a minimum value of 

22 4   . 

Let 
jLLR  use the (6:3) quantization scheme, the 

decoding performances of the (1944, 972) LDPC 

code in IEEE 802.11n with various word-length of 

jQ  (which is denote by WQ) are shown in Fig. 2. As 

shown in Fig. 2, 9QW   has nearly the same 

performance as 
QW   , and when 8QW  , the 

BER curve has an error floor at 10-5. So at last, we 

choose 9QW  . The precision of 
jQ  is the same as 

that of 
jLLR . 

Let 
jLLR  use (6:3) quantization scheme, 

jQ uses 

(9:3) quantization scheme, the decoding 

performances of the (1944, 972) LDPC code in 

IEEE 802.11n with various word-length of 
ijr  are 

shown in Fig. 3. When 7rW  , the BER curves is 

coincide with the curve of 
rW   , and there is only 

little difference between 6QW   and 7rW  . For 

example, when SNR=1.9dB, BER of 7rW   is 

63.0 10 , and BER of 6rW  is 63.44 10 . But the 

difference between 5rW   and 6rW   is quite 

significant. So at last, we choose 6rW  . And the 

precision of ijr  is also the same as that of 
jLLR . 
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Figure 1. BER Curves of 
jLLR  under Layered Offset Min-Sum Algorithm with Different 

 Quantization scheme. 

 

Figure 2. BER Curves of 
jQ  under Layered Offset Min-Sum Algorithm with  

Different Quantization 
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The quantization scheme of all the terms in 

offset min-sum algorithm is summarized in table 1. 

In [15-17], the word-length of 
ijr  would be the 

same as 
jQ , so in the proposed method, the 

word-length is further optimized by 1/3. 
 

5.2 The Improved Optimization Method 
We also use the example in 5.1. The statistical 

distribution result of 
jQ  and 

ijr  in the simulation of 

Fig. 1 is shown in Fig. 4 and Fig. 5. The assumed 

SNR of AWGN channel is 1.9dB, and in this case, 

the average iteration is 6.08. In Fig. 4 and Fig. 5, the 

x-axis data is quantized. For example, the number 

‘5’ in x-axis equals to 0.625.  

As shown in Fig. 4, the distribution range of 
jQ  

increases as the iterations increase, and most values 

of 
jQ  is in the range of (-256, 256), so the 

quantization scheme of 
jQ  is (9:3). 

From Fig. 4, we can see that the area of the 

curves decrease as the iterations increase. It means 

the amount of 
jQ  decreases with the iterations, and 

that because in each iteration, many code words are 

decoded, and the number of un-decoded codes 

decreases with the increasing of iterations. 

   From Fig. 4, we can also see that the statistical 

distribution curve of the channel input data 
jLLR  is 

the superposition of two Gauss curves, and the 

symmetry axis of the two curves are 8x    and 

8x  .  That  because in  the s imulat ion,  the 

modulation system is BPSK, and in BPSK, bit ‘0’ is 

changed to ‘-1’, and bit ‘1’ is unchanged, and the 

channel module in the simulation is AWGN, the 

data received at each time is equal to the sent data 

plus Gaussian noise, so the statistical distribution 

curve of 
jLLR  is the superposition of two Gauss  

 

Figure 3. BER Curves of 
ijr  under Layered Offset Min-Sum Algorithm with  

Different Quantization 

Table 1: Quantization Scheme of Offset Min-Sum Decoding Algorithm 

Message 
Quantization 

scheme 
Range Precision 

jLLR  (6:3) (-4, 3.875) 0.125 

jQ  (9:3) (-32, 31.875) 0.125 

ijr  (6:3) (-4, 3.875) 0.125 
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Figure 4 Statistical Distribution of 

jQ  

 

 
Figure 5 Statistical Distribution of 

ijr  

 
Figure 6. BER Curves of 

jQ  under Layered Offset Min-Sum Algorithm with  

Different Quantization 
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curves. The quantization scheme of 
jLLR is (6:3), so 

the symmetry axis of the two curves are 8x    and 

8x  . 

As shown in Fig. 5, the distribution range of 
ijr   

increases with the iterations, and most values of 
ijr  

is in the range of (-32, 32), so the quantization 

scheme of 
ijr  is (6:3).  

In Fig. 5, there is a wave crest around 0 in the 

statistical distribution curve of the first iteration, and 

the crest disappears as the iterations increase. That 

because in the first few iterations, the signs of many 

jQ  are uncertain or the reliabilities of 
jQ  are small, 

and from function (1), we can conclude that in the 

first few iterations, most values of 
ijr  are around 0. 

When the number of iterations increases, more 

codeword is decoded, and for the un-decoded 

codeword, the reliability of 
jQ  and the range of 

ijr  

would increases. So the wave crest around 0 

disappears with iterations. 

Fig. 6 shows the decoding performance of the 

(1944, 972) LDPC code in IEEE 802.11n with 

floating-point and the final quantization scheme. It 

is shown that the decoding performance loss using 

the proposed quantization scheme compared with 

floating point is less than 0.1dB. 

In this example, by using Monte Carlo method, 

12 BER curves are needed to obtain the final 

quantization scheme. In the improved finite word-

length optimization method, only 3 BER curves and 

2 statistical distribution curves are needed. So in this 

example, the improved finite word-length 

optimization method reduces the simulation work by 

75%.  

Generally speaking, in Monte Carlo simulation 

method, for layered decoding scheme, at least 9 

BER curves are needed to obtain the final 

quantization scheme (3 curves for 
jLLR , 3 curves 

for 
jQ  and 3 curves for 

ijr ), for two-phase decoding 

scheme, at least 6 BER curves are needed to obtain 

the final quantization scheme(3 curves for 
jLLR  and 

3 curves for the extrinsic messages of variable 

nodes). In the proposed finite word-length 

optimization method, only 3 BER curves are needed 

to obtain the final quantization scheme for both 

layered decoding scheme and two-phase decoding 

scheme. So the proposed method can reduce the 

simulation work by more than 50% 

 

 

6 Conclusion 
In this paper, we proposed a new word-length 

optimization method and further optimized the 

word-length of the check node extrinsic message. In 

 
Figure 6. BER Curves of 

jQ  under Layered Offset Min-Sum Algorithm with Different Quantization 
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the proposed method, the word-length of variable 

node’s posterior probability data and check node’s 

extrinsic message is concluded by the statistical 

distribution result and the BER (Bit Error Rate) 

curves. Compared to the pure Monte Carlo 

simulation, the proposed method could reduce the 

amount of simulation work by at least 50%, and has 

the same results. 
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