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Abstract: Optimal energy scheduling problem for single-user wireless communication system in fading channel
is studied in this paper. In this schedule, the transmitter is powered by hybrid energy sources including both the
conventional grid and an energy harvester collecting energy from nature and storing energy in a rechargeable bat-
tery. In this system, data arrival process, energy harvesting process and channel state are all time-varying and
possibly unpredictable. our objective is to develop policies of transmission power to minimize the additional en-
ergy consumption from the non-renewable energy source with the constraint of data queue stability and available
energy harvested. We propose an online simple optimal algorithm which provides insight into how to efficiently
utilize the energy supplied by the energy harvester. We utilize the technique of Lyapunov optimization to exploit
energy efficient scheduling of the transmitter by adaptively adjusting transmission power, while at the same time
provided a delay guarantee less than the maximum delay spent in the data queue. The challenge in this work is
to provide an efficiently low complexity algorithm without knowing priori information of probability distribution.
Finally, Simulation results of this algorithm show substantial reduction of energy from the non-renewable source
‘compared to two simple greedy algorithm.

Key–Words: Energy harvesting, Lyapunov optimization, Optimal transmission policy, Hybrid energy source, Wire-
less communication.

1 Introduction

The rapidly increasing mobile data has led to a high
demand for energy in wireless networks. In fact, the
cellular networks consume world-wide approximate-
ly 60 billion kWh per year. In particular, 80% of
the electricity in cellular networks is consumed by the
base stations (BSs) which produce over a hundred mil-
lion tons of carbon dioxide per year [1]. These figures
are projected to double by the year 2020 if no further
actions are taken. Driven by environmental concerns,
green communication has received considerable inter-
est from both industry and academia [2–4]. However,
a tremendous number of green technologies/methods
have been proposed require the availability of an ide-
al power supply such that a large amount of ener-
gy can be continuously used for system operations
whenever needed.In recent ten years, the energy har-
vesting(EH) technique advances very quickly and has
attracted considerable interest as an environmentally
friendlier supply of energy for communication nodes
compared to traditional energy sources. In future 5G

networks, diverse base stations to support small cell-
s and heterogeneous networks are densely deployed,
EH nodes in wireless network harvest energy from
their surroundings and can ensure a free and perpet-
ual supply of energy. As a result, wireless networks
with energy harvesting transmitter are not only envi-
sioned to be energy-efficient in providing ubiquitous
service coverage, but also to be self-sustained.

There has been recent research effort on under-
standing data transmission with solely energy harvest-
ing transmitter that has a rechargeable battery from re-
newable energy sources. In [5] and [6], the authors
proposed optimal power control time sequences for
maximizing the throughput by a deadline with a sin-
gle energy harvester. In [7] and [8], optimal pack-
et scheduling and power allocation algorithms were
proposed for energy harvesting systems for minimiza-
tion of the transmission completion time, respective-
ly. In [9–11], different optimal packet scheduling al-
gorithms were proposed for additive white Gaussian
noise (AWGN) broadcast channels for a set of prese-
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lected users. But in [5]- [11] researchers consider de-
terministic EH model where the availability of the off-
line knowledge of energy and data arrivals at the trans-
mitter are known. Due to the intermittent nature of
energy generated by a natural energy source, resulting
in highly random energy availability at the transmitter,
so the prior statistical information of energy and data
arrivals are greatly difficult to know. For example, so-
lar energy and wind energy are varying significantly
over time because of weather and climate conditions.
On the other hand, although the amount of renewable
energy is potentially unlimited, transmitters powered
solely by an energy harvester may not be able to main-
tain a stable operation and to guarantee a certain quali-
ty of service (QoS). Therefore, a hybrid energy source
system design, which uses different energy sources
in a complementary manner, is preferable in practice
for providing uninterrupted service [12, 13]. A hybrid
energy source is a combination of a constant energy
source, e.g., power grid ,diesel generator etc., and an
EH source which harvests energy from solar, wind,
thermal, or electromechanical effects. [14] considers
a hybrid energy harvesting system, but it assumes the
knowledge of energy and data arrivals are known as
well as [5]- [11]. [22] consider two scenarios for the
arrival process of the data packets into the data queue
at the transmitter, and derive offline and online pow-
er allocation schemes that minimize the total amount
of energy drawn from the constant energy source by
Stochastic dynamic programming (DP) approach, but
the online algorithm has high complete complexity.

This paper considers wireless communication us-
ing energy harvesting transmitters with hybrid energy
source as shown in Fig.1. We assume that the trans-
mitter can adaptively change its transmission power
for data queue stability according to the available en-
ergy and the remaining number of bits. When ener-
gy stored in the rechargeable battery harvested from
renewable source is not enough for transmission be-
fore data backlog deadline, the transmitter does not
absorb additional energy from the non-renewable en-
ergy source such as power grid, in other word, con-
stant energy source is just as a renewable energy sup-
plement. The objective of our work is to develop
methods for transmission to minimize the time aver-
age of additional energy consumption draw from the
non-renewable energy source with the constraint of
data queue stability and available energy harvesting,
such that the harvested energy is efficiently utilized.
The solution of the optimization problem considered
in this paper can facilitate the design of reliable green
communication systems.

In this paper we utilize the technique of Lyapunov
optimization initially developed in [15–17] for dy-
namic control of queueing systems for wireless net-

a(t)

b(t)

Data queue D(t)

Energy queue S(t)

Non-renewable

energy source

( ) ttp D×

h N

Tx

CSI feedback

Rx

Figure 1: The model of energy harvesting transmitter
with hybrid energy source

works. In [17], researchers utilize the Lyapunov op-
timization technique to show that the queuing mod-
el naturally fits in the renewable supplier scheduling
problem and present a simple energy allocation algo-
rithm that does not require prior statistical information
and is provably close to optimal. In [17], researchers
only consider a general model, in our work, we ex-
tend that approach to energy harvesting transmitter
with hybrid energy source in wireless communication,
a single-user fading channel with additive Gaussian
noise, limited transmission power of the transmitter
and the special relationship between transmission rate
and power. The problem is now more complete and
practical while still providing a simple approach for
on-line operation.

Our main contributions in this work is that we are
first to apply Lyapunov optimization to study stochas-
tic energy efficient scheduling of the transmitter by
renewable energy sources without prior information
of system unknown variable, while at the same time
providing a guarantee on the maximum delay Dmax

spent in the data queue. The online algorithm de-
rived by Lyapunov optimization in this paper is rela-
tively simple to implement compared to DP approach
in [22], does not need a-priori statistical knowledge.
In contrast, DP requires more stringent system mod-
eling assumption, has a more complex solution that
typical requires knowledge of energy harvesting, data
arrival and channel state. Besides, DP approach in-
volves computation of a value function that can be
difficult when the state space of the system is large,
and suffers from a curse of dimensionality when ap-
plied to large dimensional systems (such as systems
with many queues).
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2 System Model and Problem State-
ment

This paper considers wireless communication using
a rechargeable battery that is able to harvest energy
from nature, which operates in discrete time with unit
time slots t ∈ {0, 1, 2, 3, · · · }, and harvests b(t) u-
nit of energy at the beginning of each slot t, buffered
in the rechargeable battery only for transmission. The
process b(t) corresponds to the renewable supply and
is assumed to be time varying and unpredictable. Ev-
ery slot arrival date is stored in the data queue for
transmission to the receiver. Let a(t) be new arrivals
on slot t, in units of bits. The process a(t) as well as
b(t) is assumed to be time varying and unpredictable.

We consider a single-user fading channel with ad-
ditive Gaussian noise as shown in Fig.1, and with the
perfect channel state information (CSI) known at the
transmitter and the receiver. The link channels are
time-varying so that we denote with h(t) as the chan-
nel state at slot t (representing , for example, attenua-
tion values and/or noise levels), and assume it is inde-
pendent and identically distributed (i.i.d.) over slots in
a finite set H , i. e. h(t) ∈ H for all t. Channel condi-
tions remain constant for the duration of each slot but
change at slot boundaries.

We assume that the transmitter can adaptively
change its transmission power for data queue stability
according to the available energy and the remaining
number of bits. At the beginning of each time slot t,
the transmitter chooses a power P (t) to transmit data
in the data queue in a First-In-First-Out(FIFO) man-
ner, the maximum transmission power of the transmit-
ter is limited, and denoted as Pmax. During timeslot
t, we use the amount of energy p(t) · △t, when the
rechargeable battery energy is not enough for trans-
mission before data backlog deadline, an amount of
additional energy p(t) · △t − S(t) will be purchased
from the non-renewable energy source, where △t is
the duration of one timeslot.

We assume that the transmission rate µ(t) over
the wireless link (a, b) and transmit power p(t)
are related through a function in [18]: µab(t) =
g(p(t), hab(t)), each time slot the rate-power function
g(·) determines the number of bits that can be trans-
ferred over the wireless link (a, b). The rate-power
curve is shown in Fig.2.

In [6] the received signal y is given by y =√
hx + n, where h is the (squared) fading, x is the

channel input, and n is a Gaussian random noise with
zero-mean and unit-variance. Whenever an input sig-
nal x is transmitted with power p in the duration △t,
△t
2 log(1 + hp) bits of data is served out from the

backlog with the cost of p · △t units of energy de-

Figure 2: (a) Set of rate-power curves for improving
channel conditions S1, S2, S3. (b) Curve of relation-
ship between single power Pab and transmission rate:
concave function curve

pletion from the energy queue. This follows from the
Gaussian channel capacity formula. If at timeslot t the
transmit power of the signal is x2(t) = p(t), the value
p(t) is a control decision on slot t, and corresponding
transmission rate µ(t) in bits per channel use is

µ(t) = g
(
p(t), h(t)

)
=

1

2
log2

(
1 + h(t)p(t)

)
∀t
(1)

Letting Q(t) represent the backlog of the data
queue on slot t with Q(0) = 0, we have the following
update equation:

Q(t+ 1) = max[Q(t)− µ(t) · △t, 0] + a(t) (2)

When Q(t) > 0, we must decide how much transmis-
sion power to use on the current slot or wait for a more
energy-efficient future channel state.

The battery level at time t is denoted as S(t). The
battery energy is depleted due to link transmissions
but is also replenished due to a recharge process. En-
ergy queue update equation is followed as:

S(t+ 1) = max[S(t)− p(t) · △t, 0] + b(t) (3)

We assume that energy harvesting occurs at beginning
of each timeslot, and must be stored in the battery then
can be used, and harvesting energy is not enough for
transmission before data backlog deadline.

3 The Dynamic Algorithm
Suppose that the energy harvesting process b(t), the
data arrival process a(t), and the channel state h(t),
as described previously, with some unknown proba-
bility distribution. We further assume the values of
b(t), a(t) and h(t) are deterministically bounded by
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finite constants bmax, amax, hmin ,hmax, so that:

0 ≤ b(t) ≤ bmax, ∀t
0 ≤ a(t) ≤ amax, ∀t

hmin ≤ h(t) ≤ hmax ∀t

The queue backlog Q(t) evolves according to e-
quation (2). The decision variable p(t) is chosen ev-
ery slot t subject to the constraint 0 ≤ p(t) ≤ pmax

for all t, We assume that g(pmax, hmin) ≥ amax ,
so that it is always possible to stabilize the queue
Q(t). During t slot there is the amount of ener-
gy max[p(t) · △t − S(t), 0] absorbed from the non-
renewable energy source.

We want to find an algorithm that choose p(t)
over time to solve:

Min lim
t→∞

1

t

t−1∑
τ=0

E{max[p(τ) · △t− S(τ), 0]}

S.t.: Q̄ < ∞
0 ≤ p(t) ≤ pmax ∀t

(4)

Where Q̄ is the time average expected queue backlog,
defined:

Q̄ , lim sup
t→∞

1

t

t−1∑
τ=0

E{Q(τ)} (5)

Specifically, a queue Q(t) is stable if

lim sup
t→∞

1

t

t−1∑
τ=0

E{Q(τ)} < ∞

according to the definition of [15], hence the first con-
straint meets data queue stability.

3.1 The delay-aware virtual queue
Note that (4) does not include the terms accounting for
delay constraints, we solve the above problem while
also maintaining finite worst case delay using the fol-
lowing ”virtual queue Z(t)”, in [21] which are defined
as :Z(0) = 0, fixed a parameter ϵ > 0 and according
to the following update:

Z(t+1) = max
[
Z(t) + ϵ1Q(t)>0 −△t · µ(t), 0

]
, ∀t
(6)

where 1(Q(t)>0) is an indicator function that is 1 if
Q(t) > 0, and 0 else. This ensures that Z(t) grows
by impose a penalty ϵ to the virtual queue backlog if
there are data in Q(t) queue that has not been serviced
for a long time. The constant ϵ can adjust the growth
rate of the virtual queue, if we can control the system
to ensure that the queues Q(t) and Z(t) have finite
upper bounds, then we can ensure all bites are served
with a worst case delay given in the following lemma.

Lemma 1 (Worst Case Delay) Suppose the
system is controlled so that the queue Q(t)
and Z(t) have finite upper bounds, e.g.
Z(t) ≤ Zmax and Q(t) ≤ Qmax for al-
l t, for some positive constants Zmax and
Qmax. Then all bits are served with a max-
imum delay of Dmax slots, where:

Dmax , [(Qmax + Zmax)/ϵ] (7)

Proof 1: The proof of Lemma 1 follows the ap-
proach of Lyapunov optimization in [17, 18, 21]. We
use contradiction to prove the worst delay time is less
than Dmax. The following shows that data arrivals a(t)
at any slot t will be served or before timeslot t+Dmax.
Suppose not, then the queue backlog Q(τ) > 0 during
slots τ ∈ {t+1, · · · , t+Dmax }. In this case, for all
τ ∈ {t+1, · · · , t+Dmax } we have 1Q(t)>0 = 1 and
from (6) have:

Z(t+ 1) ≥ Z(t)−△t · µ(t) + ϵ (8)

Summing (8) from slot t+1 to t+Dmax yields:

Z(t+Dmax+1)−Z(t+1) ≥ Dmax·ϵ−
t+Dmax∑
τ=t+1

µ(τ)·∆t

(9)
Since Z(t + 1) ≥ 0 and Z(t +Dmax + 1) ≤ Zmax,
(9) can be further written as:

Zmax ≥ Dmax · ϵ−
t+Dmax∑
τ=t+1

µ(τ) ·∆t (10)

Due to FIFO service manner for data queue and
Q(t) ≤ Qmax, if the arrival data is not fulfilled on
before t+Dmax, the total data queue backlog should
be more than the upper bound of queue length Qmax,
so a(t) must be served within {t + 1, · · · t + Dmax

}. Hence,
∑t+Dmax

τ=t+1 µ(τ) ·∆ < Qmax must be held.
Substituting this into (10) then rearranging and yields:

Dmax < [(Qmax + Zmax)/ϵ] (11)

(11) is contradiction with the definition (7), so the de-
lay of data queue Q(t) should be less or equal to Dmax.

3.2 Lyapunov optimization
Define Ø(t) ,

(
Q(t), Z(t)

)
as the concatenated vec-

tor of the real and virtual queues. As a scalar mea-
sure of the congestion in both the Z(t) and Q(t)
queues, we define the following Lyapunov function:
L
(
Ø(t)

)
, 1

2

[
Q(t)2 + Z(t)2

]
. Define the condition-

al 1-slot Lyapunov drift as follows:

△
(
Ø(t)

)
, E {L(Ø(t+ 1))− L(Ø(t))|Ø(t)}

(12)
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our control algorithm is designed to observe the cur-
rent queue states Z(t), Q(t) and the current chan-
nel state h(t), and to make a decision p(t) (where
0 ≤ p(t) ≤ pmax for all slots) to minimize a bound
on the following expression every slot t:

min△
(
Ø(t)

)
+V E {max[p(t) · △t− S(t), 0]|Ø(t)}

(13)
Note that the left part is the growth of the queue

and the right part is the expected energy absorbed
from the non-renewable energy source, and (13) is
called drift-plus-penalty expression. V is a pos-
itive parameter that is used to tune performance-
delay tradeoff. Intuitively, taking actions to minimize
△
(
Ø(t)

)
alone would push both queues towards low-

er backlog but incur a large penalty, and so our ap-
proach minimizes a weighted sum of drift and penal-
ty. The objective is to minimize the weighted sum of
drift and penalty, which can be proven bounded.

Lemma 2 The drift-plus-penalty expres-
sion for all slots t satisfied:

△
(
Ø(t)

)
+ V E {max[p(t) · △t− S(t), 0]|Ø(t)}

≤ B + V E {max[p(t) · △t− S(t), 0]|Ø(t)}
+Q(t)E {a(t)−△t · µ(t)|Ø(t)}

(14)

+ Z(t)E {ϵ−△t · µ(t)|Ø(t)}

where the constant B is defined as:

B =
a2max +△t2 · µ2

max

2

+
max[ϵ2,△t2 · µ2

max]

2

(15)

Proof 2: For real queue backlog,

Q2(t+ 1) = {max[Q(t)− µ(t) · △t, 0] + a(t)}2
(16)

Using the following inequality:

[max(b−c, 0)+a]2 ≤ b2+c2+a2+2b(a−c) (17)

which holds for any a ≥ 0, b ≥ 0 and c ≥ 0, then we
can yield:

Q2(t+1) ≤ Q(t)2+µ(t)2·∆t2+a(t)2+2Q(t)[a(t)−µ(t)·∆t]
(18)

Therefore:
1

2
[Q2(t+ 1)−Q2(t)] ≤ 1

2

(
µ2(t) ·∆t2 + a2(t)

)
+Q(t)[a(t)− µ(t) ·∆t]

(19)

Similar for virtual queue,

Z2(t+ 1) ≤ [Z(t) + ϵ1Q(t)>0 −∆t · µ(t)]2

= Z2(t) + [ϵ−∆t · µ(t)]2 + 2Z(t)[ϵ1Q(t)>0 −∆t · µ(t)]

≤ Z2(t) +max[ϵ2,
(
∆t · µ(t)

)2
]

+2Z(t)[ϵ1Q(t)>0 −∆t · µ(t)]
Thus we have:
1

2
[Z2(t+ 1)− Z2(t)] ≤1

2
max[ϵ2,

(
µ2(t) ·∆t2 + a2(t)

)
]

+ Z(t)[ϵ− µ(t) ·∆t]
(20)

Substituting (19) and (20) into (13), then we have
the expression of

(
∆Ø(t)

)
, thus we can have the in-

equality (14).

3.3 On-line optimization algorithm
Due to the left-hand side of (14) tightly bounded by
the right-hand side of (14), Minimizing the right-
hand-side of the drift-plus-penalty bound (14) every
slot t leads to the following dynamic optimization al-
gorithm: every slot t, observe Z(t), Q(t), h(t), a(t)
and b(t), then choose p(t) according to the following
optimization:

Min: V [p(t) · △t− S(t)]

− g
(
p(t), h(t)

)
· △t[Q(t) + Z(t)]

S.t. 0 ≤ p(t) ≤ pmax (21)

p(t) · △t > S(t)

Then update the actual and virtual queues Q(t)
and Z(t) by (2) and(6), respectively.

The problem formulation (21) is a strictly convex
function for p(t), so there is the global minimum. We
denote the power used in slot t that minimize (21) as
p∗(t).

p∗(t) = argmin V [p(t) · △t− S(t)]

−g
(
p(t), h(t)

)
· △t[Q(t) + Z(t)]

Then we have:

p∗(t) =
Q(t) + Z(t)

2 ln 2 · V
− 1

h(t)
(22)

The above p(t) value drives the queue update. In
fact, we choose p(t) in slot t according to:

p(t) =


0 p∗(t) < 0
p∗(t) 0 ≤ p∗(t) ≤ pmax

pmax p∗(t) > pmax

(23)

If p(t) · △t ≤ S(t) holds, the transmitter does
not need to absorb additional energy from the non-
renewable source; else, absorbs additional energy of
p(t) · △t− S(t).
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3.4 Performance analysis
Theorem 3 Assume g(pmax, hmin) · △t ≥
max[amax, ϵ], and Q(0) = Z(t) = 0, then fixes
parameter ϵ ≥ 0 and V > 0 for all t ∈ {0, 1, 2, . . . },
the proposed dynamic algorithm has the following
properties:

1. In all timeslots, the queues Q(t) and Z(t) are
upper bounded by Qmax and Zmax, where:

Qmax ,2 ln 2 · V
(

1

hmin
+ pmax

)
+ amax

Zmax ,2 ln 2 · V
(

1

hmin
+ pmax

)
+ ϵ

(24)

Namely, Q(t) ≤ Qmax, Z(t) ≤ Zmax for all t.

2. The maximum delay of data queue is:

Dmax =

[
4 ln 2 · V

(
1

hmin
+ pmax

)
+ amax + ϵ

]
/ϵ

(25)

3. Given that ϵ ≤ E[a(t)], the time-average expect-
ed energy from non-renewable source by the pro-
posed algorithm satisfies:

lim
t→∞

1

t

t−1∑
τ=0

E[p(t)·△t−S(t)] ≤ Copt+
B

V
(26)

where Copt is the optimal value of (4), and B is
given by (15).

Proof 3.

1. We use induction method to show that:

Q(t) ≤ Qmax = 2ln2·V (
1

hmin
+pmax)+amax, ∀t

It holds clearly for t = 0 (because Q(0) = 0).
Next assume:

Q(t) ≤ 2ln2 · V (
1

hmin
+ pmax) + amax, ∀t

what we can do is to prove it also true for slot
t+ 1. If

Q(t) ≤ 2ln2 · V (
1

hmin
+ pmax)

the maximum queue backlog growth is amax,
then

Q(t) ≥ 2ln2 · V (
1

hmin
+ pmax)

since Z(t) ≥ 0, we have:

Q(t) + Z(t) ≥2ln2 · V (
1

hmin
+ pmax)

≥ 2ln2 · V (
1

h(t)
+ pmax)

In this case, according to the algorithm proposed
above we will have p∗(t) > Pmax by formula
(22). Then we will choose p(t) = Pmax on slot
t according to (23), thus the data queue is served
by at least amax, because

g(pmax, hmin) ·∆ t ≥ max[amax, ϵ]

hence the data queue backlog cannot grow on the
next slot, i.e.,

Q(t+1) ≤ Q(t) ≤ 2ln2·V (
1

hmin
+Pmax)+amax

Therefore, we have Q(t) ≤ 2ln2 · V ( 1
hmin

+

Pmax) + amax for all slot t.
The proof that Z(t) ≤ 2ln2·V ( 1

hmin
+Pmax)+ϵ

is similar above.

2. It is very easy to prove according to Lemma 1
and the conclusion of Theorem3.

3. The proof follows the drift-plus-penalty present-
ed in [19–21].

The performance analysis shows that V as tune
parameter balance energy efficiency and delay. The V
value is larger, the performance will close to the opti-
mal infinitely, but the queue backlog is longer. Thus
we should choose appropriate V value. To reduce
Dmax value, we should use ϵ as large as possible while
still meet ϵ ≤ E[a(t)]. We can choose ϵ = E[a(t)] if
this expectation is given. Using ϵ = 0 does not pro-
vide a finite delay guarantee according to (25), it still
can preserves part (1) and (3) of Theorem 3.

In latter simulation, we relax the original condi-
tion:

g(pmax, hmin) · △t ≥ max[amax, ϵ]

as g(pmax, E(h(t))) · △t ≥ max[amax, ϵ],
so we obtain the mean worst delay Dmax.

4 Simulation Results
We consider a fading additive Gaussian channel with
bandwidth W where the transmission rate at slot t is

µ(t) = W log2
(
1 + h(t)p(t)

)
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h(t) is the channel signal-noise-ratio(SNR), i.e.,
the actual channel gain divided by the noise power
spectral density multiplied by the bandwidth, band-
width is chosen as W = 1MHz for the simulations.

We have performed simulations on data sets with
1 second timeslot interval and use solar energy as re-
newable energy source. The related simulation set-
tings are summarized in Table.1:

Table 1: SIMULATION SETTINGS

Parameters Value
Bandwidth W 1 MHz
Frame length 1 s
Noise power spectrum 10−19W/Hz

Average Path loss -110 dB
Channel Fading Gaussian
Avg. harvesting rate 100 mJ/frame
Harvest process I.I.D. poisson process
Max transmission power 2W

To better evaluate the performance of our pro-
posed algorithm, three scenarios are considered for
simulations. The first scenarios use Lyapunov opti-
mization algorithm with a balance between delay time
and performance, where ϵ = E{a(t)} and V is set to
500. The latter two scenarios use simple greedy algo-
rithms. The second scenario deploys ”absorb-upon-
arrival” strategy, when energy in rechargeable battery
cannot meet the need of the transmitter, the transmitter
absorbs energy from the non-renewable source imme-
diately to send data, which results in the least delay
time, but possibly higher cost. The final scenario de-
ploys the strategy ”absorb-at-deadline” means that the
transmitter absorbs energy at deadline when if no re-
newable energy is available after deadline. Before the
deadline, the transmitter use only renewable energy,
where the deadline is set to 25.

4.1 Performance on amount of absorbing ad-
ditional energy

Fig.3 shows the costs of three different scenarios for
each strategy. From the results, we can see Lyapunov
optimization achieves the minimum cost among the
three scenarios, the reason is that Lyapunov optimiza-
tion algorithm enables the transmitter to send more
data when channel state is better. The average max-
imum delay Dav is 9 slots used this algorithm. If
ϵ = 0, the cost used proposed algorithm will be s-
maller, but the average maximum delay will be larger.

Fig.4 gives the total additional energy absorbed
from non-renewable source in three cases: the amount
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Figure 3: Comparison of additional energy absorbed
from non-renewable source using different strategy

of harvesting energy is large, moderate and small re-
spectively (2000 slots). In case 3, when the amount
of harvesting energy is small, the strategy ”absorb-at-
deadline” has worse performance than ”absorb-upon-
arrival”. The reason is that in this case a good deal of
data is backlogged till the deadline, so the transmit-
ter send data in the maximum power at deadline slot,
and the relationship between the transmission rate and
power is concave function.
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Figure 4: Comparison of additional energy cost in d-
ifferent case

4.2 Performance on delay time
To have a better insight of impact of delay-time reduc-
tion, we have shown simulation results on the fraction
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of waiting data in Fig.5, not change the parameters in
Fig.4. Seen from Fig.5, Lyapunov optimization algo-
rithm has on average a much smaller delay than the
deadline. The arrival date on each slot waits most-
ly about 9 slots used proposed algorithm, while the
strategy ”absorb-at-deadline” waits mostly 24 slots.
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Figure 5: Histogram of delay for data waiting in the
service queue under two algorithm

4.3 Balance between performance and delay
In order to study the impact of parameter V on the cost
and mean delay, we have plotted Fig.6 showing the re-
lationship between the cost and the value of V and the
relationship between the mean delay time and the val-
ue V . We can see that as we expected, the mean delay
increases non-linearly with the value of V , while the
cost decreases with V . The cost and mean delay reach
saturation when V is larger than a certain value, which
illustrates that when V is large enough, the mean de-
lay will reach its maximum and the cost is close the
optimal value (Copt).

5 Conclusion and Discussion
In this paper, we focus on single-user wireless com-
munication system using hybrid energy harvesting
transmitter, in this system data arrival process, en-
ergy harvesting process and channel state are al-
l time-varying and possibly unpredictable, we utilize
Lyapunov optimization to exploit an efficient power
scheduling algorithm, the additional energy cost can
close to the minimum value infinitely by tuning the
parameter V , while gives the worst case delay Dmax.

To evaluate proposed Lyapunov optimization al-
gorithm, simulations with different profiles are per-
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Figure 6: the amount of additional energy and mean
delay time for different V value

formed and analyzed, a comparison is done with t-
wo other simple greedy algorithms presented in sim-
ulation part. Simulation results demonstrate that our
optimization algorithm provided both obviously bet-
ter performance and less delay as compared to the
greedy algorithms. The proposed optimization algo-
rithm in this paper is a robust energy efficiency ap-
proach, without knowing the statistics of underlying
processes, which is dominant position of this opti-
mization algorithm. In this paper we consider only
single user data queue, further, we can extend this ap-
proach to multiple data queues corresponding to dif-
ferent users with different delay requirement.
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