
A phased array antenna is widely used in wireless 
communication and radar systems. With the evolution of 5G 
and millimeter-wave communication, a large grid of small 
printed antennas is becoming popular [1, 2]. 

A phased array antenna comprises stationary elements 
excited at different phases to obtain radiation in different 
directions [3]. Phased arrays have been there for a long time. 
The first phased array antenna was made in 1955 [4]. The 
first printed phased array was reported by Munson et al. in 
1974 [5]. With the evolution of microwave and millimeter-
wave communication standards, the use of phased arrays 
became more common. There has been extensive research on 
phased array antennas with a significant number of radiating 
elements for 5G wireless communication [6]. 

The elements of a typical phased array have a spacing of 
one-half of the operating wavelength, represented by λ/2 [3]. 
A sparse array is a phased array antenna that has fewer 
elements than a conventional array. Synthesis of a sparse 
array reduces the overall cost, weight, required power, 
dissipated heat, etc. of a communication or a radar system 
because of the reduced number of elements of the array and 
the corresponding reduction in the excitation circuitry [7]. 

When an array has a fewer number of elements, the 
spacing between the elements becomes greater than λ/2. This 
causes an increase in the number of side lobes of the antenna. 
This is a major drawback of sparse arrays. Traditionally, this 
problem was addressed by adjusting the positions, spacing, 
and excitation weights of the array [7]. 

With the advancement of modern computers, soft-
computational optimization algorithms are widely being used 
for the synthesis of sparse arrays. Synthesizing a sparse array 
from a fully populated array is called an array thinning 
problem. A solution to an array thinning problem using 

genetic algorithm was proposed by R. Jain et al. in 2012 [8]. 
Another similar work was published by M. A. Zaman et al. 
in 2012 [9]. There are also analytical approaches for the 
synthesis of arrays. In 2016, E. Sandi et al. proposed a 
technique for the synthesis of sparse arrays using a 
combination of cyclic difference set and binomial amplitude 
tapering [10]. Such approaches usually involve a complex 
mathematical formulation and limited usability. 

In recent years, the synthesis of planar sparse arrays is 
emerging as a popular area of research. A modified genetic 
algorithm for the synthesis of planar arrays was proposed in 
2017 by K. Y. Reddy et al [11]. Another multi-objective 
optimization-based technique for sparse array synthesis was 
proposed in 2020 by H. Li et al [12]. In both of these works, 
the primary objective was to minimize the peak sidelobe 
power. The radiation pattern of the antenna is calculated 
numerically to obtain the value of the fitness function. There 
are also analytical approaches for the synthesis of planar 
phased array antennas. A singular value decomposition 
(SVD) based non-iterative approach for array synthesis was 
reported by P. F. Gu et al. in 2019 [13]. 

Arrays of printed antennas are most commonly used for 
millimeter-wave communication. Most of the printed 
antennas with a ground plane have a cosine radiation pattern. 
In this work, a sparse 2D phased array is presented with 
cosine antenna elements. The sparse array is synthesized 
from a 16×16 uniform rectangular array (URA). The number 
of elements in the array is reduced by 50%. The positions of 
the elements are tuned with Particle Swarm Optimization 
(PSO) algorithm to minimize the peak sidelobe level (PSLL). 

The remaining sections of the paper are arranged as 
follows. The design details of the 16×16 URA are presented 
in Section II. Section III covers the details of the synthesis 
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and optimization of the sparse array followed by the 
experimental results and discussions in Section IV. The 
paper is concluded in Section V. 

Matlab Phased Array System Toolbox® is used for 
computing all radiation patterns used and presented in this 
work. 

 

The topology of the uniform rectangular array is shown 
in Fig. 1. It is a uniform array with a spacing of half of the 
wavelength (λ/2) in both directions. The antenna element 
used is a cosine element. 

 

 

 

 
The antenna elements are excited with a progressive 

phase difference in the directions of both azimuthal plane 
and elevation plane. The progressive phase shift is illustrated 
in Fig. 2 (a) and (b). The excitation weights of the antenna 
are calculated from these angles of progressive phase 
difference along the directions of the azimuth angle and the 
elevation angle. 

Along the direction of the azimuth plane, the kth element 
has a phase of (k-1) δAZ. Similarly, the mth element along the 
direction of the elevation angle has a phase of (m-1) δAZ. 
Thus, the weight of excitation of the element (k, m) in the 2D 
array is given by Eq. 1. 
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For a uniform linear array, the analytical equations are 
available for estimating the values of the direction of the 
major lobe from the value of the progressive phase shift (δ) 
[3]. In this work, an experimental method is used to 
understand this correlation for the 2D planar array. A dataset 
is created by varying both δAZ and δEL within a range of -135 
degree to 135 degree at intervals of 15 degree resulting in a 
total of 361 scan-angles. The direction of the major lobe of 
the resultant radiation pattern is represented in terms of a 
combination of the azimuth angle (φ) and the elevation angle 

(θ) in a 3D polar coordinate system. The correlation plots are 
shown in Fig. 3. 

The sign of the correlation depends on the choice of the 
coordinate system. Here, the elevation angle is positive 
towards the top and negative towards the bottom and 
therefore a positive correlation is observed. The azimuth 
angle, on the other hand, is positive towards the right and 
negative towards the left leading to a negative correlation. 

 

 
(a) Progressive phase shift in the direction of azimuthal 

plane 

 
(b) Progressive phase shift in the direction of azimuthal 

plane 

Fig. 2. Illustration of the progressive phase shift in 

excitation 

 

 
Fig. 1. Topology of the URA 

 
(a) 

 
(b) 

Fig. 3 Correlation of the (a) Azimuth angle (φ) with δAZ and 

(b) Elevation angle (θ) with δEL 

2.1 Array Topology and Progressive 
Phase Excitation 

2. Design of a 16×16 URA  
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From Fig. 3(a) it is observed as δAZ and δEL is varied from 
-135 degree to +135 degree, the corresponding values of φ 

and θ vary from -45 degree to +45 degree. The elevation 
component of the radiation pattern shows a consistent linear 
correlation with the value of δEL. However, the relation 
between θ and δAZ is not consistent. It is evident from this 

observation that the value of θ depends upon both δAZ and 
δEL. 

For modeling such systems, computational approaches 
are more suitable than analytical approaches since the 
computational models can detect hidden patterns in the data 
that cannot be observed or modeled analytically [14]. An 
artificial neural network (ANN) model is trained to map the 

angle of the major lobe (φ, θ) with the progressive phase 
angle (δAZ, δEL). The architecture of the ANN model is 
shown in Fig. 4. 

The ANN model is trained with the data set prepared for 
observing the correlation. Since the dataset is relatively 
small, a shallow network with 5 neurons in the hidden layer 
is selected for this purpose. The dataset is randomly split into 
test data and train data. The network is trained with a 
Bayesian Regularization algorithm which is suitable for 
smaller datasets [15, 16]. 

The error histogram of the neural network training is 
shown in Fig. 5. A peak error of ±1.15 degree is observed 
which is acceptable for this problem. 

 
 

 

The key challenge in synthesizing a sparse scan-array is 
to ensure that the PSLL is minimized for all possible scan-
angles or all possible combinations of δAZ and δEL. 
Calculating the radiation pattern for all possible 
combinations is computationally very expensive. To make 
the experiment feasible, the radiation pattern is computed for 
three randomly selected (φ, θ) pairs. For each of these pairs, 

the corresponding values of δAZ and δEL are obtained from 
the trained ANN model. The radiation pattern of the antenna 
is computed for each of these three (φ, θ) pairs. The 
excitation weight matrix, W of the URA is calculated using 
Eq. 1. The objective function returns the maximum PSLL 
value out of the three (φ, θ) pairs. 

This step makes the objective function computationally 
expensive. To compensate for this, the PSO algorithm is 
used. The PSO is a widely used bio-inspired optimization 
algorithm and it is computationally less expensive than 
genetic algorithms (GA) as it requires fewer iterations [17]. 

The flowchart of the proposed approach for sparse array 
synthesis using PSO is shown in Fig. 6. Here, W is the 
excitation weight matrix of the 16×16 URA. B is a binary 
matrix of size 16×16. The weight of the sparse array is given 
by the Hadamard product of B and W (B ʘ W). Thus, the 
optimization problem can be defined mathematically as: 

    Minimize F B W   (2) 

Where F is the function that yields the maximum PSLL 
of the three randomly selected (φ, θ) pairs. In order to make 
sure that exactly 50% of the elements are removed by the 
PSO, an additional constraint is added which is given by Eq. 
(4). 
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Fig. 4. Architecture of the ANN model to map the radiation 

angles (φ, θ) with the progressive phase angle (δAZ, δEL) 

 
Fig. 5. Error histogram of the trained neural network 

 
 

Fig. 6. Flow diagram of the sparse array synthesis steps using 

PSO 

3. Synthesis of Sparse Array 

2.2 Mapping the Radiation Angle to the 
Progressive Phase Shift using ANN 
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The 16×16 URA is thinned into a sparse array using the 
method discussed in Section III. In this section, the results of 
various experiments performed are covered to validate the 
accuracy of the proposed technique. 

The element positions of the synthesized sparse array are 
shown in Fig. 7. Here, the number of elements in the sparse 
array is 128. The original 16×16 URA has 256 elements. 
Thus, the number of elements in the array is reduced by 
50%. 

It is observed that at some parts of the synthesized array, 
the vertical spacing of the original URA is maintained 
whereas, in some other parts, the horizontal spacing is 
maintained. This architecture guarantees that the excitation 
weights calculated for the URA work for the sparse array as 
well. Moreover, the elements that are scattered do not form 
any regular pattern. This suppresses the possibility of larger 

side-lobes that appear at multiples of the desired values of φ 
and θ. It is difficult to obtain such solutions analytically. 

 

The radiation patterns of the synthesized sparse array are 
analyzed for many combinations of the (φ, θ) pair. A part of 
these results is shown in Table 1. The table shows the 
required values of φ and θ, obtained values of φ and θ, and 
the PSLL values of the URA and the sparse array. 

TABLE I.  SOME OF THE ANGLES CONSIDERED 

φ  (deg) 
Desired 

θ (deg) 
Desired 

φ (deg) 
Obtained 

θ (deg) 

Obtained 

PSLL 
(dB) 
URA 

PSLL 
(dB) 

Sparse 

0 0 0 0 -13.58 -12.69 

0 45 0 45 -11.64 -11.59 

45 0 46 0 -11.48 -12.48 

45 -45 45 -45 -10.38 -9.89 

20 30 20 30 -12.27 -12.98 

-20 30 -20 30 -12.27 -12.02 

-35 -45 -35 -45 -11.00 -11.23 

10 -45 10 -45 -11.60 -11.73 

-10 -40 -10 -40 -11.85 -11.75 

-30 40 -30 40 -11.58 -11.98 

 

It is observed that the values of φ and θ obtained are 
almost the same as the required values of the parameters. 
This observation validates the accuracy of the ANN model to 
predict the values of δAZ and δEL. It also validates how the 
problem is formulated where the excitation weights of the 
sparse array are obtained from the Hadamard product of the 
weight matrix, W of the URA, and the binary matrix B. 

The PSLL values are obtained from the normalized 
radiation pattern of the arrays. It is observed that the PSLL 
values of the sparse array are close to that of the original 
URA. Thus, there is no significant increase in the side-lobe 
level due to thinning the array. Fig. 8 shows the normalized 
radiation pattern of the antenna at φ = 30 degree and θ = 40 
degree. For easier comparison, the values where the values of 
the radiation pattern are less than – 60 dB are flattened. 

From these figures, it is observed that the width and 
positions of the main lobe are identical for the URA and the 
sparse array. Although the sparse array has a larger number 
of side lobes, the values of these lobes are very small. Since 
the objective of the optimization problem was to suppress the 
PSLL only, the other side lobes are not significantly reduced.  

 

It is not possible to include all the radiation patterns in 
this paper. Therefore, the overall PSLL values of the URA 
and the proposed sparse array are compared in a 3D surface 
plot shown in Fig. 9. Here the values of φ and θ are tuned 
over the range of – 45 degree to + 45 degree. It is observed 
that only at these two extreme points, the PSLL value of the 
sparse array is slightly higher than that of the original URA. 
As the φ and θ approach (0, 0), the values of the PSLL of the 
URA and sparse array become almost the same. 

 

 
Fig. 7. Element positions of the synthesized 

sparse array. 

 
(a) URA 

 
(b) Sparse array 

Fig. 8. The radiation pattern of the (a) URA and (b) the 

synthesized sparse array for φ = 30 degree and θ = 40 degree 

4.2 Analysis of the Direction of Main
 Lobe and PSLL

 

4.1 The Architecture of the Sparsed Array 

4. Experimental Results and Discussions 
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A technique for synthesizing a sparse array from a 16×16 
URA is presented. The excitation weight matrix, W of the 
URA are estimated using an ANN model from the desired 
scan-angle. The PSO is used for obtaining a binary matrix B, 
such that the Hadamard product of B and W yields the 
excitation weights of the sparse antenna array. The 
experimental results show that the desired scan-angles of the 
sparse array are accurately obtained using this technique. 

The PSLL of the URA and the sparse array are compared 
for all possible scan-angles in a range of – 45 degree to + 45 
degree for both the elevation plane and the azimuthal plane. 
It is observed that the PSLL of the synthesized sparse array is 
almost the same as that of the URA except at the extreme 
ends of the scanning range. 

The overall scan angle of the proposed antenna array is 
90 degree for both the azimuth plane and the elevation plane. 
The array comprises cosine antenna elements that represent 
printed antennas used in 5G millimeter-wave wireless 
communication. Thus, the proposed sparse array has possible 
applications in 5G wireless communication and radar 
systems. 
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Fig. 9. Variation of PSLL with the direction of the 

main lobe for (a) URA (b) the sparse array 
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