
ith the rapid development of economy, noise
problems such as industrial noise and automobile

noise have become increasingly prominent. The
traditional passive noise control technology[1] is
effective for medium and high frequency noise through
passive control methods such as sound absorption and
sound insulation. However, active noise control[2],
namely the method of reducing noise signal through the
principle of destructive interference of sound waves, is
more effective for low-frequency narrow-band noise.
Adaptive denoising system is generated, that is, while
generating anti-noise signals, active repair of anti-noise
signals is carried out according to the change of noise to
complete active noise control.

FxLMS algorithm is widely used in active noise control

system due to its simple circuit structure, simple
implementation and small computation. Researchers through
FPGA[3], DSP[4], MCU[5], ASIC[6] and other design
methods for the hardware implementation of the algorithm.
Reference [3] puts forward a hardware implementation of
FxLMS algorithm based on FPGA, which divides the operation
part of the algorithm into filtering part and update part, in which
the filtering part is FIR filter, namely the process of
one-dimensional convolution; the update part is the weight
update part of LMS algorithm block, that is, the process of

multiply accumulate (MAC). Reference [5] proposes an
implementation of FxLMS algorithm using STM32F407
microprocessor of Cortex-M4, and proposes a fixed step size
method to reduce the computation and solve the problem of
floating-point operation.

An audio denoising coprocessor based on RISC-V custom
instruction set extension is designed in this paper. According to
the hardware implementation of traditional FxLMS algorithm,
the software and hardware co-design of FxLMS algorithm is
carried out, the work of filling and moving the data to be
processed is handed over to MCU for processing. Meanwhile,
the convolution and MAC operations with large computation
are designed as hardware accelerators, and the coprocessor is
designed in the way of instruction pipeline. Finally, the
hardware acceleration is completed by coprocessor, and the
heterogeneous SOC is combined with the hardware accelerator.

RISC-V instruction set has been widely welcomed all over
the world since it was published in 2014. RISC-V instruction
set design is simplified and efficient. At present, the setting of
RISC-V modular instruction set makes RISC-V architecture
have more choices, so that it can try to meet various
applications through a u nified architecture, which is an
advantage that X86 and ARM instruction set architecture do not
possess. Extensibility of instructions is a prominent feature of
RISC-V architecture. Users can customize instructions
according to the reserved instruction coding space. So that the
coprocessor has better portability.

w

Audio Denoising Coprocessor Based on RISC-V Custom Instruction

Set Extension
JUN YUAN1, QIANG ZHAO1, WEI WANG, XIANGSHENG MENG1, JUN LI1, QIN LI2

1School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications,
Chong Qing 400065, CHINA

2Chongqing Marketing Department of Southwest Oil & Gas Field Company, Chong Qing 401120,
CHINA

Abstract—As a typical active noise control algorithm, FxLMS is widely used in the field of audio denoising. In
this paper, an audio denoising coprocessor based on RISC-V custom instruction set extension was designed,
and the idea of software and hardware co-design was adopted; based on the traditional pure-hardware
implementation, the accelerator optimization design was carried out, and the accelerator was connected to RISC-
V core in the form of coprocessor. Meanwhile, the corresponding custom instructions were designed, the
compiling environment was established, and the library function of coprocessor acceleration instructions was
established by embedded inline assembly. Finally, the ANC system was built and tested based on E203-SoC,
and the test data was collected by audio analyzer. The results showed that the audio denoising algorithm could
be realized by combining heterogeneous SoC with hardware accelerator, and the denoising effect was about
8dB. The number of instructions consumed by testing custom instructions for specific operations was reduced
by about 60%, and the operation acceleration effect was significant.

Keywords—RISC-V, Custom instruction, ANC, Coprocessor.

Received: August 29, 2021. Revised: April 12, 2022. Accepted: May 9, 2022. Published: June 25, 2022.

 1. Introduction

2. RISC-V and Hbird E203 Core

1

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.23

Jun Yuan, Qiang Zhao, Wei Wang,
Xiangsheng Meng, Jun Li, Qin Li

E-ISSN: 2224-2864 189 Volume 21, 2022

In order to realize the audio denoising coprocessor based on
RISC-V instruction set, it is necessary to select the appropriate
RISC-V processor core as the carrier. Among many open
source RISC-V cores, such as Rocket[7], BOOM[8], RI5CY[9]
and others, Hbird E203 core adopts two-stage pipeline design
and supports RV32I/E/A/M/C instruction subset configuration,
and its supporting SoC provides a large number of IP modules,
including UART, IIC, SPI, etc[10]. Benchmark ARM
Cortex-M0+ in terms of performance, and its microarchitecture
is shown in Figure 1.

③
PC Generation

② Branch
Prediction

PC

①
Mini_decode

PC

Address
Selection Instruction

Fetch

ITCM

BIU

IR

Pipeline first stage

④ Decode
& Dispatch

OITF

RD_Regfile

⑥
ALU

⑦
LSU

⑧ MUL\DIV

⑨ Custom
Instruction

W
riteback

A
rbitration

WB_Regfile

interrupt

exception

Branch Prediction
decision

⑤

Pipeline second stage

Flash

Figure 1 Schematic diagram of E203 microarchitecture

E203 core adopts two-stage pipeline structure, the first stage
of which is value taking, and the second stage of which is
instruction decode (ID), execute (EX), writeback (WB) and
memory (MEM).

The first stage pipeline includes simple ID function block,
branch predictor and PC generator. The simple ID function
block (Tag 1 in the figure) partially decodes the obtained
instructions to obtain some instruction information, including
the classification of instructions, whether they are ordinary
instructions or branch jump instructions, and the types and
details of branch jump instructions. For branch jump
instruction, it is necessary to use static branch predictor (Tag 2
in the figure) to predict the jump and get the predicted jump
address of the instruction. The PC generator (tag 3 in the figure)
generates the PC value of the next instruction to be fetched,
generates PC according to different types such as fetching after
reset, sequential fetching, branch instruction fetching and
pipeline flushing fetching, and accesses instruction tightly
coupled memory (ITCM) or bus interface unit (BIU) to fetch
fingers through ICB bus. The PC value and the corresponding
instruction value are stored in the PC register and the IR
register.

The secondary pipeline mainly includes ID and dispatch (tag
4 in the figure), arithmetic logic operation unit (tag 6 in the
figure), memory access unit (tag 7 in the figure), long
instruction (tag 8 in the figure), custom instruction (tag 9 in the
figure), delivery and pipeline flushing (tag 5 in the figure). ID
and dispatching realize ID of instructions and dispatching
related information to arithmetic logic operation unit, and ALU
unit dispatches specific information to different execution units
for execution. One-cycle instructions such as logic operation,
addition and subtraction, shift, etc. are handed over to ordinary
ALU unit for processing. The branch jump instruction is
delivered to judge the prediction, and the prediction error needs

to be flushed by the instruction pipeline. The memory access
instruction is allocated to the memory loading unit for loading
and accessing data. Long-term coprocessor instructions will be
assigned to coprocessor units for execution.

The schematic diagram of active noise control system
architecture is shown in Figure 2, and the operation processing
part is the most classical FxLMS algorithm[11-13].

Noise
Source Primary path P(z)

Secondary
path S(z)

Adaptive
filter W(z)

LMS

x(n) d(n) e(n)

-
Acoustic area

Electronic area

FXLMS algorithm

y(n)

()S z
∧

y()n
∧

Figure 2 Schematic diagram of ANC system structure

The implementation of FxLMS algorithm has two different
acoustic paths. The main signal is sampled with a r eference
microphone, then the speaker emits an anti-noise signal, and the
error sensor measures the residual error signal. In this process,
the acoustic path between the reference noise source and the
error sensor is called the primary path, and the electrical to
acoustic path between the speaker and the microphone is called
the secondary path. FxLMS algorithm contains two parts, one is
the least mean square algorithm, and the other is adaptive
filtering.

The least mean square (LMS) algorithm is based on the
minimum mean square error criterion and the gradient method.
By improving the calculation method of the gradient value of
the mean square error, the algorithm can be shown by recursive
formulas such as Equations (1), (2) and (3)[14-16]:
 () () ()= Hy n n nW X (1)
 () () ()= −e n d n y n (2)
 *(1) () 2 () ()µ+ = +n n n e nW W X (3)

Where, ()nW represents the weight vector of the filter; ()nX
represents a set of vectors composed of input signals; ()y n
represents the output signal; ()d n represents the desired signal;

()e n represents the error signal; µ represents the step size
factor, where the larger µ is, the faster the convergence speed
of the algorithm is, and vice versa. However, the faster the
convergence speed, the worse the steady-state performance, so
it is necessary to constrain the step size factor. In this design,
considering the reduction of algorithm complexity and
processing flexibility, the selection of step factor is based on the

3. Fxlms Algorithm and Its Hardware
and Software Co-design Conception

3.1 LMS Algorithm Principle

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.23

Jun Yuan, Qiang Zhao, Wei Wang,
Xiangsheng Meng, Jun Li, Qin Li

E-ISSN: 2224-2864 190 Volume 21, 2022

fixed step proposed in [3].

The adaptive filtering part is a FIR filter, and the formula is
shown in Equation (4):
 () () ()= Ty n n nW X (4)

Where, ()y n represents ()nX generated by a FIR filter with
a weight coefficient ()nW , because every time a stage sound
source ()y n is generated, the weight coefficient ()nW is
updated by LMS operation. Therefore, updated time-varying
coefficients are obtained, i.e. the coefficients are automatically
and continuously adapted to a given signal to obtain a desired
response to complete adaptive filtering.

The coprocessor part is connected with the main processor in
the mode of instruction pipeline through NICE circuit interface,
and the hardware acceleration function is mobilized in the
mode of custom instructions in the software flow, which is
shown in Figure 3.

Configuring
Peripherals

Obtain reference signal Obtain error signal

Data movement

Load instruction

Load data to SRAM

Conv instruction MAC instruction

Conv operation

Store instruction

Data transfer to
external storage

Data calling

MAC array
operation

Update instruction

Update weight
cache

Figure 3 Flow chart of software and hardware co-design

The gray and pink parts in Figure 3 belong to the software
flow, of which specific significance is the external acquisition
of ANC system and the configuration of function blocks. Then
it includes storing the data at the corresponding address after
collection. Subsequently, the light gray part is the related
custom instructions. Used for realizing software and hardware
interaction between the main processor and the coprocessor, the
last dark gray part is the defined hardware acceleration part,
which specifically includes the adaptive filtering part in the
algorithm corresponding to convolution operation, the weight
update part corresponding to LMS algorithm in the algorithm
corresponding to multiplication and accumulation array
operation, and the corresponding cache unit used in data
handling.

At the same time, due to the particularity of serial operation
of the algorithm itself, this process has two steps. First, the
black flow line is the adaptive filtering operation in the main
path, and then the electrical to acoustic transformation is
needed through relevant peripherals to generate secondary
sound sources. The second step is the acquisition of error
signals and the updating operation of weight coefficients,

which will have a sequence relationship. Therefore, this design
process includes two paths, and only when both paths run out
can ANC system denoising be completed once.

The audio denoising accelerator designed in this paper
optimizes the updating weight and filtering module in the
traditional design. The parallel one-dimensional convolution
structure in the form of addition tree is used to replace the serial
MAC arithmetic unit to realize the filtering part, and the
parallel MAC array is used to replace the original updating
weight part, and the related modules of coprocessor are added.

In the traditional hardware implementation of FxLMS
algorithm, the filter module adopts MAC arithmetic unit,
namely multiply accumulate arithmetic unit and realizes
filtering in serial mode, which will reduce the arithmetic
performance of the filter module, and a lot of repeated
operations are needed when the filter order is long. Therefore,
this design adopts the strategy of sacrificing area in exchange
for performance improvement, and uses the addition tree
structure, which will greatly improve the parallel operation
ability and realize one-dimensional convolution operation. At
the same time, this design adopts MAC array parallel operation
to update the coefficients of weight matrix. Finally, this design
adopts the idea of data multiplexing, and uses data distributor to
reduce the resource consumption of weight coefficient storage
SRAM. The circuit structure is shown in Figure 4..

X_SRAM

W_SRAM

E_SRAM

MAC_Array

CONV

MAC

MAC

MAC

MAC

DATA_WIDTH*2
^FILTER_Order

DATA_WIDTH*
FILTER_Order

DATA_WIDTH*
FILTER_Order

1:FILTE
R

_O
rder

dispatcher
1:FILTE

R
_O

rder
dispatcher

1:FILTE
R

_O
rder

dispatcher

FI
LT

ER
_O

rd
er

:1
di

sp
at

ch
er

reg

reg

reg

reg

DMUX

DMUX

DMUX

DMUX

DMUX

DMUX

DMUX

DMUX

Y_FIFO

DATA_WIDT
H*2^FILTER_

Order

Figure 4 Structure diagram of hardware accelerator

The whole acceleration circuit comprises a reference signal
data buffer module (X_RAM), a weight coefficient data buffer
module (W_RAM), an error signal data buffer module
(E_RAM), a data distributor, a data distributor, a
one-dimensional convolution operation block, a MAC array
operation block and a data integrator.

The most critical parts in the accelerator circuit are
one-dimensional convolution operation block and MAC array
operation block. The one-dimensional convolution operation
block realizes FIR filtering part of the algorithm, and the MAC
array operation block realizes parallel weight coefficient update.

3.2 Adaptive Filtering

3.2 Software and Hardware Co-design

4. Hardware Design Part

4.1 Optimization of Operation Structure Design

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.23

Jun Yuan, Qiang Zhao, Wei Wang,
Xiangsheng Meng, Jun Li, Qin Li

E-ISSN: 2224-2864 191 Volume 21, 2022

Its circuit structure is shown in Figure 5.

MUL*

MUL*
ADD+

MUL*

MUL*
ADD+

ADD+

CONV

MUL* ADD+

W_SRA
M

MAC

Figure 5 Circuit structure diagram of arithmetic unit

Because the audio denoising algorithm needs to quickly
generate secondary sound sources after collecting reference
signals, and the generation of secondary sound sources needs to
be operated by adaptive filtering, so in this design, the addition
tree parallel structure is used to design one-dimensional
convolution operation for filtering, which can improve the
operation speed and high parallelism, so that the secondary
sound sources can be produced faster. When the secondary
sound source is generated, it is necessary to collect error signals
to update the filter weight coefficients, so the algorithm has the
characteristics of sequential processing, and the speed of
weight updating will play an important role in the generation of
secondary sound sources. Therefore, in this design, MAC array
is used to realize the updating operation of each weight, and the
updated weight data needed by the next convolution operation
can be obtained in the same period. The reasonable use of data
distributor and data integrator makes the operation speed
greatly improved.

After the operation structure design is completed, the core
instruction cooperation unit should be added to e xpand the
coprocessor design, and the decoder, data extractor and
configuration enabling function block should be added to
complete the hardware design of the audio denoising
coprocessor. Its circuit structure is shown in Figure 6.

X_SRAM

W_SRAM

E_SRAM

MAC_Array

CONV

MAC

MAC

MAC

MAC

DATA_WIDTH*2
^FILTER_Order

DATA_WIDTH*
FILTER_Order

DATA_WIDTH*
FILTER_Order

1:FILTE
R

_O
rder

dispatcher
1:FILTE

R
_O

rder
dispatcher

1:FILTE
R

_O
rder

dispatcher

FI
LT

ER
_O

rd
er

:1
di

sp
at

ch
er

reg

reg

reg

reg

DMUX

DMUX

DMUX

DMUX

DMUX

DMUX

DMUX

DMUX

Y_FIFO

DATA_WIDT
H*2^FILTER_

Order

DATA
Fetcher

NICE_Interface

BIU

EXUWB_RegLSU
ITCM

DTCM
IFU

Request
Channel

Response
Channel

Memory
Request
Channel

Memory
Response
Channel

Decode

Co_Processor
Config

Figure 6 Circuit structure diagram of audio denoising coprocessor
The NICE controller processes the time sequence related to

the interface of the coprocessor, and transmits the instruction
information and source operands obtained from the request

channel to the decoder for ID. Decoder is used to decode
custom instructions. This design is mainly divided into two
types of instructions, one is configuration instructions, and the
other is data loading and storage instructions. For the
configuration instruction, the configuration information is
transmitted to the configuration module, and the configuration
module will give the enabling signal and control signal required
by the corresponding response module to realize the
configuration of each operation function part. For the data load
store instruction, the memory access information is transmitted
to the data extractor for processing. When the memory access
information is a loading instruction, the address information
and the read signal are transmitted through the memory request
channel and the data is obtained from the corresponding
memory module. Then the read data is transmitted to the data
extractor through the memory feedback channel and distributed
to the corresponding cache module by the data extractor. When
the memory access information is a write memory instruction,
the address information is transmitted through the memory
request channel, and the write data is obtained from the data
extractor and transmitted to the memory location corresponding
to the address. If the instruction is the write-back result, the
write-back data is transmitted to the feedback channel through
the data extractor to complete the write-back of the general
register.

After the software program is burned to the MCU, the main
processor obtains the instructions in sequence, decodes the
instructions, and judges whether the instructions are custom
instructions according to their operation codes. In this design,
the operation codes of custom1-4 defined by RISC-V are used
as custom instruction operation codes, and R-type instructions
are used for custom instruction coding. Its format is shown in
Figure 7.

Figure 7 32-bit custom instruction encoding format

For custom instructions, it is judged whether to read the
source operand according to xs1 and xs2. In this process, the
main processor maintains the data correlation, and if there is a
data conflict, the data channel will be closed until the data
correlation is released. If there is data written back, the
destination register of the rd bit is also a consideration of data
correlation. After that, the instruction information is
transmitted to the coprocessor for processing through the NICE
interface, The coprocessor decodes the instructions and
distributes them to different units for execution according to the
type of instructions. Finally, the coprocessor writes the
instruction execution results back to the main processor
through the response channel, and writes the execution results
back to the rd target register or transmits the results to the
corresponding storage locations through the memory request
channel.

The data stream of the audio noise reduction coprocessor
designed in this subject is shown in Figure 8, and the processing
signals are obtained by external sensors or receivers. Data is
transmitted to ICB peripheral bus through interface IP mounted

4.2 Coprocessor Design

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.23

Jun Yuan, Qiang Zhao, Wei Wang,
Xiangsheng Meng, Jun Li, Qin Li

E-ISSN: 2224-2864 192 Volume 21, 2022

on SoC. When the relevant data needs to be processed, the data
is acquired and written through the memory request and
feedback channel. After the processing is finished, the
processing result is written back to the general register of the
main processor or into the corresponding memory, and the
main processor sends it to the external module through the
interface IP to obtain the generated signal.

Voice Sensor Voice
data

Peripheral
Interface

Peripheral
InterfaceMCU

Audio noise
reduction

coprocessor

NICE

WM8731
Audio
Codec

Processing
results

Figure 8 System data flow diagram

Through memory access custom instructions, a lot of data
stored in the main processor is moved to the coprocessor, which
reduces the access of the coprocessor to the main processor
memory and greatly reduces the power consumption. At the
same time, the parallel operation units in the coprocessor will
ensure the operation speed. Finally, compared with the SoC
plug-in accelerator, the coprocessor with instruction pipeline
mode does not need frequent data access, reduces data
movement, and has better real-time processing performance.

The custom instructions of the audio denoising coprocessor
based on FxLMS algorithm are shown in Table 1.

Table 1 Custom instruction table of coprocessor
Instruction Funct7 Rd Xd Rs1 Xs1 Rs2 Xs2

Load.X 1 - 0 X_MemoryAddress 1 Length|X_BaseAddress 1

Load.E 2 - 0 E_MemoryAddress 1 Length|E_BaseAddress 1

Store.Y 3 - 0 Y_ MemoryAddress 1 - 0

Cfg.Conv 4 - 0 Filter order 1 En_Conv 1

Cfg.MAC 5 - 0 Filter order 1 En_MAC 1

Updata.W 6 - 0 Filter order 1 En_Up.W 1

Rst 7 - 0 - 0 - 0

There are 7 custom instructions, namely data load storage
instruction and configuration enable instruction. The data
loading instruction is responsible for loading the reference
signal and the error signal from the corresponding address and
storing them in the corresponding buffer of the coprocessor.
The data storage instruction is responsible for transmitting the
secondary sound source signal and writing it to the
corresponding memory address through the memory request
channel. The configuration enable instruction is responsible for
configuring the filter order and enabling the relevant functional
modules.

The use steps of custom instruction are as follows: firstly, the
reference signal is loaded through Load.X instruction, and the
data is accessed through memory request channel and read
through memory feedback channel, and then loaded into
X_SRAM cache. After that, the reference signal and weight
coefficient are read from X_SRAM and W_SRAM by
Cfg.Conv instruction and sent to the corresponding DMUX
through data distributor. DMUX performs convolution
operation and generates secondary sound source under the

control of enable signal until the convolution of reference
signal ends. After that, the secondary sound source data in
FIFO is written back to the corresponding address through the
memory request channel through the Store. Y instruction. Then
Load.E instruction loads error signal data like Load.X
instruction, and Cfg.MAC instruction configures MAC
operation array and updates weight coefficients. Finally,
W_SRAM is configured by Updata.W instruction to write the
update weight, which completes an adaptive denoising
operation acceleration. In addition, the reset of the coprocessor
can be performed by Rst instruction.

After completing the instruction of custom coprocessor, we
can use assembly language to transfer the work of coprocessor.
However, the efficiency of assembly language development is
too low, so embedded inline assembly is often used in C\ C + +.
Therefore, the first task is to package instructions into C
language library functions by using inline assembly syntax
format, and complete the library function design of coprocessor.
The designed library function interface is shown in Table 2.
Table 2 Library functions of custom instructions and their introduction

Function Interface Function

int Load_X(unsigned int X_MemoryAddress,

unsigned int X_BaseAddress, unsigned int Length)
Load reference signal X into X.SRAM

int Load_E(unsigned int E_MemoryAddress,

unsigned int E_BaseAddress, unsigned int Length)
Load error signal E into E.SRAM

int Store_Y(unsigned int Y_ MemoryAddress) Store secondary source Y

int Cfg_Conv(int Filter_order, int En_Conv) Configure convolution operation length and enable

int Cfg_MAC(int Filter_order, int En_MAC) Configure MAC operation length and enable

int Updata_W(int Filter_order, int En_UP.W) Configure weight coefficient length and enable

void Rst() Reset coprocessor

Cfg.Conv library function is taken as an example, and its
specific inline assembly syntax format is shown in Figure 9.

Figure 9 Library function of Cfg.Conv instruction

After completing the hardware and software design of the
coprocessor, it is the design part of the whole ANC system.
This design is based on Hbird E203_SoC platform, modifies
the original SoC, deletes unnecessary peripheral interfaces, and
adds IIS interface peripherals needed for audio data
transmission. The whole system structure is shown in Figure
10.

5. Software Design Part

5.1 Custom Instruction Design

5.2 Coprocessor Library Function Design

6. Application and Evaluation of
Fxlms Algorithm
6.1 Overall Design of Anc System

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.23

Jun Yuan, Qiang Zhao, Wei Wang,
Xiangsheng Meng, Jun Li, Qin Li

E-ISSN: 2224-2864 193 Volume 21, 2022

I2C SCLK

I2C SDAT

P
P
I
I
C
B

IC
B

_A
PB

UART

E203_SOC

IIC

IIS
(3.072MHz)

I2C_cfg

I2C_setup

WM8731_
Config

L
R

C
K

D
A

C
D

A
T

A
D

C
D

A
T

A
udio_data_rx

Reference
microphone

ADC

DF A
udio_data_tx

DAC

Error
microphone

Secondary
sound source

WM8731_Audio_
Interface

WM8731_Audio_Interface

WM8731_Config

WM8731

MATLAB

anti
noise

Reference
noise

Residual
noise

Decode Conv

Mac

C
oprocessorNICE_Interface

SR
A

M

Data
Fetch

Cfg

EXU LSU

BIU

WB_Reg

E203_CORE

Figure 10 Circuit structure diagram of ANC system

The main processor configures the initial information
through IIC bus to make WM8731 audio codec module work
normally, and uses the probe to collect audio signals and
convert them into digital audio signals through ADC built in the
module. Then it is transmitted to ICB bus through IIS audio
transmission interface, and the coprocessor reads IIS audio data
on the bus through LSU and loads it on the corresponding cache.
After configuring enabling instructions, the convolution
operation can be carried out smoothly and anti-noise signals
can be generated. After that, the anti-noise signal is written to
the address where the IIS interface data is located through the
memory request channel, and the analog signal is obtained by
digital-to-analog conversion through the built-in DAC of the
module and secondary noise is generated. Then the module
collects the residual noise signal again until it is loaded on the
corresponding buffer. After configuring the enabling
instruction, the MAC array can update the weight coefficients,
so as to complete the denoising and acceleration of ANC
system once.

After the whole software and hardware design and system
design are completed, the denoising performance is measured
based on MCU200T development board, and the schematic
diagram of the measured scene is shown in Figure 11.

Reference microphone

Error microphone

Audio signal
analyzer

MCU200T

WM8731

WM8731

Sensor

Sensor

Noise source

Secondary sound source

DCDC

Power Supply

PC

AWA6290 signal analysis software

Figure 11 Real scene diagram of test scene

The noise signal is collected before and after denoising by
special instruments, and the pink noise is used for acoustic test,
so as to obtain the relevant collected data and visualize the data

through Matlab to obtain the change schematic diagram before
and after denoising in the ear frequency band as shown in
Figure 12.

Figure 12 Schematic diagram of noise acquisition at the same position
before and after denoising

As can be seen from the schematic diagrams A and B in
Figure 12, the sound pressure levels of the same noise are
different in continuous time periods, so the denoising effect is
unstable. It can achieve good denoising effect in some
individual positions but cannot adapt to the whole low
frequency band. At the same time, it can be known from the
schematic diagram C in Figure 12 that the denoising effect of
the algorithm in the middle and high frequency band is not ideal,
which is related to the denoising principle of the active
denoising system itself. From the analysis of schematic
diagram D in Figure 12, it can be seen that the average
denoising effect of 8dB can be achieved in the frequency range
of 200-2000Hz under the condition of pink noise, which proves
that the algorithm can be realized by combining heterogeneous
SOC with hardware accelerator.

In order to evaluate the performance of the coprocessor, this
paper adopts two methods to implement convolution and MAC
operations, one is implemented by the standard RISC-V I\ M
instruction set, the other is implemented by using the
coprocessor custom instructions designed in this paper and the
RISC-V I\ M instruction set together, and compares the number
of instructions executed by the two methods. Through IDE
tools to write the software code and burn it to the development
board, you can print out the corresponding execution results
and calculate the number of instructions through serial port.
The experimental results are shown in Table 3.
Table 3 Number of instructions required by different arithmetic units

to run under different instruction sets
Algorithm Rv32 I\M Instruction Coprocessor Instruction

Conv 4582 1324
MAC 656 256

Through the instruction number, we can see that Conv and
MAC operation can save instruction space more than standard
instruction set under the action of coprocessor, and the
instruction number is greatly reduced. This is because on the
one hand, the coprocessor realizes convolution and MAC
through a s pecial hardware acceleration unit, while the main
processor can only realize convolution and MAC through

6.2 Evaluation Analysis

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.23

Jun Yuan, Qiang Zhao, Wei Wang,
Xiangsheng Meng, Jun Li, Qin Li

E-ISSN: 2224-2864 194 Volume 21, 2022

software methods such as addition, subtraction, multiplication
and division; on the other hand, from the system data flow
diagram in Figure 7, it can be seen that the coprocessor
implementation reduces the repeated movement of data and
further improves the processing speed of the algorithm.

Based on the design optimization of hardware accelerator,
The coprocessor is designed, the ANC system is built on the
basis of E203_SoC, and the denoising test is carried out in a
quiet indoor environment. The sound pressure level data before
and after denoising are obtained by audio analysis and
acquisition instrument. After data analysis, it can be seen that
the FxLMS algorithm realized by combining heterogeneous
SoC with hardware accelerator has remarkable effect and can
achieve nearly 8dB denoising effect. Subsequently, two
different test methods are used to test the acceleration effect of
coprocessor, and it is concluded that the implementation of
coprocessor custom instruction set has significant acceleration
effect for convolution and MAC operations.

This research was supported by the Science and Technology
Major Project of Chongqing Municipal Science and
Technology Bureau (cstc2018jszx-cyztzxX0054), and the
Chongqing Municipal Science and Technology Commission
Major Project of Integrated Circuit Industry
(cstc2018jszx-cyztzx0217)

[1] Meng H, Chen S. Particle swarm optimization based novel
adaptive step-size FxLMS algorithm with reference signal
smoothing processor for feedforward active noise control
systems[J]. Applied Acoustics, 2021, 174: 107796.

[2] Sookpuwong C, Chompoo-inwai C. A Multi-Channel
Feedforward ANC with FXLMS Algorithm for
Aviation-Noise Suppression[C]//2019 53rd Asilomar
Conference on Signals, Systems, and Computers. IEEE,
2019: 1374-1378.

[3] Abdi F, Amiri P. Design and implementation of adaptive
FxLMS on FPGA for online active noise cancellation[J].
Journal of the Chinese Institute of Engineers, 2018, 41(2):
132-140.

[4] Liu L, Su Q, Li W, et al. Real Time Implementation and
Experiments of Multi-channel Active Noise Control
System for ICU[C]//2021 IEEE International Conference
on Electro Information Technology (EIT). IEEE, 2021:
395-400.

[5] Shyu K K, Ho C Y, Chang C Y. A study on us ing
microcontroller to design active noise control
systems[C]//2014 IEEE Asia Pacific Conference on
Circuits and Systems (APCCAS). IEEE, 2014: 443-446.

[6] Vu H S, Chen K H, Sun S F, et al. A 6.42 mW low-power
feed-forward FxLMS ANC VLSI design for in-ear
headphones[C]//2015 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2015: 2585-2588.

[7] Asanovic K, Avizienis R, Bachrach J, et al. The rocket chip
generator[J]. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016, 4.

[8] Asanovic K, Patterson D A, Celio C. The berkeley
out-of-order machine (boom): An i ndustry-competitive,
synthesizable, parameterized risc-v processor[R].
University of California at Berkeley Berkeley United
States, 2015.

[9] Traber A, Zaruba F, Stucki S, et al. PULPino: A small
single-core RISC-V SoC[C]//3rd RISCV Workshop. 2016.

[10] Wu N, Jiang T, Zhang L, et al. A reconfigurable
convolutional neural network-accelerated coprocessor
based on RISC-V instruction set[J]. Electronics, 2020, 9(6):
1005.

[11] Félix F B, de Castro Magalhães M, de Souza Papini G. An
improved Anc algorithm for the attenuation of industrial
fan noise[J]. Journal of Vibration Engineering &
Technologies, 2021, 9(2): 279-289.

[12] Munir M W, Abdulla W H. On FxLMS scheme for active
noise control at remote location[J]. IEEE Access, 2020, 8:
214071-214086.

[13] Kang M S. FxLMS Algorithm for Active Vibration
Control of Structure By Using Inertial Damper with
Displacement Constraint[J]. Journal of the Korea Institute
of Military Science and Technology, 2021, 24(5): 545-557.

[14] Rabiman R, Nurtanto M, Kholifah N. Design and
Development E-Learning System by Learning
Management System (LMS) in Vocational Education[J].
Online Submission, 2020, 9(1): 1059-1063.

[15] Yang F, Guo J, Yang J. Stochastic analysis of the filtered-x
LMS algorithm for active noise control[J]. IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
2020, 28: 2252-2266.

[16] Jalal B, Yang X, Liu Q, et al. Fast and robust
variable-step-size LMS algorithm for adaptive
beamforming[J]. IEEE Antennas and Wireless
Propagation Letters, 2020, 19(7): 1206-1210.

 Jun Yuan, received B.E. and M.E. degrees in
Electrical Engineering in 2006, 2009
respectively, from Southwest Jiaotong
University, China. And then in 2012 he received
D.Eng. degree from Kochi University of
Technology, Japan. Then he joined School of
Optoelectronic Engineering, Chongqing
University of P osts and Telecommunications,
China. His areas of research interests are
analog-digital mixed signal IC design, DFT
research and noise processing IC design.

7. Conclusion

Acknowledgment

References

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on COMMUNICATIONS
DOI: 10.37394/23204.2022.21.23

Jun Yuan, Qiang Zhao, Wei Wang,
Xiangsheng Meng, Jun Li, Qin Li

E-ISSN: 2224-2864 195 Volume 21, 2022

	I. INTRODUCTION
	II. RISC-V and Hbird E203 core
	III. FxLMS Algorithm and Its Hardware and Software Co-design Conception
	A. LMS Algorithm Principle
	B. Adaptive filtering
	C. Software and hardware co-design

	III. Hardware design part
	A. Optimization of Operation Structure Design
	B. Coprocessor Design

	IV. Software design part
	A. Custom instruction design
	B. Coprocessor Library Function Design

	V. Application and Evaluation of FxLMS Algorithm
	A. Overall Design of ANC System
	B. Evaluation Analysis

	VI. Conclusion
	Acknowledgment
	References

