
ith the rapid development of economy, noise 
problems such as industrial noise and automobile 

noise have become increasingly prominent. The 
traditional passive noise control technology[1] is 
effective for medium and high frequency noise through 
passive control methods such as sound absorption and 
sound insulation. However, active noise control[2], 
namely the method of reducing noise signal through the 
principle of destructive interference of sound waves, is 
more effective for low-frequency narrow-band noise. 
Adaptive denoising system is generated, that is, while 
generating anti-noise signals, active repair of anti-noise 
signals is carried out according to the change of noise to 
complete active noise control. 

 
FxLMS algorithm is widely used in active noise control 

system due to its simple circuit structure, simple 
implementation and small computation. Researchers through 
FPGA[3], DSP[4], MCU[5], ASIC[6] and other design 
methods for the hardware implementation of the algorithm. 
Reference [3] puts forward a hardware implementation of 
FxLMS algorithm based on FPGA, which divides the operation 
part of the algorithm into filtering part and update part, in which 
the filtering part is FIR filter, namely the process of 
one-dimensional convolution; the update part is the weight 
update part of LMS algorithm block, that is, the process of 

multiply accumulate (MAC). Reference [5] proposes an 
implementation of FxLMS algorithm using STM32F407 
microprocessor of Cortex-M4, and proposes a fixed step size 
method to reduce the computation and solve the problem of 
floating-point operation. 

An audio denoising coprocessor based on RISC-V custom 
instruction set extension is designed in this paper. According to 
the hardware implementation of traditional FxLMS algorithm, 
the software and hardware co-design of FxLMS algorithm is 
carried out, the work of filling and moving the data to be 
processed is handed over to MCU for processing. Meanwhile, 
the convolution and MAC operations with large computation 
are designed as hardware accelerators, and the coprocessor is 
designed in the way of instruction pipeline. Finally, the 
hardware acceleration is completed by coprocessor, and the 
heterogeneous SOC is combined with the hardware accelerator. 

RISC-V instruction set has been widely welcomed all over 
the world since it was published in 2014. RISC-V instruction 
set design is simplified and efficient. At present, the setting of 
RISC-V modular instruction set makes RISC-V architecture 
have more choices, so that it can try to meet various 
applications through a u nified architecture, which is an 
advantage that X86 and ARM instruction set architecture do not 
possess. Extensibility of instructions is a prominent feature of 
RISC-V architecture. Users can customize instructions 
according to the reserved instruction coding space. So that the 
coprocessor has better portability. 
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Abstract—As a typical active noise control algorithm, FxLMS is widely used in the field of audio denoising. In 
this paper, an audio denoising coprocessor based on RISC-V custom instruction set extension was designed, 
and the idea of software and hardware co-design was adopted; based on the traditional pure-hardware 
implementation, the accelerator optimization design was carried out, and the accelerator was connected to RISC-
V core in the form of coprocessor. Meanwhile, the corresponding custom instructions were designed, the 
compiling environment was established, and the library function of coprocessor acceleration instructions was 
established by embedded inline assembly. Finally, the ANC system was built and tested based on E203-SoC, 
and the test data was collected by audio analyzer. The results showed that the audio denoising algorithm could 
be realized by combining heterogeneous SoC with hardware accelerator, and the denoising effect was about 
8dB. The number of instructions consumed by testing custom instructions for specific operations was reduced 
by about 60%, and the operation acceleration effect was significant.  
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 1. Introduction 

2. RISC-V and Hbird E203 Core 
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In order to realize the audio denoising coprocessor based on 
RISC-V instruction set, it is necessary to select the appropriate 
RISC-V processor core as the carrier. Among many open 
source RISC-V cores, such as Rocket[7], BOOM[8], RI5CY[9] 
and others, Hbird E203 core adopts two-stage pipeline design 
and supports RV32I/E/A/M/C instruction subset configuration, 
and its supporting SoC provides a large number of IP modules, 
including UART, IIC, SPI, etc[10]. Benchmark ARM 
Cortex-M0+ in terms of performance, and its microarchitecture 
is shown in Figure 1. 
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Figure 1 Schematic diagram of E203 microarchitecture 

E203 core adopts two-stage pipeline structure, the first stage 
of which is value taking, and the second stage of which is 
instruction decode (ID), execute (EX), writeback (WB) and 
memory (MEM). 

The first stage pipeline includes simple ID function block, 
branch predictor and PC generator. The simple ID function 
block (Tag 1 in the figure) partially decodes the obtained 
instructions to obtain some instruction information, including 
the classification of instructions, whether they are ordinary 
instructions or branch jump instructions, and the types and 
details of branch jump instructions. For branch jump 
instruction, it is necessary to use static branch predictor (Tag 2 
in the figure) to predict the jump and get the predicted jump 
address of the instruction. The PC generator (tag 3 in the figure) 
generates the PC value of the next instruction to be fetched, 
generates PC according to different types such as fetching after 
reset, sequential fetching, branch instruction fetching and 
pipeline flushing fetching, and accesses instruction tightly 
coupled memory (ITCM) or bus interface unit (BIU) to fetch 
fingers through ICB bus. The PC value and the corresponding 
instruction value are stored in the PC register and the IR 
register. 

The secondary pipeline mainly includes ID and dispatch (tag 
4 in the figure), arithmetic logic operation unit (tag 6 in the 
figure), memory access unit (tag 7 in the figure), long 
instruction (tag 8 in the figure), custom instruction (tag 9 in the 
figure), delivery and pipeline flushing (tag 5 in the figure). ID 
and dispatching realize ID of instructions and dispatching 
related information to arithmetic logic operation unit, and ALU 
unit dispatches specific information to different execution units 
for execution. One-cycle instructions such as logic operation, 
addition and subtraction, shift, etc. are handed over to ordinary 
ALU unit for processing. The branch jump instruction is 
delivered to judge the prediction, and the prediction error needs 

to be flushed by the instruction pipeline. The memory access 
instruction is allocated to the memory loading unit for loading 
and accessing data. Long-term coprocessor instructions will be 
assigned to coprocessor units for execution. 

The schematic diagram of active noise control system 
architecture is shown in Figure 2, and the operation processing 
part is the most classical FxLMS algorithm[11-13]. 
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Figure 2 Schematic diagram of ANC system structure 

The implementation of FxLMS algorithm has two different 
acoustic paths. The main signal is sampled with a r eference 
microphone, then the speaker emits an anti-noise signal, and the 
error sensor measures the residual error signal. In this process, 
the acoustic path between the reference noise source and the 
error sensor is called the primary path, and the electrical to 
acoustic path between the speaker and the microphone is called 
the secondary path. FxLMS algorithm contains two parts, one is 
the least mean square algorithm, and the other is adaptive 
filtering. 

The least mean square (LMS) algorithm is based on the 
minimum mean square error criterion and the gradient method. 
By improving the calculation method of the gradient value of 
the mean square error, the algorithm can be shown by recursive 
formulas such as Equations (1), (2) and (3)[14-16]: 
 ( ) ( ) ( )= Hy n n nW X   (1) 
 ( ) ( ) ( )= −e n d n y n   (2) 
 *( 1) ( ) 2 ( ) ( )µ+ = +n n n e nW W X   (3) 

Where, ( )nW represents the weight vector of the filter; ( )nX  
represents a set of vectors composed of input signals; ( )y n  
represents the output signal; ( )d n represents the desired signal; 

( )e n represents the error signal; µ represents the step size 
factor, where the larger µ is, the faster the convergence speed 
of the algorithm is, and vice versa. However, the faster the 
convergence speed, the worse the steady-state performance, so 
it is necessary to constrain the step size factor. In this design, 
considering the reduction of algorithm complexity and 
processing flexibility, the selection of step factor is based on the 

3. Fxlms Algorithm and Its Hardware  
and Software Co-design Conception 

3.1 LMS Algorithm Principle 
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fixed step proposed in [3]. 

The adaptive filtering part is a FIR filter, and the formula is 
shown in Equation (4): 
 ( ) ( ) ( )= Ty n n nW X   (4) 

Where, ( )y n  represents ( )nX generated by a FIR filter with 
a weight coefficient ( )nW , because every time a stage sound 
source ( )y n is generated, the weight coefficient ( )nW is 
updated by LMS operation. Therefore, updated time-varying 
coefficients are obtained, i.e. the coefficients are automatically 
and continuously adapted to a given signal to obtain a desired 
response to complete adaptive filtering. 

The coprocessor part is connected with the main processor in 
the mode of instruction pipeline through NICE circuit interface, 
and the hardware acceleration function is mobilized in the 
mode of custom instructions in the software flow, which is 
shown in Figure 3. 
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Figure 3 Flow chart of software and hardware co-design 

The gray and pink parts in Figure 3 belong to the software 
flow, of which specific significance is the external acquisition 
of ANC system and the configuration of function blocks. Then 
it includes storing the data at the corresponding address after 
collection. Subsequently, the light gray part is the related 
custom instructions. Used for realizing software and hardware 
interaction between the main processor and the coprocessor, the 
last dark gray part is the defined hardware acceleration part, 
which specifically includes the adaptive filtering part in the 
algorithm corresponding to convolution operation, the weight 
update part corresponding to LMS algorithm in the algorithm 
corresponding to multiplication and accumulation array 
operation, and the corresponding cache unit used in data 
handling. 

At the same time, due to the particularity of serial operation 
of the algorithm itself, this process has two steps. First, the 
black flow line is the adaptive filtering operation in the main 
path, and then the electrical to acoustic transformation is 
needed through relevant peripherals to generate secondary 
sound sources. The second step is the acquisition of error 
signals and the updating operation of weight coefficients, 

which will have a sequence relationship. Therefore, this design 
process includes two paths, and only when both paths run out 
can ANC system denoising be completed once. 

The audio denoising accelerator designed in this paper 
optimizes the updating weight and filtering module in the 
traditional design. The parallel one-dimensional convolution 
structure in the form of addition tree is used to replace the serial 
MAC arithmetic unit to realize the filtering part, and the 
parallel MAC array is used to replace the original updating 
weight part, and the related modules of coprocessor are added. 

In the traditional hardware implementation of FxLMS 
algorithm, the filter module adopts MAC arithmetic unit, 
namely multiply accumulate arithmetic unit and realizes 
filtering in serial mode, which will reduce the arithmetic 
performance of the filter module, and a lot of repeated 
operations are needed when the filter order is long. Therefore, 
this design adopts the strategy of sacrificing area in exchange 
for performance improvement, and uses the addition tree 
structure, which will greatly improve the parallel operation 
ability and realize one-dimensional convolution operation. At 
the same time, this design adopts MAC array parallel operation 
to update the coefficients of weight matrix. Finally, this design 
adopts the idea of data multiplexing, and uses data distributor to 
reduce the resource consumption of weight coefficient storage 
SRAM. The circuit structure is shown in Figure 4.. 
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Figure 4 Structure diagram of hardware accelerator 

The whole acceleration circuit comprises a reference signal 
data buffer module (X_RAM), a weight coefficient data buffer 
module (W_RAM), an error signal data buffer module 
(E_RAM), a data distributor, a data distributor, a 
one-dimensional convolution operation block, a MAC array 
operation block and a data integrator. 

The most critical parts in the accelerator circuit are 
one-dimensional convolution operation block and MAC array 
operation block. The one-dimensional convolution operation 
block realizes FIR filtering part of the algorithm, and the MAC 
array operation block realizes parallel weight coefficient update. 

3.2 Adaptive Filtering 

3.2 Software and Hardware Co-design 

4. Hardware Design Part 

4.1 Optimization of Operation Structure Design 
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Its circuit structure is shown in Figure 5. 

MUL*

MUL*
ADD+

MUL*

MUL*
ADD+

ADD+

CONV

MUL* ADD+

W_SRA
M

MAC

 
Figure 5 Circuit structure diagram of arithmetic unit 

Because the audio denoising algorithm needs to quickly 
generate secondary sound sources after collecting reference 
signals, and the generation of secondary sound sources needs to 
be operated by adaptive filtering, so in this design, the addition 
tree parallel structure is used to design one-dimensional 
convolution operation for filtering, which can improve the 
operation speed and high parallelism, so that the secondary 
sound sources can be produced faster. When the secondary 
sound source is generated, it is necessary to collect error signals 
to update the filter weight coefficients, so the algorithm has the 
characteristics of sequential processing, and the speed of 
weight updating will play an important role in the generation of 
secondary sound sources. Therefore, in this design, MAC array 
is used to realize the updating operation of each weight, and the 
updated weight data needed by the next convolution operation 
can be obtained in the same period. The reasonable use of data 
distributor and data integrator makes the operation speed 
greatly improved. 

After the operation structure design is completed, the core 
instruction cooperation unit should be added to e xpand the 
coprocessor design, and the decoder, data extractor and 
configuration enabling function block should be added to 
complete the hardware design of the audio denoising 
coprocessor. Its circuit structure is shown in Figure 6. 
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Figure 6 Circuit structure diagram of audio denoising coprocessor 
The NICE controller processes the time sequence related to 

the interface of the coprocessor, and transmits the instruction 
information and source operands obtained from the request 

channel to the decoder for ID. Decoder is used to decode 
custom instructions. This design is mainly divided into two 
types of instructions, one is configuration instructions, and the 
other is data loading and storage instructions. For the 
configuration instruction, the configuration information is 
transmitted to the configuration module, and the configuration 
module will give the enabling signal and control signal required 
by the corresponding response module to realize the 
configuration of each operation function part. For the data load 
store instruction, the memory access information is transmitted 
to the data extractor for processing. When the memory access 
information is a loading instruction, the address information 
and the read signal are transmitted through the memory request 
channel and the data is obtained from the corresponding 
memory module. Then the read data is transmitted to the data 
extractor through the memory feedback channel and distributed 
to the corresponding cache module by the data extractor. When 
the memory access information is a write memory instruction, 
the address information is transmitted through the memory 
request channel, and the write data is obtained from the data 
extractor and transmitted to the memory location corresponding 
to the address. If the instruction is the write-back result, the 
write-back data is transmitted to the feedback channel through 
the data extractor to complete the write-back of the general 
register. 

After the software program is burned to the MCU, the main 
processor obtains the instructions in sequence, decodes the 
instructions, and judges whether the instructions are custom 
instructions according to their operation codes. In this design, 
the operation codes of custom1-4 defined by RISC-V are used 
as custom instruction operation codes, and R-type instructions 
are used for custom instruction coding. Its format is shown in 
Figure 7. 

 
Figure 7 32-bit custom instruction encoding format 

For custom instructions, it is judged whether to read the 
source operand according to xs1 and xs2. In this process, the 
main processor maintains the data correlation, and if there is a 
data conflict, the data channel will be closed until the data 
correlation is released. If there is data written back, the 
destination register of the rd bit is also a consideration of data 
correlation. After that, the instruction information is 
transmitted to the coprocessor for processing through the NICE 
interface, The coprocessor decodes the instructions and 
distributes them to different units for execution according to the 
type of instructions. Finally, the coprocessor writes the 
instruction execution results back to the main processor 
through the response channel, and writes the execution results 
back to the rd target register or transmits the results to the 
corresponding storage locations through the memory request 
channel. 

The data stream of the audio noise reduction coprocessor 
designed in this subject is shown in Figure 8, and the processing 
signals are obtained by external sensors or receivers. Data is 
transmitted to ICB peripheral bus through interface IP mounted 

4.2 Coprocessor Design 
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on SoC. When the relevant data needs to be processed, the data 
is acquired and written through the memory request and 
feedback channel. After the processing is finished, the 
processing result is written back to the general register of the 
main processor or into the corresponding memory, and the 
main processor sends it to the external module through the 
interface IP to obtain the generated signal. 
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Figure 8 System data flow diagram 

Through memory access custom instructions, a lot of data 
stored in the main processor is moved to the coprocessor, which 
reduces the access of the coprocessor to the main processor 
memory and greatly reduces the power consumption. At the 
same time, the parallel operation units in the coprocessor will 
ensure the operation speed. Finally, compared with the SoC 
plug-in accelerator, the coprocessor with instruction pipeline 
mode does not need frequent data access, reduces data 
movement, and has better real-time processing performance. 

The custom instructions of the audio denoising coprocessor 
based on FxLMS algorithm are shown in Table 1. 

Table 1 Custom instruction table of coprocessor 
Instruction Funct7 Rd Xd Rs1 Xs1 Rs2 Xs2 

Load.X 1 - 0 X_MemoryAddress 1 Length|X_BaseAddress 1 

Load.E 2 - 0 E_MemoryAddress 1 Length|E_BaseAddress 1 

Store.Y 3 - 0 Y_ MemoryAddress 1 - 0 

Cfg.Conv 4 - 0 Filter order 1 En_Conv 1 

Cfg.MAC 5 - 0 Filter order 1 En_MAC 1 

Updata.W 6 - 0 Filter order 1 En_Up.W 1 

Rst 7 - 0 - 0 - 0 

There are 7 custom instructions, namely data load storage 
instruction and configuration enable instruction. The data 
loading instruction is responsible for loading the reference 
signal and the error signal from the corresponding address and 
storing them in the corresponding buffer of the coprocessor. 
The data storage instruction is responsible for transmitting the 
secondary sound source signal and writing it to the
corresponding memory address through the memory request 
channel. The configuration enable instruction is responsible for 
configuring the filter order and enabling the relevant functional 
modules. 

The use steps of custom instruction are as follows: firstly, the 
reference signal is loaded through Load.X instruction, and the 
data is accessed through memory request channel and read 
through memory feedback channel, and then loaded into 
X_SRAM cache. After that, the reference signal and weight 
coefficient are read from X_SRAM and W_SRAM by 
Cfg.Conv instruction and sent to the corresponding DMUX 
through data distributor. DMUX performs convolution 
operation and generates secondary sound source under the 

control of enable signal until the convolution of reference 
signal ends. After that, the secondary sound source data in 
FIFO is written back to the corresponding address through the 
memory request channel through the Store. Y instruction. Then 
Load.E instruction loads error signal data like Load.X 
instruction, and Cfg.MAC instruction configures MAC 
operation array and updates weight coefficients. Finally, 
W_SRAM is configured by Updata.W instruction to write the 
update weight, which completes an adaptive denoising 
operation acceleration. In addition, the reset of the coprocessor 
can be performed by Rst instruction. 

After completing the instruction of custom coprocessor, we 
can use assembly language to transfer the work of coprocessor. 
However, the efficiency of assembly language development is 
too low, so embedded inline assembly is often used in C\ C + +. 
Therefore, the first task is to package instructions into C 
language library functions by using inline assembly syntax 
format, and complete the library function design of coprocessor. 
The designed library function interface is shown in Table 2. 
Table 2 Library functions of custom instructions and their introduction 

Function Interface Function 

int Load_X(unsigned int X_MemoryAddress, 

unsigned int X_BaseAddress, unsigned int Length) 
Load reference signal X into X.SRAM 

int Load_E(unsigned int E_MemoryAddress, 

unsigned int E_BaseAddress, unsigned int Length) 
Load error signal E into E.SRAM 

int Store_Y(unsigned int Y_ MemoryAddress) Store secondary source Y  

int Cfg_Conv(int Filter_order, int En_Conv) Configure convolution operation length and enable  

int Cfg_MAC(int Filter_order, int En_MAC) Configure MAC operation length and enable  

int Updata_W(int Filter_order, int En_UP.W) Configure weight coefficient length and enable  

void Rst() Reset coprocessor 

Cfg.Conv library function is taken as an example, and its 
specific inline assembly syntax format is shown in Figure 9. 

 
Figure 9 Library function of Cfg.Conv instruction 

After completing the hardware and software design of the 
coprocessor, it is the design part of the whole ANC system. 
This design is based on Hbird E203_SoC platform, modifies 
the original SoC, deletes unnecessary peripheral interfaces, and 
adds IIS interface peripherals needed for audio data 
transmission. The whole system structure is shown in Figure 
10. 

 

5. Software Design Part  

5.1 Custom Instruction Design 

5.2 Coprocessor Library Function Design 

6. Application and Evaluation of 
Fxlms Algorithm  
6.1 Overall Design of Anc System 
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Figure 10 Circuit structure diagram of ANC system 

The main processor configures the initial information 
through IIC bus to make WM8731 audio codec module work 
normally, and uses the probe to collect audio signals and 
convert them into digital audio signals through ADC built in the 
module. Then it is transmitted to ICB bus through IIS audio 
transmission interface, and the coprocessor reads IIS audio data 
on the bus through LSU and loads it on the corresponding cache. 
After configuring enabling instructions, the convolution 
operation can be carried out smoothly and anti-noise signals 
can be generated. After that, the anti-noise signal is written to 
the address where the IIS interface data is located through the 
memory request channel, and the analog signal is obtained by 
digital-to-analog conversion through the built-in DAC of the 
module and secondary noise is generated. Then the module 
collects the residual noise signal again until it is loaded on the 
corresponding buffer. After configuring the enabling 
instruction, the MAC array can update the weight coefficients, 
so as to complete the denoising and acceleration of ANC 
system once. 

After the whole software and hardware design and system 
design are completed, the denoising performance is measured 
based on MCU200T development board, and the schematic 
diagram of the measured scene is shown in Figure 11. 
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Figure 11 Real scene diagram of test scene 

The noise signal is collected before and after denoising by 
special instruments, and the pink noise is used for acoustic test, 
so as to obtain the relevant collected data and visualize the data 

through Matlab to obtain the change schematic diagram before 
and after denoising in the ear frequency band as shown in 
Figure 12. 

Figure 12 Schematic diagram of noise acquisition at the same position 
before and after denoising 

As can be seen from the schematic diagrams A and B in 
Figure 12, the sound pressure levels of the same noise are 
different in continuous time periods, so the denoising effect is 
unstable. It can achieve good denoising effect in some 
individual positions but cannot adapt to the whole low 
frequency band. At the same time, it can be known from the 
schematic diagram C in Figure 12 that the denoising effect of 
the algorithm in the middle and high frequency band is not ideal, 
which is related to the denoising principle of the active 
denoising system itself. From the analysis of schematic 
diagram D in Figure 12, it can be seen that the average 
denoising effect of 8dB can be achieved in the frequency range 
of 200-2000Hz under the condition of pink noise, which proves 
that the algorithm can be realized by combining heterogeneous 
SOC with hardware accelerator. 

In order to evaluate the performance of the coprocessor, this 
paper adopts two methods to implement convolution and MAC 
operations, one is implemented by the standard RISC-V I\ M 
instruction set, the other is implemented by using the 
coprocessor custom instructions designed in this paper and the 
RISC-V I\ M instruction set together, and compares the number 
of instructions executed by the two methods. Through IDE 
tools to write the software code and burn it to the development 
board, you can print out the corresponding execution results 
and calculate the number of instructions through serial port. 
The experimental results are shown in Table 3. 
Table 3 Number of instructions required by different arithmetic units 

to run under different instruction sets 
Algorithm Rv32 I\M Instruction Coprocessor Instruction 

Conv 4582 1324 
MAC 656 256 

Through the instruction number, we can see that Conv and 
MAC operation can save instruction space more than standard 
instruction set under the action of coprocessor, and the 
instruction number is greatly reduced. This is because on the 
one hand, the coprocessor realizes convolution and MAC 
through a s pecial hardware acceleration unit, while the main 
processor can only realize convolution and MAC through 

6.2 Evaluation Analysis 
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software methods such as addition, subtraction, multiplication 
and division; on the other hand, from the system data flow 
diagram in Figure 7, it can be seen that the coprocessor 
implementation reduces the repeated movement of data and 
further improves the processing speed of the algorithm. 

Based on the design optimization of hardware accelerator, 
The coprocessor is designed, the ANC system is built on the 
basis of E203_SoC, and the denoising test is carried out in a 
quiet indoor environment. The sound pressure level data before 
and after denoising are obtained by audio analysis and 
acquisition instrument. After data analysis, it can be seen that 
the FxLMS algorithm realized by combining heterogeneous 
SoC with hardware accelerator has remarkable effect and can 
achieve nearly 8dB denoising effect. Subsequently, two 
different test methods are used to test the acceleration effect of 
coprocessor, and it is concluded that the implementation of 
coprocessor custom instruction set has significant acceleration 
effect for convolution and MAC operations. 
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