
 

 

 
Abstract—Although single image dehazing has been widely studied as a common low-level computer vision task, it 
still faces serious challenges such as limited ability to dehaze real foggy pictures. We propose an efficient end-to-
end self-adaptation feature attention (SAFA) network with multi-step fusion for this purpose. The proposed SAFA 
module can adaptively expand the receptive field to obtain the key structure information in space and extract more 
comprehensive and accurate features. In addition, considering the lack of connection between features acquired at 
low and high levels in the network, we also implement a multi-step fusion module, which makes the features of 
different layers in the network complementary effectively in the process of image recovery. The network structure is 
simplified, and the required computing resources are significantly reduced by decreasing network parameters. For 
multiple datasets and photographs with real haze, our method demonstrates better efficiency and availability, both 
quantitatively and qualitatively. 
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1. Introduction 
 
OR a long time, input images captured in indistinct scenes 

show the negative impact on the performance of computer 
vision tasks gravely. When the environment is affected by the 
particles floating in the atmosphere, such as smoke, haze, and 
dust, human activities in nature will be influenced seriously, 
and our safety even will be threatened due to the lack of 
visibility. The images are taken outdoors tend to suffer from 
problems like reduced contrast, which include degraded colors 
and structural details. 

Therefore, single image dehazing has gradually become 
indispensable research. The purpose of it is to effectively 
recover the image from the corrupted input, which means, to 
restore the basic information of the clean pictures. This can be 
used as a pre-preparation for high-level visual tasks in many 
fields such as real-time object detection, remote sensing, and 
automatic transportation. Other computer vision applications 
that are initially challenged by the hazy environment can also 
be completed. 

Basically, the generation of hazy images can be described 

by applying the classic atmospheric scattering model [1, 2], 
Based on the physical atmosphere scattering model, most 
dehazing methods were proposed rely on prior knowledge of 
physics and various assumption in early studies [3, 4, 5, 6]. 
For instance, dark channel prior (DCP) proposed by He et 
al.[4] is the most representative algorithm among them. In 
general, this kind of method has gained some achievements in 
image dehazing. However, their assumptions do not precisely 
reflect the inherent attributes of the image. Therefore, the 
performance of these techniques is often actually limited. 

With the rising-up and evolution of the deep learning in 
recent years, it has also been applied to some simple computer 
vision tasks such as target recognition [7] and image 
reconstruction [8]. Compared with traditional ways, deep 
learning method has extraordinary capability and robustness 
on dehazing capability. Besides, with the remarkable success 
of convolutional neural network (CNN) techniques for image 
dehazing, more and more research teams are tending to use the 
similar methods to estimate atmospheric light and transmit 
maps to achieve the desired effect by using external data. For 
instance, the transport map is decided to be in an end-to-end 
way in DehazeNet [9]. And in the following research [10, 11, 
12, 13, 14], all kinds of novel techniques have also been 
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gradually added to this field to strengthen the haze removal 
effect of the network. Due to the strong expression of deep 
learning networks, these end-to-end network models often 
have the ability to gain much better dehazing effects than 
previous work. But the haze from the real world is much more 
complex than the simulated one, which makes it harder for 
these methods to process real-world haze images. On the other 
hand, all of them inevitably need huge computation cost to 
support. Previous studies [13, 15, 16, 17, 18] have paid too 
much attention to improve dehazing performance by greatly 
increasing the depth or width of models and using vast training 
parameters. But they have not taken into account reasonably 
the time consumption, memory, or computing consumption, 
which also makes these models can not be applied in resource-
limited environments (such as mobile devices). 

In this text, we propose an end-to-end self-adaptation 
feature attention (SAFA) network with multi-step fusion for 
single image dehazing. The convolution kernel with the fixed 
shape is usually adopted in the previous CNN-based image 
dehazing network, which results in the structural cues in the 
feature space cannot be effectively utilized. The SAFA module 
we proposed can adaptively adjust the deformable convolution 
kernel during the training process to obtain and deal with the 
crucial structural information in the space. In addition, the 
application of a multi-step fusion module makes the features of 
different levels in the network efficiently combined. This 
network not only reduces the computation cost with a compact 
and simplified network structure, but also shows excellent 
visual effects and metrics on several datasets as well as real 
foggy images. 

Basically, the main contributions of this paper include:  
A self-adaptation feature attention (SAFA) module is 

proposed, which integrates the attention mechanism and 
deformable convolution mechanism. This module is capable of 
paying more attention to dense haze areas and handling 
different kinds of complex information adaptively. Besides, 
the uncomplicated network structure also avoids great 
computational consumption. 

A multi-step fusion module is developed, which is capable 
of fusing the features of disparate steps adaptively and 
supplementing each other to get the haze-free image. 

An efficient end-to-end self-adaptation feature attention 
(SAFA) network with multi-step fusion for single image 
dehazing is implemented, which is combined with the above 
modules. Moreover, we adjust the network and carry out 
exhaustive experiments to get the best performance on public 
datasets as well as real images with fog. Abundant 
experimental results highlight the validity and practicability of 
our dehazing network compared with the state-of-the-art 
(SOTA) methods. 

2. Related Work 
In the past, most image dehazing work was relied on 

external information, such as available geo-referenced models 
[19, 20] or information obtained from other sources [21]. 

However, due to the unknown nature of transmission map and 
global atmospheric light, there is no suitable external 
information for image dehazing in real application. For this 
extremely challenging task, the current solutions are generally 
divided into two categories: the classical priority-based ways 
and the novel deep learning-based methods. But either way, 
the fundamental problem that how to deal with transmission 
map and atmospheric light is still remained. 

2.1 Priority-based Image Dehazing Methods 
The priority-based method for image dehazing usually 

depends on the atmospheric scattering model. It utilizes certain 
assumptions or priors to estimate the atmospheric light and 
transmission map and also takes advantage of additional 
constraints to compensate for the information lost in the 
process. Then the image corrupted by haze can be restored to 
clear. He et al. [4] realized that at least one of the color 
channels in the haze-affected area has a pixel intensity value 
close to zero. Based on this, they proposed using dark channel 
priors to estimate the transmission map and atmospheric light, 
which is a landmark method of fog removal. By generating a 
linear model to model the scene depth of the blurred image, 
Zhu and Mai [22] proposed a valid but not complicated color 
attenuation prior to recover the depth information to estimate 
the transmitted map and atmospheric light, thus obtaining the 
clear image. Tan et al. [23] developed a local contrast 
maximization dehazing technique to increase the visibility of 
hazy images, which depends on the theory observed that the 
contrast of the foggy images is often lower than that of the 
clean ones. In the research of Fattal et al. [24], an image 
production model was proposed, which can be applied for 
scenario transmission and surface shading in order to improve 
the visibility of the scenario and restore the contrast of haze-
free environment. Although these methods achieved 
impressive results, their performance are still limited by the 
accuracy of the priors, which are heavily dependent on 
assumptions and target scenarios. However, it is realized that 
the lost priors will lead to poor robustness when the scene is 
becoming more complex. As a result, they are not capable of 
handling all situations as properly as they used to, such as 
dehazing the sky area of the image. 

2.2 Learning-based Image Dehazing Methods 
In recent years, as deep learning has been proven effective 

in image processing tasks and the availability of related 
synthetic image datasets, data-driven image dehazing methods 
have gradually become the mainstream. 

Among them, early studies [9, 14, 25] usually apply neural 
networks for the estimation of the transmission map and 
atmospheric light in the physical scattering model. For 
example, a three-layer CNN with the coarse-to-fine method 
developed by Cai et al. [9], is applied to estimate the media 
transmission map from existing foggy images to remove haze. 
For the AOD-Net implemented by Li et al. [14], on the other 
hand, re-establishes the scattering model through the 
lightweight CNN with creative design and generates clean 
images accordingly. But these estimations are not always 
accurate, which will lead to serious reconstruction errors 
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between the reconstructed images and the clear ones, such as 
artifacts and distortion. 

Another research strategy is to focus on the end-to-end 
dehazing network model which uses the neural network to 
learn the mapping of foggy images to clean ones straightway to 
complete the dehazing task [13, 15, 16, 26, 27, 28, 29]. A 
network based on feature fusion attention mechanism (FFA-
Net) proposed by Qin et al. [16], which only utilizes a simple 
loss function L1 to reconstruct the loss, and the combination of 
different attention mechanisms makes the network more 
flexible when dealing with disparate information. As Ren et al. 
[26] presented the multi-scale convolutional neural network 
(MSCNN) for dehazing image, many essentially similar but 
fully improved networks were born on this basis, such as the 
gated fusion network (GFN) [27] and the multi-scale boost 
dehazing network (MSBDN) [13]. Compared with these 
methods, the enhanced pix2pix dehazing network (EPDN) 
implemented by Qu et al. [28] is combined with the generative 
adversarial network, which is able to reduce the dependence 
on paired datasets and restoring the haze-free images directly. 

2.3 Attention Mechanism 
Since the attention mechanism is capable of guiding the 

network model to dispose of the crucial components in images 
adaptively, it has been paid more and more attention and 
applied to a series of computer vision tasks [30, 31, 32, 33] by 
researchers. For instance, Liu et al. [15] combined a channel-
wise attention mechanism with the end-to-end neural network 
and used the multi-scale estimation technology to guide 
information exchange and aggregation in the network flexibly. 
By utilizing the channel attention mechanism, a feature 
attention dehazing network based on pyramid channels was 
proposed by Zhang et al. [25] to remove fog in images. Qin et 
al. [16] also developed a FFA-Net, which includes both 
channel attention and pixel attention and has the ability to 
conduct different types of information efficiently. 

3. Our Method 

3.1 Method Overview  
Inspired by the FA module from FFA-Net [16], we propose 

a new self-adaptive feature attention module (SAFA) as our 
basic module, and only five of these modules are used in the 
main architecture of the network. At the same time, a multi-
step fusion module is adopted between each SAFA module to 
realize feature fusion between different steps, which 
dramatically reduces the memory required for calculation 
(compared with 57 FA modules in the original network [16]). 
As shown in the Fig. 1, our network first applies the 
downsampling operation (such as one convolution with stride 
1 and one convolution layer with stride 2, both followed by the 
ReLU function) for making the subsequent modules obtain the 
capability to learn the feature representation in the low-
resolution domain, and a regular convolution layer for shallow 
feature extraction. After continuous SAFA modules and multi-
step fusion modules, one convolution layer and the related 
upsampling operation are used to produce the recovered haze-
free image. 

 
Fig. 1 The architecture of the self-adaptation feature attention 

network with multi-step fusion 
 

Generally speaking, the shallow features such as edge will 
gradually lost with the increase of network depth. Some 
researches [34, 35], including the FFA-Net[16], combine the 
shallow features and deep features through the operation of 
multi-skip connection and concatenation, so as to form output. 
For solving the problem of lack of contact between the 
downsampling layer and the upsampling layer in our network, 
the adaptive mixup operation [36] is utilized to link the 
information between the two layers to maintain information 
flow adaptively and better restore the image. In this network, 
the final output of this operation can be expressed as: 

   Mix( , )= ( ) ∗ (1 ( )) ∗ 

                                                                                         
(1) 

where  denotes the final output, and represent 
feature maps from upsampling and downsampling, 
respectively. ( ) refers to the learnable factor to combine the 
inputs from the two layers, which is obtained by sigmoid 
function  with parameter .   

3.2 The Self-Adaptation Feature Attention 
Module 
 

 
Fig. 2 Principle of deformable convolution 

 
In early researches [13, 15, 16, 28, 29, 37], the fixed 

network convolution kernel as shown in the middle of Fig. 2 is 
usually adopted, which leads to the limitation of the receptive 
field and the inability to explore the structured clues in the 
feature space effectively. To solve this problem, it is also 
crucial to adjust the shape of the receptive field. As shown in 
the right of Fig. 2, due to the flexibility of the deformable 
convolution kernel, it is capable of obtaining more significant 
structural information adaptively. The spatial invariant 
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convolution kernel will lead to the destruction of image 
texture, which has been confirmed in previous studies [38]. As 
the core component of our SAFA module, we introduce two 
deformable convolution layers with deformable 2D kernels 
into the original pixel attention module [39], as shown in the 
Fig. 3, which implements an expansion of the receptive field 
adaptively and promotes the transformation ability of the 
model when the network focus on the calculation of thick fog 
pixels and high-frequency image regions. The capability to 
sample the unconstrained deformation of the grid also enables 
the network to adaptively integrate more spatial structure 
information and achieve a better dehazing effect. In addition, it 
is worth noting that in each SAFA module, the deformable 
convolution in deep deployment is better than in shallow 
deployment. On the other hand, through experiments, we 
notice that for the pixel attention module in our method, it is 
more efficient to replace the original two convolution layers 
and ReLU function with one 1 × 1 convolution, and the 
network is simplified to a certain extent. Therefore, the 
process can be defined as: 

      
(2) 
where  refers to the deformable convolution 
operation and the  represents the sigmoid function. The rest 
parts of the SAFA module basically keep the network structure 
of the FA module [16]. 

 
Fig. 3 The basic architecture of the SAFA module 

 

3.3 Multi-step Fusion Module 
Low-level features(i.e., step 1 and step 2 in our network), 

such as local information like edges, can often be easily 
extracted. With the increase of receptive field, the semantics of 
the global scope can be obtained by high-level features. In 
many cases such as target detection [7], image restoration [8], 
and other CNN-based tasks, the application of different levels 
of feature extraction and fusion methods has demonstrated 
significant effects. However, for the image dehazing field, the 
existing feature fusion methods do not fully consider feature 
fusion from disparate levels. In general, using only high-level 
features results in images lacking local details. By contrast, 
applying only low-level features, preserves the details though, 
but does not recover the semantics at the global level. In order 
to make full use of the advantages of this method, we 
implement a multi-step feature fusion module for the dehazing 

network. As shown in the Fig. 1, there are four fusion modules 
from left to right. The first module fuses the features from step 
1 and Step 2, and the resulting fusion feature 1, as a low-level 
feature, continues to fuse with the high-level features of Step 3 
in the second fusion module to produce fusion feature 2. 
Similarly, fusion feature 3 generated after the fusion of the 
feature in step 4 and fusion feature 2 in the third fusion module 
is also used for the final feature fusion module after step 5. 

Basically, for each feature fusion module, there is a low-
level feature and a high-level feature, respectively. Each of 
them passes through a convolution layer before being fused, 
and then fusion operation is completed by an element-wise 
product. Two different features are combined in the fused 
features, which will go through a convolution layer and a 
ReLU layer, and then be processed by the next fusion module 
in sequence. The high-level and low-level features in each 
fusion module are denoted as  and , respectively, and  
means the ReLU function.  represents the final output of 
the whole module. Finally, this process can be expressed as: 

         
(3) 

3.4 Loss Function 
There are three loss functions utilized to measure the 

deviation between the haze-free images and related clear ones 
to optimize the model. They are mean square error (MSE), 
Smooth L1 loss, and perceptual loss, and each of them plays a 
different role in the total loss function, respectively. The MSE 
is usually applied to precisely obtain some information of the 
low frequencies in the images, which are necessary for 
recovering clear images. This term is formulated as: 

                                                   
(4) 
where  means the image after dehazing, and  denotes that 
related ground truth image, and represent the number 
of RGB channels, height, and width of the image severally. 
In addition to strengthen low-frequency correctness, Smooth 
L1 loss is also insensitive to outliers and can be used to 
mitigate situations such as gradient explosion. Accordingly, 
this term can be expressed as:  

                                                         

(5)                   
 

To enhance network recovery of images with low-to-high 
semantic fidelity and better visual effect criterion, we utilize 
perceptual loss, which leverages multi-scale features obtained 
from the pre-trained neural network, to quantify the feature 
discrepancy between  and .          

  
where  denotes the k-th feature extractor related to the three 
stages of the pre-trained VGG16 network associated with 
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restored image  and its clear image , the , , and  
refer to the value of three parameters mentioned above of the 
feature maps corresponding to the k-th layer of the VGG16 
severally.  
At last, the overall loss function is defined by integrating three 
terms above as shown below:  

                                                      
(7) 

where  is a weight parameter applied to control the balance 
of the three terms. 

 

4. Experiment 

4.1 Datasets and Evaluation Metrics 
Due to the serious difficulty of collecting the authentic hazy 

images and their references without haze, we first choose the 
outdoor training set (OTS) and synthetic objective testing set 
(SOTS) from the RESIDE-standard dataset [40] for training 
and testing goals severally. RESIDE contains plentiful 
synthetic hazy indoor and outdoor images as well as their 
related clear images (ground truth). It has been used for a long 
time by researchers as a benchmark in the field of image 
dehazing based on CNN. To further evaluate the integrated 
dehazing capability of our model in the scene of the real 
world, we also adopt Dense-Haze dataset [41] and NH-HAZE 
dataset [42], which included 55 pairs of images from various 
outdoor scenes of homogeneous, uneven fog as well as their 
ground truth, respectively.  

The peak signal-to-noise ratio (PSNR) and the structural 
similarity index (SSIM)[43] are applied as the metrics for the 
assessment section, which also are the most common criteria 
for comparing the image quality in dehazing tasks.  

4.2 Training Details 
We implement proposed model utilizing PyTorch [44] 

framework, and all training and tests are performed on the 
platform with an Nvidia GeForce RTX 2080Ti GPU, 128GB 
of RAM, and the Intel XEON E5-2698V4 CPU. For the model 
training section, the configuration is shown below: The Adam 
optimizer [45] with exponential decay rates of 0.9 and 0.99 
respectively is applied, and the 8 hazy-image patches with the 
size 240 × 240 are extracted as input of our network. 
Moreover, the initial learning rate is set as 0.0002 and decayed 
based on the cosine annealing strategy. The network is totally 
trained for about 130 epochs on the OTS subset. Besides, 90, 
180, 270 degrees random horizontal and vertical rotations are 
applied as extra augmentation methods of training data.  

4.3 Evaluation on the Benchmark dataset 
Firstly, the proposed network is tested according to the 

visual effect and quantitative accuracy with the synthetic 
dataset SOTS [40]. We compare our way with SOTA methods 
in the visual effect of the recovered image, as shown in the 
Fig. 4. It can be clearly seen that although the haze is 
successfully removed in DCP [4] and MSBDN [13], it also 
caused the problem of color distortion. The image utilized 

GridDehazeNet[15] is recovered though, the brightness 
became too high. In comparison, AOD-Net [14] and FFA-Net 
[16] obtained relatively good output results, but there is still a 
small amount of haze in the local region of images. 

 
Fig. 4 Visual results comparison of images on SOTS dataset 

[40]. 
 

Besides, some experimental comparisons are conducted 
with SOTA techniques including DCP [4](the prior-based 
method), AOD-Net [14], GridDeHazeNet [15], MSBDN 
[13] and FFA-Net [16]. The quantitative results on the testing 
set are summarized below in Table 1: 

It can be observed from the comparison with the previous 
FFA-Net [16] of Table 1, our SAFA network realized 0.24dB 
PSNR performance increase with significantly reduced 
parameters. Although SSIM decreased slightly by 0.0063, our 
method generated images more naturally.  
 

Table 1 Quantitative comparisons of results with SOTA 
techniques on SOTS[40] dataset. 

Methods PSNR SSIM 
DCP[4] 15.09 0.7649 

AOD-Net[14] 19.82 0.8178 
GridDehazNet[15] 32.16 0.9836 

MSBDN[13] 33.79 0.9840 
FFA-Net[16] 36.39 0.9886 
SAFA-Net 36.63 0.9823 

 

4.4 Evaluation on real-world datasets 
We also compared the test results of Dense-Haze [41] and 

NH-HAZE [42] datasets with other SOTA approaches. Both 
datasets are under much denser and more difficult-to-remove 
fog than the RESIDE dataset [40], especially the former.  
It can be observed from the Fig. 5 and Fig. 6 that whether it is 
DCP [4], AOD-Net [14], GridDeHazeNet [15], and MSBDN 
[13], all of them have limited visual effects on removing dense 
haze. It is obvious that most fog still remains on the processed 
images, while there are particular problems such as texture loss 
and color degradation in FFA-Net [16]. By comparing the 
visual effects, our method can apparently recover more explicit 
images than other methods while retaining the original details 
and structure. 
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Fig. 5 Visual results comparison of images on Dense-Haze 

dataset [41]. 
 

 
Fig. 6 Visual results comparison of images on NH-HAZE 

dataset [42]. 
 

As shown in Table 2 and Table 3, it is shown that the 
performance of our SAFA network on the Dense-Haze dataset 
[41] is far superior to all SOTA techniques depend on 17.34dB 
PSNR and 0.5817 SSIM. For the NH-HAZE dataset [42], we 
also obtained the highest PSNR and SSIM, which are 21.81 
dB and 0.7253 severally. 

Besides, it is not difficult to discover from the last row of 
Table 3 that the proposed network achieves relatively excellent 
results with fewer parameters for the trade-off between 
calculation parameters and image recovery metrics, which also 
reduces the cost of computation effectively. 

 
Table 2 Quantitative comparisons of results with SOTA 

techniques on Dense-Haze[41] dataset. 
Methods PSNR SSIM 
DCP[4] 10.06 0.3856 

AOD-Net[14] 13.14 0.4144 
GridDehazNet[15] 14.31 0.4081 

MSBDN[13] 15.47 0.4858 
FFA-Net[16] 14.39 0.4725 
SAFA-Net 17.34 0.5817 

 
Table 3 Quantitative comparisons of results with SOTA 

techniques on NH-HAZE[42] dataset. 
Methods PSNR SSIM *Parameters 
DCP[4] 10.57 0.5196 - 

AOD-Net[14] 15.40 0.5693 0.002M 
GridDehazNet[15] 13.80 0.5370 0.96M 

MSBDN[13] 19.23 0.7056 31.35M 
FFA-Net[16] 19.87 0.6915 4.68M 
SAFA-Net 21.81 0.7253 2.37M 

 

4.5 Evaluation on real-world hazy photographs 
In order to measure the dehazing effect of our network on 

real foggy photographs and make it more convincing. Plentiful 
real hazy photographs obtained from the RTTS [40] dataset 
and a part of foggy day images collected by the author in the 
campus of the University of Kent were tested and compared. 
The visual results are shown in the figure. It can be seen that 
although the previous methods of AOD-Net [14], 
GridDeHazeNet [15], MSBDN[13], and FFA-Net [16] 
perform very well on artificial datasets, the effect of fog 
removal for such real images is not satisfactory enough. 
Besides, relatively effective DCP [4] suffers from color 
distortion and tends to over-enhance the images. In some 
cases, the results of AOD-Net [14] appeared floating shadows, 
and the brightness of the pictures after MSBDN [13] 
processing became lower. In general, our model achieves the 
superior visual effect in image detail recovery while 
maintaining the overall brightness, and the clear and haze-free 
images are reconstructed with good perceptual quality as well. 

 
Fig. 7 Visual results comparison of real photographs with 
haze. 

 

5. Experiment 
In this paper, we propose an end-to-end dehazing network 

that consists of self-adaptation feature attention (SAFA) 
module and a multi-step fusion module. The former module is 
capable of extracting the detailed features of the hazy image 
adaptively, which enlarges the range of dealing with 
complicated information to increase the transformation ability 
of the network significantly. The latter one uses the features 
from multiple steps to obtain the benefit from their 
combination. We also carried out exhaustive experiments on 
disparate datasets, and by comparing with results of some 
SOTA algorithms, it is proved that the apparent advantages of 
this network structure in the aspect of image detail recovering 
with effect. In addition, as we reduce the depth and complexity 
in network design, the more compact network significantly 
reduces the computational power consumption and time 
required for operation. Through further research in the future, 
it is expected to realize real-time dehazing and the application 
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based on this network structure in other image restoration 
tasks. 
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